Copyright C© 1995–2000 by Martin J. Osborne All Rights Reserved. No Part

Total Page:16

File Type:pdf, Size:1020Kb

Copyright C© 1995–2000 by Martin J. Osborne All Rights Reserved. No Part Copyright c 1995–2000 by Martin J. Osborne All rights reserved. No part of this book may be reproduced by any electronic or mechanical means (including photocopying, recording, or information storage and retrieval) without permission in writing from Oxford University Press. Contents Preface xiii 1 Introduction 1 1.1 What is game theory? 1 An outline of the history of game theory 3 John von Neumann 3 1.2 The theory of rational choice 4 1.3 Coming attractions 7 Notes 8 I Games with Perfect Information 9 2 Nash Equilibrium: Theory 11 2.1 Strategic games 11 2.2 Example:the Prisoner’s Dilemma 12 2.3 Example:Bach or Stravinsky? 16 2.4 Example:Matching Pennies 17 2.5 Example:the Stag Hunt 18 2.6 Nash equilibrium 19 John F. Nash, Jr. 20 Studying Nash equilibrium experimentally 22 2.7 Examples of Nash equilibrium 24 Experimental evidence on the Prisoner’s Dilemma 26 Focal points 30 2.8 Best response functions 33 2.9 Dominated actions 43 2.10 Equilibrium in a single population:symmetric games and symmetric equilibria 49 Notes 51 v vi Contents 3 Nash Equilibrium: Illustrations 53 3.1 Cournot’s model of oligopoly 53 3.2 Bertrand’s model of oligopoly 61 Cournot, Bertrand, and Nash: some historical notes 67 3.3 Electoral competition 68 3.4 The War of Attrition 75 3.5 Auctions 79 Auctions from Babylonia to eBay 79 3.6 Accident law 89 Notes 94 4 Mixed Strategy Equilibrium 97 4.1 Introduction 97 Some evidence on expected payoff functions 102 4.2 Strategic games in which players may randomize 103 4.3 Mixed strategy Nash equilibrium 105 4.4 Dominated actions 117 4.5 Pure equilibria when randomization is allowed 119 4.6 Illustration:expert diagnosis 120 4.7 Equilibrium in a single population 125 4.8 Illustration:reporting a crime 128 Reporting a crime: social psychology and game theory 130 4.9 The formation of players’ beliefs 131 4.10 Extension:Finding all mixed strategy Nash equilibria 135 4.11 Extension:Mixed strategy Nash equilibria of games in which each player has a continuum of actions 139 4.12 Appendix:Representing preferences over lotteries by the expected value of a payoff function 143 Notes 148 5 Extensive Games with Perfect Information: Theory 151 5.1 Introduction 151 5.2 Extensive games with perfect information 151 5.3 Strategies and outcomes 157 5.4 Nash equilibrium 159 5.5 Subgame perfect equilibrium 162 5.6 Finding subgame perfect equilibria of finite horizon games:backward induction 167 Ticktacktoe, chess, and related games 176 Notes 177 Contents vii 6 Extensive Games with Perfect Information: Illustrations 179 6.1 Introduction 179 6.2 The ultimatum game and the holdup game 179 Experiments on the ultimatum game 181 6.3 Stackelberg’s model of duopoly 184 6.4 Buying votes 189 6.5 A race 194 Notes 200 7 Extensive Games with Perfect Information: Extensions and Discussion 201 7.1 Allowing for simultaneous moves 201 More experimental evidence on subgame perfect equilibrium 207 7.2 Illustration:entry into a monopolized industry 209 7.3 Illustration:electoral competition with strategic voters 211 7.4 Illustration:committee decision-making 213 7.5 Illustration:exit from a declining industry 217 7.6 Allowing for exogenous uncertainty 222 7.7 Discussion:subgame perfect equilibrium and backward induction 226 Experimental evidence on the centipede game 230 Notes 232 8 Coalitional Games and the Core 235 8.1 Coalitional games 235 8.2 The core 239 8.3 Illustration:ownership and the distribution of wealth 243 8.4 Illustration:exchanging homogeneous horses 247 8.5 Illustration:exchanging heterogeneous houses 252 8.6 Illustration:voting 256 8.7 Illustration:matching 259 Matching doctors with hospitals 264 8.8 Discussion:other solution concepts 265 Notes 266 viii Contents II Games with Imperfect Information 269 9 Bayesian Games 271 9.1 Introduction 271 9.2 Motivational examples 271 9.3 General definitions 276 9.4 Two examples concerning information 281 9.5 Illustration:Cournot’s duopoly game with imperfect information 283 9.6 Illustration:providing a public good 287 9.7 Illustration:auctions 290 Auctions of the radio spectrum 298 9.8 Illustration:juries 299 9.9 Appendix:Analysis of auctions for an arbitrary distribution of valuations 306 Notes 309 10 Extensive games with imperfect information 311 10.1 To be written 311 Notes 312 III Variants and Extensions 333 11 Strictly Competitive Games and Maxminimization 335 11.1 Introduction 335 11.2 Definitions and examples 335 11.3 Strictly competitive games 338 Maxminimization: some history 344 Testing the theory of Nash equilibrium in strictly competitive games 347 Notes 348 12 Rationalizability 349 12.1 Introduction 349 12.2 Iterated elimination of strictly dominated actions 355 12.3 Iterated elimination of weakly dominated actions 359 Notes 361 Contents ix 13 Evolutionary Equilibrium 363 13.1 Introduction 363 13.2 Monomorphic pure strategy equilibrium 364 Evolutionary game theory: some history 369 13.3 Mixed strategies and polymorphic equilibrium 370 13.4 Asymmetric equilibria 377 Explaining the outcomes of contests in nature 379 13.5 Variation on a theme:sibling behavior 380 13.6 Variation on a theme:nesting behavior of wasps 386 Notes 388 14 Repeated games: The Prisoner’s Dilemma 389 14.1 The main idea 389 14.2 Preferences 391 14.3 Infinitely repeated games 393 14.4 Strategies 394 14.5 Some Nash equilibria of the infinitely repeated Prisoner’s Dilemma 396 14.6 Nash equilibrium payoffs of the infinitely repeated Prisoner’s Dilemma when the players are patient 398 14.7 Subgame perfect equilibria and the one-deviation property 402 14.8 Some subgame perfect equilibria of the infinitely repeated Prisoner’s Dilemma 404 Notes 409 15 Repeated games: General Results 411 15.1 Nash equilibria of general infinitely repeated games 411 15.2 Subgame perfect equilibria of general infinitely repeated games 414 Axelrod’s experiments 418 Reciprocal altruism among sticklebacks 419 15.3 Finitely repeated games 420 Notes 420 16 Bargaining 421 16.1 To be written 421 16.2 Repeated ultimatum game 421 16.3 Holdup game 421 x Contents 17 Appendix: Mathematics 443 17.1 Introduction 443 17.2 Numbers 443 17.3 Sets 444 17.4 Functions 445 17.5 Profiles 448 17.6 Sequences 449 17.7 Probability 449 17.8 Proofs 454 References 457 Preface Game theoretic reasoning pervades economic theory and is used widely in other social and behavioral sciences. This book presents the main ideas of game theory and shows how they can be used to understand economic, social, political, and bi- ological phenomena. It assumes no knowledge of economics, political science, or any other social or behavioral science. It emphasizes the ideas behind the theory rather than their mathematical expression, and assumes no specific mathematical knowledge beyond that typically taught in US and Canadian high schools. (Chap- ter 17 reviews the mathematical concepts used in the book.) In particular, calculus is not used, except in the appendix of Chapter 9 (Section 9.7). Nevertheless, all concepts are defined precisely, and logical reasoning is used extensively. The more comfortable you are with tight logical analysis, the easier you will find the argu- ments. In brief, my aim is to explain the main ideas of game theory as simply as possible while maintaining complete precision. The only way to appreciate the theory is to see it in action, or better still to put it into action. So the book includes a wide variety of illustrations from the social and behavioral sciences, and over 200 exercises. The structure of the book is illustrated in the figure on the next page. The grayboxesindicatecorechapters(thedarkergray,themoreimportant).Anblack arrow from Chapter i to Chapter j means that Chapter j depends on Chapter i. The gray arrow from Chapter 4 to Chapter 9 means that the latter depends weakly on the former; for all but Section 9.8 only an understanding of expected payoffs (Section 4.1.3) is required, not a knowledge of mixed strategy Nash equilibrium. (Two chapters are not included in this figure: Chapter 1 reviews the theory of a single rational decision-maker, and Chapter 17 reviews the mathematical concepts used in the book.) Each topic is presented with the aid of “Examples”, which highlight theoreti- cal points, and “Illustrations”, which demonstrate how the theory may be used to understand social, economic, political, and biological phenomena. The “Illustra- tions” for the key models of strategic and extensive games are grouped in separate chapters (3 and 6), whereas those for the other models occupy the same chapters as the theory. The “Illustrations” introduce no new theoretical points, and any or all of them may be skipped without loss of continuity. The limited dependencies between chapters mean that several routes may be taken through the book. • At a minimum, you should study Chapters 2 (Nash Equilibrium: Theory) and 5 (Extensive Games with Perfect Information: Theory). • Optionally you may sample some sections of Chapters 3 (Nash Equilibrium: 14 Preface Strategic games 3: Illustrations 4: Mixed strategies Imperfect information 2: Theory 9: Bayesian games Topics 11: Maxminimization 12: Rationalizability 13: Evolutionary equilibrium Extensive games 6: Illustrations 7: Extensions Imperfect information 5: Theory 10: Signaling games Topics 14, 15: Repeated games (I, II) 16: Bargaining Coalitional games 8: Core xivFigure 0.1 The structure of the book. The area of each box is proportional to the length of the chapter the box represents. The boxes corresponding to the core chapters are shaded gray; the ones shaded dark gray are more central that the ones shaded light gray.
Recommended publications
  • Lecture 4 Rationalizability & Nash Equilibrium Road
    Lecture 4 Rationalizability & Nash Equilibrium 14.12 Game Theory Muhamet Yildiz Road Map 1. Strategies – completed 2. Quiz 3. Dominance 4. Dominant-strategy equilibrium 5. Rationalizability 6. Nash Equilibrium 1 Strategy A strategy of a player is a complete contingent-plan, determining which action he will take at each information set he is to move (including the information sets that will not be reached according to this strategy). Matching pennies with perfect information 2’s Strategies: HH = Head if 1 plays Head, 1 Head if 1 plays Tail; HT = Head if 1 plays Head, Head Tail Tail if 1 plays Tail; 2 TH = Tail if 1 plays Head, 2 Head if 1 plays Tail; head tail head tail TT = Tail if 1 plays Head, Tail if 1 plays Tail. (-1,1) (1,-1) (1,-1) (-1,1) 2 Matching pennies with perfect information 2 1 HH HT TH TT Head Tail Matching pennies with Imperfect information 1 2 1 Head Tail Head Tail 2 Head (-1,1) (1,-1) head tail head tail Tail (1,-1) (-1,1) (-1,1) (1,-1) (1,-1) (-1,1) 3 A game with nature Left (5, 0) 1 Head 1/2 Right (2, 2) Nature (3, 3) 1/2 Left Tail 2 Right (0, -5) Mixed Strategy Definition: A mixed strategy of a player is a probability distribution over the set of his strategies. Pure strategies: Si = {si1,si2,…,sik} σ → A mixed strategy: i: S [0,1] s.t. σ σ σ i(si1) + i(si2) + … + i(sik) = 1. If the other players play s-i =(s1,…, si-1,si+1,…,sn), then σ the expected utility of playing i is σ σ σ i(si1)ui(si1,s-i) + i(si2)ui(si2,s-i) + … + i(sik)ui(sik,s-i).
    [Show full text]
  • Lecture Notes
    GRADUATE GAME THEORY LECTURE NOTES BY OMER TAMUZ California Institute of Technology 2018 Acknowledgments These lecture notes are partially adapted from Osborne and Rubinstein [29], Maschler, Solan and Zamir [23], lecture notes by Federico Echenique, and slides by Daron Acemoglu and Asu Ozdaglar. I am indebted to Seo Young (Silvia) Kim and Zhuofang Li for their help in finding and correcting many errors. Any comments or suggestions are welcome. 2 Contents 1 Extensive form games with perfect information 7 1.1 Tic-Tac-Toe ........................................ 7 1.2 The Sweet Fifteen Game ................................ 7 1.3 Chess ............................................ 7 1.4 Definition of extensive form games with perfect information ........... 10 1.5 The ultimatum game .................................. 10 1.6 Equilibria ......................................... 11 1.7 The centipede game ................................... 11 1.8 Subgames and subgame perfect equilibria ...................... 13 1.9 The dollar auction .................................... 14 1.10 Backward induction, Kuhn’s Theorem and a proof of Zermelo’s Theorem ... 15 2 Strategic form games 17 2.1 Definition ......................................... 17 2.2 Nash equilibria ...................................... 17 2.3 Classical examples .................................... 17 2.4 Dominated strategies .................................. 22 2.5 Repeated elimination of dominated strategies ................... 22 2.6 Dominant strategies ..................................
    [Show full text]
  • More Experiments on Game Theory
    More Experiments on Game Theory Syngjoo Choi Spring 2010 Experimental Economics (ECON3020) Game theory 2 Spring2010 1/28 Playing Unpredictably In many situations there is a strategic advantage associated with being unpredictable. Experimental Economics (ECON3020) Game theory 2 Spring2010 2/28 Playing Unpredictably In many situations there is a strategic advantage associated with being unpredictable. Experimental Economics (ECON3020) Game theory 2 Spring2010 2/28 Mixed (or Randomized) Strategy In the penalty kick, Left (L) and Right (R) are the pure strategies of the kicker and the goalkeeper. A mixed strategy refers to a probabilistic mixture over pure strategies in which no single pure strategy is played all the time. e.g., kicking left with half of the time and right with the other half of the time. A penalty kick in a soccer game is one example of games of pure con‡icit, essentially called zero-sum games in which one player’s winning is the other’sloss. Experimental Economics (ECON3020) Game theory 2 Spring2010 3/28 The use of pure strategies will result in a loss. What about each player playing heads half of the time? Matching Pennies Games In a matching pennies game, each player uncovers a penny showing either heads or tails. One player takes both coins if the pennies match; otherwise, the other takes both coins. Left Right Top 1, 1, 1 1 Bottom 1, 1, 1 1 Does there exist a Nash equilibrium involving the use of pure strategies? Experimental Economics (ECON3020) Game theory 2 Spring2010 4/28 Matching Pennies Games In a matching pennies game, each player uncovers a penny showing either heads or tails.
    [Show full text]
  • Paper and Pencils for Everyone
    (CM^2) Math Circle Lesson: Game Theory of Gomuku and (m,n,k-games) Overview: Learning Objectives/Goals: to expose students to (m,n,k-games) and learn the general history of the games through out Asian cultures. SWBAT… play variations of m,n,k-games of varying degrees of difficulty and complexity as well as identify various strategies of play for each of the variations as identified by pattern recognition through experience. Materials: Paper and pencils for everyone Vocabulary: Game – we will create a working definition for this…. Objective – the goal or point of the game, how to win Win – to do (achieve) what a certain game requires, beat an opponent Diplomacy – working with other players in a game Luck/Chance – using dice or cards or something else “random” Strategy – techniques for winning a game Agenda: Check in (10-15min.) Warm-up (10-15min.) Lesson and game (30-45min) Wrap-up and chill time (10min) Lesson: Warm up questions: Ask these questions after warm up to the youth in small groups. They may discuss the answers in the groups and report back to you as the instructor. Write down the answers to these questions and compile a working definition. Try to lead the youth so that they do not name a specific game but keep in mind various games that they know and use specific attributes of them to make generalizations. · What is a game? · Are there different types of games? · What make something a game and something else not a game? · What is a board game? · How is it different from other types of games? · Do you always know what your opponent (other player) is doing during the game, can they be sneaky? · Do all of games have the same qualities as the games definition that we just made? Why or why not? Game history: The earliest known board games are thought of to be either ‘Go’ from China (which we are about to learn a variation of), or Senet and Mehen from Egypt (a country in Africa) or Mancala.
    [Show full text]
  • Strategic Uncertainty Aversion in Bargaining - Experimental Evidence∗
    Strategic Uncertainty Aversion in Bargaining - Experimental Evidence∗ Ben Greiner† February 21, 2020 Abstract In a series of four experiments I demonstrate the existence of significant aversion to basically non-existent strategic uncertainty in very simple bargaining games. This aversion goes far beyond ordinary risk or ambiguity aversion. Specifically, although almost nobody expects or chooses the rejection of an offered equal split in a bargaining game, participants behave as if there would be a considerably large rejection rate for equal splits. This behavior is robust across experimental designs and subject pools, can lead to inefficiencies in markets, and is incompatible with consistency of strategies and rational beliefs. Keywords: strategic risk, strategic uncertainty, ultimatum game, dictator game, impunity game, bounded rationality JEL Classification: C72, C92, D3 ∗I would like to thank Gary Bolton, Ido Erev, Gigi Foster, Werner G¨uth, Muriel Niederle, Axel Ockenfels, Michael Peters, Carlos Pimienta, Al Roth, Patrick Schneider, Ro’i Zultan, participants at the ESA Meetings 2004 in Erfurt, 2009 in Tucson, and 2010 in Copenhagen; participants at the TIBER workshop 2010 in Tilburg, and the UNSW Behavioral Economics Workshop 2012; and participants at seminars at ANU, Deakin U, Harvard U, Humboldt U, U Canterbury, U Cologne, U Jena, UNSW Sydney, U Queensland, U South Australia, for the discussions and valuable comments. I am grateful to Bettina Bartels, Susanne B¨uchner, Ren´eCyranek, Xavier del Pozo, H˚akan Fink, Sven Fischer, Ralica Gospodinova, Martin Jonas, Felix Lamouroux, Katinka Pantz, Karin Ru¨etz, Carsten Schmidt, and Thomas Wolfgarten for their support for the experiments. †Wirtschaftsuniversit¨at Wien, Institute for Markets and Strategy, Welthandelsplatz 1, 1020 Vienna, Austria, e-mail: bgreiner AT wu.ac.at, and University of New South Wales, School of Economics.
    [Show full text]
  • 8. Maxmin and Minmax Strategies
    CMSC 474, Introduction to Game Theory 8. Maxmin and Minmax Strategies Mohammad T. Hajiaghayi University of Maryland Outline Chapter 2 discussed two solution concepts: Pareto optimality and Nash equilibrium Chapter 3 discusses several more: Maxmin and Minmax Dominant strategies Correlated equilibrium Trembling-hand perfect equilibrium e-Nash equilibrium Evolutionarily stable strategies Worst-Case Expected Utility For agent i, the worst-case expected utility of a strategy si is the minimum over all possible Husband Opera Football combinations of strategies for the other agents: Wife min u s ,s Opera 2, 1 0, 0 s-i i ( i -i ) Football 0, 0 1, 2 Example: Battle of the Sexes Wife’s strategy sw = {(p, Opera), (1 – p, Football)} Husband’s strategy sh = {(q, Opera), (1 – q, Football)} uw(p,q) = 2pq + (1 – p)(1 – q) = 3pq – p – q + 1 We can write uw(p,q) For any fixed p, uw(p,q) is linear in q instead of uw(sw , sh ) • e.g., if p = ½, then uw(½,q) = ½ q + ½ 0 ≤ q ≤ 1, so the min must be at q = 0 or q = 1 • e.g., minq (½ q + ½) is at q = 0 minq uw(p,q) = min (uw(p,0), uw(p,1)) = min (1 – p, 2p) Maxmin Strategies Also called maximin A maxmin strategy for agent i A strategy s1 that makes i’s worst-case expected utility as high as possible: argmaxmin ui (si,s-i ) si s-i This isn’t necessarily unique Often it is mixed Agent i’s maxmin value, or security level, is the maxmin strategy’s worst-case expected utility: maxmin ui (si,s-i ) si s-i For 2 players it simplifies to max min u1s1, s2 s1 s2 Example Wife’s and husband’s strategies
    [Show full text]
  • Understanding Emotions in Electronic Auctions: Insights from Neurophysiology
    Understanding Emotions in Electronic Auctions: Insights from Neurophysiology Marc T. P. Adam and Jan Krämer Abstract The design of electronic auction platforms is an important field of electronic commerce research. It requires not only a profound understanding of the role of human cognition in human bidding behavior but also of the role of human affect. In this chapter, we focus specifically on the emotional aspects of human bidding behavior and the results of empirical studies that have employed neurophysiological measurements in this regard. By synthesizing the results of these studies, we are able to provide a coherent picture of the role of affective processes in human bidding behavior along four distinct theoretical pathways. 1 Introduction Electronic auctions (i.e., electronic auction marketplaces) are information systems that facilitate and structure the exchange of products and services between several potential buyers and sellers. In practice, electronic auctions have been employed for a wide range of goods and services, such as commodities (e.g., Internet consumer auction markets, such as eBay.com), perishable goods (e.g., Dutch flower markets, such as by Royal FloraHolland), consumer services (e.g., procurement auction markets, such as myhammer.com), or property rights (e.g., financial double auction markets such as NASDAQ). In this vein, a large share of our private and commercial economic activity is being organized through electronic auctions today (Adam et al. 2017;Kuetal.2005). Previous research in information systems, economics, and psychology has shown that the design of electronic auctions has a tremendous impact on the auction M. T. P. Adam College of Engineering, Science and Environment, The University of Newcastle, Callaghan, Australia e-mail: [email protected] J.
    [Show full text]
  • Oligopolistic Competition
    Lecture 3: Oligopolistic competition EC 105. Industrial Organization Mattt Shum HSS, California Institute of Technology EC 105. Industrial Organization (Mattt Shum HSS,Lecture California 3: Oligopolistic Institute of competition Technology) 1 / 38 Oligopoly Models Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j's actions affect firm i's profits PC: firms are small, so no single firm’s actions affect other firms’ profits Monopoly: only one firm EC 105. Industrial Organization (Mattt Shum HSS,Lecture California 3: Oligopolistic Institute of competition Technology) 2 / 38 Oligopoly Models Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j's actions affect firm i's profits PC: firms are small, so no single firm’s actions affect other firms’ profits Monopoly: only one firm EC 105. Industrial Organization (Mattt Shum HSS,Lecture California 3: Oligopolistic Institute of competition Technology) 2 / 38 Oligopoly Models Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j's actions affect firm i's profits PC: firms are small, so no single firm’s actions affect other firms’ profits Monopoly: only one firm EC 105. Industrial Organization (Mattt Shum HSS,Lecture California 3: Oligopolistic Institute of competition Technology) 2 / 38 Oligopoly Models Oligopoly: interaction among small number of firms Conflict of interest: Each firm maximizes its own profits, but... Firm j's actions affect firm i's profits PC: firms are small, so no single firm’s actions affect other firms’ profits Monopoly: only one firm EC 105.
    [Show full text]
  • BAYESIAN EQUILIBRIUM the Games Like Matching Pennies And
    BAYESIAN EQUILIBRIUM MICHAEL PETERS The games like matching pennies and prisoner’s dilemma that form the core of most undergrad game theory courses are games in which players know each others’ preferences. Notions like iterated deletion of dominated strategies, and rationalizability actually go further in that they exploit the idea that each player puts him or herself in the shoes of other players and imagines that the others do the same thing. Games and reasoning like this apply to situations in which the preferences of the players are common knowledge. When we want to refer to situations like this, we usually say that we are interested in games of complete information. Most of the situations we study in economics aren’t really like this since we are never really sure of the motivation of the players we are dealing with. A bidder on eBay, for example, doesn’t know whether other bidders are interested in a good they would like to bid on. Once a bidder sees that another has submit a bid, he isn’t sure exactly how much the good is worth to the other bidder. When players in a game don’t know the preferences of other players, we say a game has incomplete information. If you have dealt with these things before, you may have learned the term asymmetric information. This term is less descriptive of the problem and should probably be avoided. The way we deal with incomplete information in economics is to use the ap- proach originally described by Savage in 1954. If you have taken a decision theory course, you probably learned this approach by studying Anscombe and Aumann (last session), while the approach we use in game theory is usually attributed to Harsanyi.
    [Show full text]
  • More Than Thirty Years of Ultimatum Bargaining Experiments: Motives, Variations, and a Survey of the Recent Literature
    A Service of Leibniz-Informationszentrum econstor Wirtschaft Leibniz Information Centre Make Your Publications Visible. zbw for Economics Güth, Werner; Kocher, Martin G. Working Paper More than Thirty Years of Ultimatum Bargaining Experiments: Motives, Variations, and a Survey of the Recent Literature CESifo Working Paper, No. 4380 Provided in Cooperation with: Ifo Institute – Leibniz Institute for Economic Research at the University of Munich Suggested Citation: Güth, Werner; Kocher, Martin G. (2013) : More than Thirty Years of Ultimatum Bargaining Experiments: Motives, Variations, and a Survey of the Recent Literature, CESifo Working Paper, No. 4380, Center for Economic Studies and ifo Institute (CESifo), Munich This Version is available at: http://hdl.handle.net/10419/84170 Standard-Nutzungsbedingungen: Terms of use: Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your Zwecken und zum Privatgebrauch gespeichert und kopiert werden. personal and scholarly purposes. Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle You are not to copy documents for public or commercial Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich purposes, to exhibit the documents publicly, to make them machen, vertreiben oder anderweitig nutzen. publicly available on the internet, or to distribute or otherwise use the documents in public. Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, If the documents have been made available under an Open gelten abweichend von diesen Nutzungsbedingungen die in der dort Content Licence (especially Creative Commons Licences), you genannten Lizenz gewährten Nutzungsrechte. may exercise further usage rights as specified in the indicated licence. www.econstor.eu More than Thirty Years of Ultimatum Bargaining Experiments: Motives, Variations, and a Survey of the Recent Literature Werner Güth Martin G.
    [Show full text]
  • Second-Price All-Pay Auctions and Best-Reply Matching Equilibria Gisèle Umbhauer
    Second-Price All-Pay Auctions and Best-Reply Matching Equilibria Gisèle Umbhauer To cite this version: Gisèle Umbhauer. Second-Price All-Pay Auctions and Best-Reply Matching Equilibria. International Game Theory Review, World Scientific Publishing, 2019, 21 (02), 10.1142/S0219198919400097. hal- 03164468 HAL Id: hal-03164468 https://hal.archives-ouvertes.fr/hal-03164468 Submitted on 9 Mar 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. SECOND-PRICE ALL-PAY AUCTIONS AND BEST-REPLY MATCHING EQUILIBRIA Gisèle UMBHAUER. Bureau d’Economie Théorique et Appliquée, University of Strasbourg, Strasbourg, France [email protected] Accepted October 2018 Published in International Game Theory Review, Vol 21, Issue 2, 40 pages, 2019 DOI 10.1142/S0219198919400097 The paper studies second-price all-pay auctions - wars of attrition - in a new way, based on classroom experiments and Kosfeld et al.’s best-reply matching equilibrium. Two players fight over a prize of value V, and submit bids not exceeding a budget M; both pay the lowest bid and the prize goes to the highest bidder. The behavior probability distributions in the classroom experiments are strikingly different from the mixed Nash equilibrium.
    [Show full text]
  • Judgment in Managerial Decision Making, 7Th Edition
    JUDGMENT IN MANAGERIAL DECISION MAKING SEVENTH EDITION Max H. Bazerman Harvard Business School Don A. Moore Carnegie Mellon University JOHN WILEY &SONS,INC. Executive Publisher Don Fowley Production Assistant Matt Winslow Production Manager Dorothy Sinclair Executive Marketing Manager Amy Scholz Marketing Coordinator Carly Decandia Creative Director Jeof Vita Designer Jim O’Shea Production Management Services Elm Street Publishing Services Electronic Composition Thomson Digital Editorial Program Assistant Carissa Marker Senior Media Editor Allison Morris Cover Photo Corbis Digital Stock (top left), Photo Disc/Getty Images (top right), and Photo Disc, Inc. (bottom) This book was set in 10/12 New Caledonia by Thomson Digital and printed and bound by Courier/Westford. The cover was printed by Courier/Westford. This book is printed on acid free paper. Copyright # 2009 John Wiley & Sons, Inc. All rights reserved. No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under Sections 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, website www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030-5774, (201)748-6011, fax (201)748-6008, website http://www.wiley.com/go/permissions. To order books or for customer service please, call 1-800-CALL WILEY (225-5945).
    [Show full text]