Update in Pediatric Neuro-Oncology

Total Page:16

File Type:pdf, Size:1020Kb

Update in Pediatric Neuro-Oncology bioengineering Update in Pediatric Neuro-Oncology Edited by Soumen Khatua and Natasha Pillay Smiley Printed Edition of the Special Issue Published in Bioengineering www.mdpi.com/journal/bioengineering Update in Pediatric Neuro-Oncology Update in Pediatric Neuro-Oncology Special Issue Editors Soumen Khatua Natasha Pillay Smiley MDPI • Basel • Beijing • Wuhan • Barcelona • Belgrade Special Issue Editors Soumen Khatua The University of Texas MD Anderson Cancer Center USA Natasha Pillay Smiley Ann and Robert H. Lurie Children’s Hospital USA Editorial Office MDPI St. Alban-Anlage 66 4052 Basel, Switzerland This is a reprint of articles from the Special Issue published online in the open access journal Bioengineering (ISSN 2306-5354) in 2018 (available at: https://www.mdpi.com/journal/ bioengineering/special issues/pediatr neuro oncol) For citation purposes, cite each article independently as indicated on the article page online and as indicated below: LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number, Page Range. ISBN 978-3-03897-539-7 (Pbk) ISBN 978-3-03897-540-3 (PDF) Cover image courtesy of Natasha Pillay Smiley. c 2019 by the authors. Articles in this book are Open Access and distributed under the Creative Commons Attribution (CC BY) license, which allows users to download, copy and build upon published articles, as long as the author and publisher are properly credited, which ensures maximum dissemination and a wider impact of our publications. The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons license CC BY-NC-ND. Contents About the Special Issue Editors ..................................... vii Preface to ”Update in Pediatric Neuro-Oncology” ........................... ix Natasha Pillay Smiley and Soumen Khatua Introduction to the Special Issue on Pediatric Neuro-Oncology Reprinted from: Bioengineering 2018, 5, 109, doi:10.3390/bioengineering5040109 .......... 1 Anders W. Bailey, Amreena Suri, Pauline M. Chou, Tatiana Pundy, Samantha Gadd, Stacey L. Raimondi, Tadanori Tomita and Simone Treiger Sredni Polo-Like Kinase 4 (PLK4) Is Overexpressed in Central Nervous System Neuroblastoma (CNS-NB) Reprinted from: Bioengineering 2018, 5, 96, doi:10.3390/bioengineering5040096 ........... 5 Amer M. Najjar, Jason M. Johnson and Dawid Schellingerhout The Emerging Role of Amino Acid PET in Neuro-Oncology Reprinted from: Bioengineering 2018, 5, 104, doi:10.3390/bioengineering5040104 .......... 18 Ethan B. Ludmir, David R. Grosshans and Kristina D. Woodhouse Radiotherapy Advances in Pediatric Neuro-Oncology Reprinted from: Bioengineering 2018, 5, 97, doi:10.3390/bioengineering5040097 ........... 33 Cavan P. Bailey, Mary Figueroa, Sana Mohiuddin, Wafik Zaky and Joya Chandra Cutting Edge Therapeutic Insights Derived from Molecular Biology of Pediatric High-Grade Glioma and Diffuse Intrinsic Pontine Glioma (DIPG) Reprinted from: Bioengineering 2018, 5, 88, doi:10.3390/bioengineering5040088 ........... 49 Peter H. Baenziger and Karen Moody Palliative Care for Children with Central Nervous System Malignancies Reprinted from: Bioengineering 2018, 5, 85, doi:10.3390/bioengineering5040085 ........... 65 Tara H.W. Dobson and Vidya Gopalakrishnan Preclinical Models of Pediatric Brain Tumors—Forging Ahead Reprinted from: Bioengineering 2018, 5, 81, doi:10.3390/bioengineering5040081 ........... 83 David E. Kram, Jacob J. Henderson, Muhammad Baig, Diya Chakraborty, Morgan A. Gardner, Subhasree Biswas and Soumen Khatua Embryonal Tumors of the Central Nervous System in Children: The Era of Targeted Therapeutics Reprinted from: Bioengineering 2018, 5, 78, doi:10.3390/bioengineering5040078 ........... 96 Peter L. Stavinoha, Martha A. Askins, Stephanie K. Powell, Natasha Pillay Smiley and Rhonda S. Robert Neurocognitive and Psychosocial Outcomes in Pediatric Brain Tumor Survivors Reprinted from: Bioengineering 2018, 5, 73, doi:10.3390/bioengineering5030073 ...........112 v About the Special Issue Editors Soumen Khatua is an Associate Professor and a pediatric Neuro-Oncologist at M.D. Anderson Cancer Center. He completed a pediatric Hematology-Oncology fellowship at the Children’s National Medical Center, Washington DC and a Neuro-Oncology fellowship at the Children’s Hospital Los Angeles. His research efforts are directed towards developing clinical trials using targeted therapy in pediatric brain tumors. Dr. Khatua’s areas of interest and focus are high-grade glioma, diffuse pontine glioma and intracranial germ cell tumors. Natasha Pillay Smiley is a pediatric Neuro-Oncologist at Ann & Robert H. Lurie in Chicago, Illinois. In addition to taking care of newly diagnosed children with brain and spinal cord tumors, she serves as the director of the Pediatric Brain Tumor Survivorship Program and is a member of the Cancer Predisposition clinic and the NF-1 Neuro-Oncology Clinic. She also currently serves as the Assistant Hematology/Oncology/SCT Fellowship Director and the Neuro-Oncology Fellowship Director. vii Preface to ”Update in Pediatric Neuro-Oncology” Pediatric Neuro-Oncology is a highly specialized field encompassing molecular biology, clinical acumen, evidence-based medicine, cancer genetics, and neuropsychological care for the diagnosis and treatment of children with central nervous system (CNS) tumors. In this Special Edition of Bioengineering, we hope to demonstrate the wide breath of science and medicine that occurs in the field of pediatric neuro-oncology. Faced with substantial mortality in children with aggressive tumors as well as significant morbidity of survivors, we are always challenged to learn more about these disease entities and improve the outcomes of these children. Topics that are discussed further in this edition are: Molecular biology in pediatric gliomas, the clinical relevance of preclinical models, updates on radiation therapy for pediatric CNS tumors, molecular neuro-imaging, embryonal tumors and targeted therapeutics, and neurocognitive and psychosocial outcomes and palliative care in children with central nervous system malignancies. Soumen Khatua, Natasha Pillay Smiley Special Issue Editors ix bioengineering Editorial Introduction to the Special Issue on Pediatric Neuro-Oncology Natasha Pillay Smiley 1,* and Soumen Khatua 2 1 Department of Hematology/Oncology/SCT. Ann & Robert H. Lurie Children’s Hospital, Chicago, IL 60611, USA 2 Department of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; [email protected] * Correspondence: [email protected] Received: 25 November 2018; Accepted: 6 December 2018; Published: 11 December 2018 Keywords: brain tumor; pediatrics; advancements; molecular biology Pediatric Neuro-Oncology is a highly specialized field encompassing molecular biology, clinical acumen, evidence based medicine, cancer genetics and neuropsychological care for the diagnosis and treatment of children with central nervous system (CNS) tumors. In data acquired by the National Institute of Health’s (NIH) Surveillance, Epidemiology and End Results (SEER) Program, there were 3.1 new cases of childhood brain tumors per 100,000 people from 2011–2015. This represents the second most common pediatric cancer diagnosis (17.2% overall, second only to leukemia) as well as the leading cause of mortality [1]. This special edition of the Bioengineering Journal highlights major advancements in pediatric neuro-oncology as well as our current challenges. The SEER data describes the overall survival of pediatric CNS tumors to be approximately 70%, an improvement from less than 60% from the 1970s [1]. This statistic can be misrepresentative as pediatric CNS tumors are heterogenous with diverse survival outcomes, ranging from the mostly indolent nature of low grade gliomas with a 20 year overall survival (OS) of 80% [2] to the highly aggressive diffuse intrinsic pontine glioma (DIPG) with a 2 year OS of less than 10%. [3,4]. Although survival has not dramatically increased for DIPG and high grade glioma over the last few decades, there has been an increase in the survivability of other tumors such as the medulloblastoma (MB) and atypical teratoid rhabdoid tumor (ATRT). This has resulted from the surge of genomic and epigenomic data of pediatric brain tumors- forging an era of biologically targeted therapy with improved survival outcome of CNS tumors. This is best illustrated by the story of medulloblastoma subtyping and the somewhat recent discovery of ATRT. We now have established molecular subgroups with defined demographics, oncogenic drivers and risk stratification based treatment strategies. Retrospective analysis of medulloblastoma patients have determined that children with WNT subgrouping have a significantly higher overall survival, and thus, clinical trials are now focused on changing upfront treatment of these children to mitigate the profound late effects medulloblastoma patients face [5]. Atypical Teratoid Rhabdoid tumor (ATRT) was only described in the 1980s, previously thought to be a type of medulloblastoma or supratentorial PNET [6,7]. Advances in histologic characterization and FISH for chromosome 22 helped to classify this as a separate entity. ATRT is a disease of primarily infants, and was nearly always fatal, with the 3 years survival of children treated with the Pediatric Oncology Group (POG) infant studies of less than 10% [7]. However, treatment with high dose chemotherapy and/or autologous transplantation and radiation has now led to improved survival in this population
Recommended publications
  • Brain Tumors
    BRAIN TUMORS What kinds of brain tumors affect pets? Brain tumors occur relatively often in dogs and cats. The most common type of brain tumor is a meningioma, which originates from the layer surrounding the brain, called the meninges. Meningiomas are slow-growing benign tumors that are often present for months to years before clinical signs appear. Other common types in- clude glial cell tumors, which originate in the brain tissue, and choroid plexus tumors, which originate from the tissue in the brain that produces spinal fluid. Tumors in structures around the brain (like nasal tumors, skull tumors, and pituitary tumors) may also com- press the brain. Lymphoma is a type of cancer that can affect multiple parts of the brain and spine. What are the symptoms? Symptoms vary and depend on the size and location of the tumor. Common signs include changes in behavior, circling or pacing, staring into space, getting stuck in corners, and seizures. Other signs can include weakness, lack of alertness, difficulty eating or swallowing, and problems with the “vestibular system,” or system of bal- ance, such as lack of coordination, head tilt, leaning/circling/falling to one side, and abnormal eye movements. How are brain tumors diagnosed? An MRI scan produces an image of the brain that’s more detailed than a CT scan or x-ray and can identify a tumor. Often the appearance of the tumor on MRI suggests the type of tumor (i.e. meningioma vs lymphoma). However, a biopsy of the tumor is required to give a definitive diagnosis. In some cases, spinal fluid is collected to help diagnose lymphoma.
    [Show full text]
  • Neuro-Oncology
    Neuro-Oncology Neuro-Oncology 17:iv1–iv62, 2015. doi:10.1093/neuonc/nov189 CBTRUS Statistical Report: Primary Brain and Central Nervous System Tumors Diagnosed in the United States in 2008-2012 Quinn T. Ostrom M.A., M.P.H.1,2*, Haley Gittleman M.S.1,2*, Jordonna Fulop R.N.1, Max Liu3, Rachel Blanda4, Courtney Kromer B.A.5, Yingli Wolinsky Ph.D., M.B.A.1,2, Carol Kruchko B.A.2, and Jill S. Barnholtz-Sloan Ph.D.1,2 1Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH USA 2Central Brain Tumor Registry of the United States, Hinsdale, IL USA 3Solon High School, Solon, OH USA 4Georgetown University, Washington D.C. USA 5Case Western Reserve University School of Medicine, Cleveland, OH USA *Contributed equally to this Report. Introduction for collection of central (state) cancer data as mandated in 1992 by Public Law 102-515, the Cancer Registries Amendment The objective of the CBTRUS Statistical Report: Primary Brain and Act.2 This mandate was expanded to include non-malignant Central Nervous System Tumors Diagnosed in the United States brain tumors diagnosed in 2004 and later with the 2002 in 2008-2012 is to provide a comprehensive summary of the passage of Public Law 107–260.3 CBTRUS researchers combine current descriptive epidemiology of primary brain and central the NPCR data with data from the SEER program4 of the NCI, nervous system (CNS) tumors in the United States (US) popula- which was established for national cancer surveillance in the tion. CBTRUS obtained the latest available data on all newly early 1970s.
    [Show full text]
  • The Role of PET in Supratentorial and Infratentorial Pediatric Brain Tumors
    Review The Role of PET in Supratentorial and Infratentorial Pediatric Brain Tumors Angelina Cistaro 1,2 , Domenico Albano 3 , Pierpaolo Alongi 4,* , Riccardo Laudicella 5 , Daniele Antonio Pizzuto 6 , Giuseppe Formica 5, Cinzia Romagnolo 7, Federica Stracuzzi 5, Viviana Frantellizzi 8 , Arnoldo Piccardo 1,2 and Natale Quartuccio 2,9 1 Nuclear Medicine Department, Ospedali Galliera, 16128 Genova, Italy; [email protected] (A.C.); [email protected] (A.P.) 2 AIMN Pediatric Study Group, 20159 Milan, Italy; [email protected] 3 Department of Nuclear Medicine, University of Brescia and Spedali Civili Brescia, 25123 Brescia, Italy; [email protected] 4 Unit of Nuclear Medicine, Fondazione Istituto G. Giglio, 90015 Cefalù, Italy 5 Nuclear Medicine Unit, Department of Biomedical and Dental Sciences and of Morpho-Functional Imaging, A.O.U. Policlinico G. Martino, University of Messina, 98125 Messina, Italy; [email protected] (R.L.); [email protected] (G.F.); [email protected] (F.S.) 6 Department of Nuclear Medicine, University Hospital Zürich, 8091 Zürich, Switzerland; [email protected] 7 Nuclear Medicine Unit, Ospedali Riuniti, Torrette di Ancona, 60126 Ancona, Italy; [email protected] 8 Department of Radiological Sciences, Oncology and Anatomical Pathology, Sapienza University of Rome, 00161 Rome, Italy; [email protected] 9 Nuclear Medicine Unit, A.R.N.A.S. Ospedali Civico, Di Cristina e Benfratelli, 90127 Palermo, Italy * Correspondence:
    [Show full text]
  • Brain Invasion in Meningioma—A Prognostic Potential Worth Exploring
    cancers Review Brain Invasion in Meningioma—A Prognostic Potential Worth Exploring Felix Behling 1,2,* , Johann-Martin Hempel 2,3 and Jens Schittenhelm 2,4 1 Department of Neurosurgery, University Hospital Tübingen, Eberhard-Karls-University Tübingen, 72076 Tübingen, Germany 2 Center for CNS Tumors, Comprehensive Cancer Center Tübingen-Stuttgart, University Hospital Tübingen, Eberhard-Karls-University Tübingen, 72076 Tübingen, Germany; [email protected] (J.-M.H.); [email protected] (J.S.) 3 Department of Diagnostic and Interventional Neuroradiology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, 72076 Tübingen, Germany 4 Department of Neuropathology, University Hospital Tübingen, Eberhard-Karls-University Tübingen, 72076 Tübingen, Germany * Correspondence: [email protected] Simple Summary: Meningiomas are benign tumors of the meninges and represent the most common primary brain tumor. Most tumors can be cured by surgical excision or stabilized by radiation therapy. However, recurrent cases are difficult to treat and alternatives to surgery and radiation are lacking. Therefore, a reliable prognostic marker is important for early identification of patients at risk. The presence of infiltrative growth of meningioma cells into central nervous system tissue has been identified as a negative prognostic factor and was therefore included in the latest WHO classification for CNS tumors. Since then, the clinical impact of CNS invasion has been questioned by different retrospective studies and its removal from the WHO classification has been suggested. Citation: Behling, F.; Hempel, J.-M.; There may be several reasons for the emergence of conflicting results on this matter, which are Schittenhelm, J. Brain Invasion in discussed in this review together with the potential and future perspectives of the role of CNS Meningioma—A Prognostic Potential invasion in meningiomas.
    [Show full text]
  • Triazolobenzodiazepines and -Triazepines As Protein Interaction Inhibitors Targeting Bromodomains of the BET Family
    Dissertation zur Erlangung des Doktorgrades der Fakultät für Chemie und Pharmazie der Ludwig-Maximilians-Universität München Triazolobenzodiazepines and -triazepines as Protein Interaction Inhibitors Targeting Bromodomains of the BET Family Matthias Alfons Wrobel aus Weiden i.d.OPf. 2013 Erklärung Diese Dissertation wurde im Sinne von § 7 der Promotionsordnung vom 28. November 2011 von Herrn Prof. Dr. Franz Bracher betreut. Eidesstattliche Versicherung Diese Dissertation wurde eigenständig und ohne unerlaubte Hilfe erarbeitet. München, 09.12.2013 Matthias Wrobel Dissertation eingereicht am 10.12.2013 1. Gutachter: Prof. Dr. Franz Bracher 2. Gutachter: Prof. Dr. Stefan Knapp Mündliche Prüfung am 21.01.2014 This dissertation was carried out in close collaboration with the Structural Genomics Consortium of the University of Oxford. Prof. Dr. Stefan Knapp Dr. Panagis Filippakopoulos Screening via DSF / ITC / Co-crystallization …für Caro …für meine Familie Acknowledgements I would like to thank Prof. Dr. Franz Bracher for giving me the possibility to work on this interesting topic, the helpful advices in meetings, always having a sympathetic ear for all kind of affairs and his support during the time of my PhD Thesis. I would also like to thank all the members of the Board of Examiners. In gratitude for the opportunity to visit his group at the University of Oxford (UK) and his considerable commitment for our collaboration, I would like to thank Prof. Dr. Stefan Knapp. Special thanks goes to Dr. Panagis Filippakopoulos for his supervision during my stays at the SGC and his patience and support in uncountable discussions about co-crystallization, structure optimization and critical appraisal of screening results.
    [Show full text]
  • What Are Brain and Spinal Cord Tumors in Children? ● Types of Brain and Spinal Cord Tumors in Children
    cancer.org | 1.800.227.2345 About Brain and Spinal Cord Tumors in Children Overview and Types If your child has just been diagnosed with brain or spinal cord tumors or you are worried about it, you likely have a lot of questions. Learning some basics is a good place to start. ● What Are Brain and Spinal Cord Tumors in Children? ● Types of Brain and Spinal Cord Tumors in Children Research and Statistics See the latest estimates for new cases of brain and spinal cord tumors in children in the US and what research is currently being done. ● Key Statistics for Brain and Spinal Cord Tumors in Children ● What’s New in Research for Childhood Brain and Spinal Cord Tumors? What Are Brain and Spinal Cord Tumors in Children? Brain and spinal cord tumors are masses of abnormal cells in the brain or spinal cord 1 ____________________________________________________________________________________American Cancer Society cancer.org | 1.800.227.2345 that have grown out of control. Are brain and spinal cord tumors cancer? In most other parts of the body, there's an important difference between benign (non- cancerous) tumors and malignant tumors (cancers1). Benign tumors do not invade nearby tissues or spread to distant areas, and are almost never life threatening in other parts of the body. Malignant tumors (cancers) are so dangerous mainly because they can spread throughout the body. Brain tumors rarely spread to other parts of the body, though many of them are considered malignant because they can spread through the brain and spinal cord tissue. But even so-called benign tumors can press on and destroy normal brain tissue as they grow, which can lead to serious or sometimes even life-threatening damage.
    [Show full text]
  • BET Bromodomain Protein Inhibition Is a Therapeutic Option for Medulloblastoma
    www.impactjournals.com/oncotarget/ Oncotarget, November, Vol.4, No 11 BET bromodomain protein inhibition is a therapeutic option for medulloblastoma Anton Henssen1, Theresa Thor2,4, Andrea Odersky 1, Lukas Heukamp6, Nicolai El- Hindy7, Anneleen Beckers8, Frank Speleman8, Kristina Althoff1, Simon Schäfers1, Alexander Schramm1, Ulrich Sure7, Gudrun Fleischhack1, Angelika Eggert9, Johannes H. Schulte1,5 1 Department of Pediatric Oncology and Hematology, University Children`s Hospital Essen, Essen, Germany 2 German Cancer Consortium (DKTK), Germany 3 Translational Neuro-Oncology, West German Cancer Center, University Hospital Essen, University Duisburg-Essen, Essen, Germany 4 German Cancer Research Center (DKFZ), Heidelberg, Germany 5 Centre for Medical Biotechnology, University Duisburg-Essen, Essen, Germany 6 Institute of Pathology, University Hospital Cologne, Cologne, Germany 7 Department of Neurosurgery, University of Essen, Essen, Germany 8 Center of Medical Genetics Ghent (CMGG), Ghent University Hospital, Ghent, Belgium 9 Department of Pediatric Oncology/Hematology, Charité-Universitätsmedizin Berlin, Germany Correspondence to: Johannes H. Schulte, email: [email protected] Keywords: BET bromodomains, BRD4, MYC, JQ1, pediatric brain tumors, targeted therapy Received: October 23, 2013 Accepted: October 25, 2013 Published: October 27, 2013 This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT: Medulloblastoma is the most common malignant brain tumor of childhood, and represents a significant clinical challenge in pediatric oncology, since overall survival currently remains under 70%. Patients with tumors overexpressing MYC or harboring a MYC oncogene amplification have an extremely poor prognosis. Pharmacologically inhibiting MYC expression may, thus, have clinical utility given its pathogenetic role in medulloblastoma.
    [Show full text]
  • Macrophage Inflammatory Responses BET Inhibitor JQ1 Impair Mouse
    BET Protein Function Is Required for Inflammation: Brd2 Genetic Disruption and BET Inhibitor JQ1 Impair Mouse Macrophage Inflammatory Responses This information is current as of October 4, 2021. Anna C. Belkina, Barbara S. Nikolajczyk and Gerald V. Denis J Immunol 2013; 190:3670-3678; Prepublished online 18 February 2013; doi: 10.4049/jimmunol.1202838 Downloaded from http://www.jimmunol.org/content/190/7/3670 Supplementary http://www.jimmunol.org/content/suppl/2013/02/19/jimmunol.120283 Material 8.DC1 http://www.jimmunol.org/ References This article cites 51 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/190/7/3670.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on October 4, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2013 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology BET Protein Function Is Required for Inflammation: Brd2 Genetic Disruption and BET Inhibitor JQ1 Impair Mouse Macrophage Inflammatory Responses Anna C.
    [Show full text]
  • Adult Isocitrate Dehydrogenase–Mutant Brainstem Glioma: Illustrative Case
    J Neurosurg Case Lessons 1(12):CASE2078, 2021 DOI: 10.3171/CASE2078 Adult isocitrate dehydrogenase–mutant brainstem glioma: illustrative case *Vincent C. Ye, MD,1 Alexander P. Landry, MD,1 Teresa Purzner, MD, PhD,1 Aristotelis Kalyvas, MD,1 Nilesh Mohan, MD,1 Philip J. O’Halloran, MD, PhD,1 Andrew Gao, MD,2 and Gelareh Zadeh, MD, PhD1,3 1Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada; 2Department of Pathology, University Health Network, Toronto, Ontario, Canada; and 3Arthur and Sonia Labatt Brain Tumour Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada BACKGROUND Adult brainstem gliomas are rare entities that demonstrate heterogeneous biology and appear to be distinct from both their pediatric counterparts and adult supratentorial gliomas. Although the role of histone 3 mutations is being increasingly understood in this disease, the effectof isocitrate dehydrogenase (IDH) mutations remains unclear, largely because of limited data. OBSERVATIONS The authors present the case of a 29-year-old male with an IDH1-mutant, World Health Organization grade III anaplastic astrocytoma in the dorsal medulla, and they provide a review of the available literature on adult IDH-mutant brainstem glioma. The authors have amassed a cohort of 15 such patients, 7 of whom have survival data available. Median survival is 56 months in this small cohort, which is similar to that for IDH wild-type adult brainstem gliomas. LESSONS The authors’ work reenforces previous literature suggesting that the role of IDH mutation in glioma differs between brainstem and supratentorial lesions. Therefore, the authors advocate that adult brainstem gliomas be studied in terms of major molecular subgroups (including IDH mutant) because these gliomas may exhibit fundamental differences from each other, from pediatric brainstem gliomas, and from adult supratentorial gliomas.
    [Show full text]
  • A Phase IB Dose Exploration Trial with MK-8628, a Small
    Official Protocol Title: A Phase IB Dose Exploration Trial with MK-8628, a Small Molecule Inhibitor of the Bromodomain and Extra-Terminal (BET) Proteins, in Subjects with Selected Advanced Solid Tumors NCT number: NCT02698176 Document Date: 21-Nov-2016 Product: MK-8628 1 Protocol/Amendment No.: 006-02 THIS PROTOCOL AMENDMENT AND ALL OF THE INFORMATION RELATING TO IT ARE CONFIDENTIAL AND PROPRIETARY PROPERTY OF MERCK SHARP & DOHME CORP., A SUBSIDIARY OF MERCK & CO., INC., WHITEHOUSE STATION, NJ, U.S.A. SPONSOR: Oncoethix GmbH, a wholly owned subsidiary of Merck Sharp & Dohme Corp. (hereafter referred to as the Sponsor or Merck) Weystrasse 20 6000 Lucerne Switzerland Protocol-specific Sponsor Contact information can be found in the Investigator Trial File Binder (or equivalent). TITLE: A Phase IB Dose Exploration Trial with MK-8628, a Small Molecule Inhibitor of the Bromodomain and Extra-Terminal (BET) Proteins, in Subjects with Selected Advanced Solid Tumors IND NUMBER: 123,715 EudraCT NUMBER: 2015-005488-18 MK-8628-006-02 Final Protocol 21-Nov-2016 Confidential Product: MK-8628 2 Protocol/Amendment No.: 006-02 TABLE OF CONTENTS SUMMARY OF CHANGES................................................................................................ 11 1.0 TRIAL SUMMARY.................................................................................................. 13 2.0 TRIAL DESIGN........................................................................................................ 14 2.1 Trial Design ..........................................................................................................
    [Show full text]
  • Epidemiology and Survival of Patients with Brainstem Gliomas: a Population-Based Study Using the SEER Database
    ORIGINAL RESEARCH published: 11 June 2021 doi: 10.3389/fonc.2021.692097 Epidemiology and Survival of Patients With Brainstem Gliomas: A Population-Based Study Using the SEER Database † † Huanbing Liu 1 , Xiaowei Qin 1 , Liyan Zhao 2, Gang Zhao 1* and Yubo Wang 1* 1 Department of Neurosurgery, First Hospital of Jilin University, Changchun, China, 2 Department of Clinical Laboratory, Second Hospital of Jilin University, Changchun, China Background: Brainstem glioma is a primary glial tumor that arises from the midbrain, Edited by: pons, and medulla. The objective of this study was to determine the population-based Yaohua Liu, epidemiology, incidence, and outcomes of brainstem gliomas. Shanghai First People’s Hospital, China Methods: The data pertaining to patients with brainstem gliomas diagnosed between Reviewed by: 2004 and 2016 were extracted from the SEER database. Descriptive analyses were Kristin Schroeder, conducted to evaluate the distribution and tumor-related characteristics of patients with Duke Cancer Institute, United States Gerardo Caruso, brainstem gliomas. The possible prognostic indicators were analyzed by Kaplan-Meier University Hospital of Policlinico G. curves and a Cox proportional hazards model. Martino, Italy *Correspondence: Results: The age-adjusted incidence rate was 0.311 cases per 100,000 person-years Gang Zhao between 2004 and 2016. A total of 3387 cases of brainstem gliomas were included in our [email protected] study. Most of the patients were white and diagnosed at 5-9 years of age. The most Yubo Wang [email protected] common diagnosis confirmed by histological review was ependymoma/anaplastic †These authors have contributed ependymoma. The median survival time was 24 months.
    [Show full text]
  • Meningioma ACKNOWLEDGEMENTS
    AMERICAN BRAIN TUMOR ASSOCIATION Meningioma ACKNOWLEDGEMENTS ABOUT THE AMERICAN BRAIN TUMOR ASSOCIATION Meningioma Founded in 1973, the American Brain Tumor Association (ABTA) was the first national nonprofit advocacy organization dedicated solely to brain tumor research. For nearly 45 years, the ABTA has been providing comprehensive resources that support the complex needs of brain tumor patients and caregivers, as well as the critical funding of research in the pursuit of breakthroughs in brain tumor diagnosis, treatment and care. To learn more about the ABTA, visit www.abta.org. We gratefully acknowledge Santosh Kesari, MD, PhD, FANA, FAAN chair of department of translational neuro- oncology and neurotherapeutics, and Marlon Saria, MSN, RN, AOCNS®, FAAN clinical nurse specialist, John Wayne Cancer Institute at Providence Saint John’s Health Center, Santa Monica, CA; and Albert Lai, MD, PhD, assistant clinical professor, Adult Brain Tumors, UCLA Neuro-Oncology Program, for their review of this edition of this publication. This publication is not intended as a substitute for professional medical advice and does not provide advice on treatments or conditions for individual patients. All health and treatment decisions must be made in consultation with your physician(s), utilizing your specific medical information. Inclusion in this publication is not a recommendation of any product, treatment, physician or hospital. COPYRIGHT © 2017 ABTA REPRODUCTION WITHOUT PRIOR WRITTEN PERMISSION IS PROHIBITED AMERICAN BRAIN TUMOR ASSOCIATION Meningioma INTRODUCTION Although meningiomas are considered a type of primary brain tumor, they do not grow from brain tissue itself, but instead arise from the meninges, three thin layers of tissue covering the brain and spinal cord.
    [Show full text]