Enterprise Data Modeling Using the Entity-Relationship Model
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Powerdesigner 16.6 Data Modeling
SAP® PowerDesigner® Document Version: 16.6 – 2016-02-22 Data Modeling Content 1 Building Data Models ...........................................................8 1.1 Getting Started with Data Modeling...................................................8 Conceptual Data Models........................................................8 Logical Data Models...........................................................9 Physical Data Models..........................................................9 Creating a Data Model.........................................................10 Customizing your Modeling Environment........................................... 15 1.2 Conceptual and Logical Diagrams...................................................26 Supported CDM/LDM Notations.................................................27 Conceptual Diagrams.........................................................31 Logical Diagrams............................................................43 Data Items (CDM)............................................................47 Entities (CDM/LDM)..........................................................49 Attributes (CDM/LDM)........................................................55 Identifiers (CDM/LDM)........................................................58 Relationships (CDM/LDM)..................................................... 59 Associations and Association Links (CDM)..........................................70 Inheritances (CDM/LDM)......................................................77 1.3 Physical Diagrams..............................................................82 -
Arcgis Marine Data Model Reference
ArcGIS Marine Data Model Reference ArcGIS Marine Data Model (June 2003) This document provides an Dawn J. Wright, Oregon State U. overview of the ArcGIS Marine Patrick N. Halpin, Duke U. Data Model. This model focuses on Michael Blongewicz, DHI important features of the ocean realm, both natural and manmade, Steve Grisé, ESRI Redlands with a view towards the many Joe Breman, ESRI Redlands applications of marine GIS data. ArcGIS Data Models TABLE OF CONTENTS Acknowledgements ................................................................................................................... 4 Introduction ............................................................................................................................... 5 Why a Marine Data Model?.................................................................................................... 6 Intended Audience and Scope of the Model............................................................................ 8 The Process of Building a Data Model ..................................................................................... 10 Final Data Model Content, Purpose and Use........................................................................ 14 Data Model Description ........................................................................................................... 16 Overview ............................................................................................................................. 16 Conceptual Framework.................................................................................................... -
Conceptual Modelling and Humanities
Joint Proceedings of Modellierung 2020 Short, Workshop and Tools & Demo Papers Modellierung 2020: Short Papers 13 Conceptual Modelling and Humanities Yannic Ole Kropp,1 Bernhard Thalheim2 Abstract: Humanities are becoming a hyping field of intensive research for computer researchers. It seems that conceptual models may be the basis for development of appropriate solutions of digitalisation problems in social sciences. At the same time, humanities and social sciences can fertilise conceptual modelling. The notion of conceptual models becomes enriched. The approaches to modelling in social sciences thus result in a deeper understanding of modelling. The main aim of this paper is to learn from social sciences for conceptual modelling and to fertilise the field of conceptual modelling. 1 The Value of Conceptual Modelling 1.1 Computer science is IT system-oriented Computer system development is a complex process and needs abstraction, separation of concerns, approaches for handling complexity and mature support for communication within development teams. Models are one of the main artefacts for abstraction and complexity reduction. Computer science uses more than 50 different kinds of modelling languages and modelling approaches. Models have thus been a means for system construction for a long time. Models are widely used as an universal instrument whenever humans are involved and an understanding of computer properties is essential. They are enhanced by commonly accepted concepts and thus become conceptual models. The main deployment scenario for models and conceptual models is still system construction (with description, prescription, and coding sub-scenarios) although other scenarios became popular, e.g. documentation, communication, negotiation, conceptualisation, and learning. 1.2 Learning from Digital Hunanities Digital humanities is becoming a hyping buzzword nowadays due to digitalisation and due to over-applying computer technology. -
Data Model Standards and Guidelines, Registration Policies And
Data Model Standards and Guidelines, Registration Policies and Procedures Version 3.2 ● 6/02/2017 Data Model Standards and Guidelines, Registration Policies and Procedures Document Version Control Document Version Control VERSION D ATE AUTHOR DESCRIPTION DRAFT 03/28/07 Venkatesh Kadadasu Baseline Draft Document 0.1 05/04/2007 Venkatesh Kadadasu Sections 1.1, 1.2, 1.3, 1.4 revised 0.2 05/07/2007 Venkatesh Kadadasu Sections 1.4, 2.0, 2.2, 2.2.1, 3.1, 3.2, 3.2.1, 3.2.2 revised 0.3 05/24/07 Venkatesh Kadadasu Incorporated feedback from Uli 0.4 5/31/2007 Venkatesh Kadadasu Incorporated Steve’s feedback: Section 1.5 Issues -Change Decide to Decision Section 2.2.5 Coordinate with Kumar and Lisa to determine the class words used by XML community, and identify them in the document. (This was discussed previously.) Data Standardization - We have discussed on several occasions the cross-walk table between tabular naming standards and XML. When did it get dropped? Section 2.3.2 Conceptual data model level of detail: changed (S) No foreign key attributes may be entered in the conceptual data model. To (S) No attributes may be entered in the conceptual data model. 0.5 6/4/2007 Steve Horn Move last paragraph of Section 2.0 to section 2.1.4 Data Standardization Added definitions of key terms 0.6 6/5/2007 Ulrike Nasshan Section 2.2.5 Coordinate with Kumar and Lisa to determine the class words used by XML community, and identify them in the document. -
Integration Definition for Function Modeling (IDEF0)
NIST U.S. DEPARTMENT OF COMMERCE PUBLICATIONS £ Technology Administration National Institute of Standards and Technology FIPS PUB 183 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) » Category: Software Standard SUBCATEGORY: MODELING TECHNIQUES 1993 December 21 183 PUB FIPS JK- 45C .AS A3 //I S3 IS 93 FIPS PUB 183 FEDERAL INFORMATION PROCESSING STANDARDS PUBLICATION INTEGRATION DEFINITION FOR FUNCTION MODELING (IDEFO) Category: Software Standard Subcategory: Modeling Techniques Computer Systems Laboratory National Institute of Standards and Technology Gaithersburg, MD 20899 Issued December 21, 1993 U.S. Department of Commerce Ronald H. Brown, Secretary Technology Administration Mary L. Good, Under Secretary for Technology National Institute of Standards and Technology Arati Prabhakar, Director Foreword The Federal Information Processing Standards Publication Series of the National Institute of Standards and Technology (NIST) is the official publication relating to standards and guidelines adopted and promulgated under the provisions of Section 111 (d) of the Federal Property and Administrative Services Act of 1949 as amended by the Computer Security Act of 1987, Public Law 100-235. These mandates have given the Secretary of Commerce and NIST important responsibilities for improving the utilization and management of computer and related telecommunications systems in the Federal Government. The NIST, through its Computer Systems Laboratory, provides leadership, technical guidance, -
Conceptual Model Evaluation. Towards More Paradigmatic Rigor Jan Recker1
Conceptual Model Evaluation. Towards more Paradigmatic Rigor Jan Recker1 1 Centre for Information Technology Innovation Queensland University of Technology 126 Margaret Street, Brisbane QLD 4000, Australia [email protected] Abstract. Information Systems (IS) research has so far been primarily con- cerned with the development of new modeling languages, techniques, and methods. Also, evaluation approaches have been developed in order to assess the appropriateness of a modeling approach in a given context. Both modeling and evaluation approaches, however, lack epistemological rigor, leading to problems regarding the applicability of a certain modeling language in a given context on the one hand, and regarding the feasibility of certain evaluation ap- proaches towards certain modeling questions on the other hand. We therefore argue for a philosophical-paradigmatic discussion of evaluation methods for conceptual modeling languages in order to assess their applicability in given modeling contexts and present our research in progress towards a framework for paradigmatic discussion on model evaluation. Keywords. Philosophy, modeling methods, information modeling, research evaluation 1 Introduction The importance of information systems (IS) for successful businesses is widely rec- ognized [1]. Their implementation is preceded by their development through design methodologies which utilize information models to specify IS on a conceptual level. Such conceptual models have been successfully employed throughout IS theory and practice. This has led, however, to the proliferation of an enormous amount of avail- able modeling approaches. The “flooding” of the IS discipline with a multiplicity of conceptual modeling approaches consequently leads to an immanent need for com- paring and evaluating existing modeling methods in order to determine which ap- proach is most appropriate for a given modeling task. -
Metamodeling and Method Engineering with Conceptbase”
This is a pre-print of the book chapter M. Jeusfeld: “Metamodeling and method engineering with ConceptBase” . In Jeusfeld, M.A., Jarke, M., Mylopoulos, J. (eds): Metamodeling for Method Engineering, pp. 89-168. The MIT Press., 2009; the original book is available from MIT Press http://mitpress.mit.edu/node/192290 This pre-print may only be used for scholar, non-commercial purposes. Most of the sources for the examples in this chapter are available via http://merkur.informatik.rwth-aachen.de/pub/bscw.cgi/3782591 for download. They require ConceptBase 7.0 or later available from http://conceptbase.cc. Metamodeling and Method Engineering with ConceptBase Manfred Jeusfeld Abstract. This chapter provides a practical guide on how to use the meta data repository ConceptBase to design information modeling methods by using meta- modeling. After motivating the abstraction principles behind meta-modeling, the language Telos as realized in ConceptBase is presented. First, a standard factual representation of statements at any IRDS abstraction level is defined. Then, the foundation of Telos as a logical theory is elaborated yielding simple fixpoint semantics. The principles for object naming, instantiation, attribution, and specialization are reflected by roughly 30 logical axioms. After the language axiomatization, user-defined rules, constraints and queries are introduced. The first part is concluded by a description of active rules that allows the specification of reactions of ConceptBase to external events. The second part applies the language features of the first part to a full-fledged information modeling method: The Yourdan method for Modern Structured Analysis. The notations of the Yourdan method are designed along the IRDS framework. -
A Model-To-Model Transformation of a Generic Relational Database Schema Into a Form Type Data Model
Proceedings of the Federated Conference on Computer Science DOI: 10.15439/2016F408 and Information Systems pp. 1577–1580 ACSIS, Vol. 8. ISSN 2300-5963 A Model-to-Model Transformation of a Generic Relational Database Schema into a Form Type Data Model Sonja Ristić, Slavica Kordić, Milan Čeliković, Vladimir Dimitrieski, Ivan Luković University of Novi Sad, Faculty of Technical Sciences, Trg D. Obradovića 6, 21000 Novi Sad, Serbia Email: {sdristic, slavica, milancel, dimitrieski, ivan}@uns.ac.rs engineering and review different database meta-models Abstract—An important phase of a data-oriented software (MM) that are used in the database reengineering process system reengineering is a database reengineering process and, applied in IIS*Studio. In [5] we propose an MD approach to in particular, its subprocess – a database reverse engineering data structure conceptualization phase of database reverse process. In this paper we present one of the model-to-model engineering process that is conducted through a chain of transformations from a chain of transformations aimed at transformation of a generic relational database schema into a M2M transformations. In this paper we present the final step form type data model. The transformation is a step of the data of the conceptualization phasethe M2M transformation of structure conceptualization phase of a model-driven database a generic relational database schema into a form type model. reverse engineering process that is implemented in IIS*Studio The form type concept and the IIS*Studio architecture are development environment. given in Section 2. Classifications of form types and relation schemes are described in Section 3. The transformation of a I. -
Conceptual Modeling
Conceptual Modeling Laurens Van Damme Table of contents • What are Conceptual models? • Conceptualization • Mental model • Conceptual model • How are Conceptual models different from others? • Nonnecessity • Requirements 2 What are Conceptual models? 3 Overview 4 Overview We all know what this is! 5 Overview 6 Conceptualization = set of concepts in the mind of an agent 7 Concept • Aristotle ±340BC • Cognitive processes ↳ makes, uses and transforms ↳ mental representations • Mental representations • Refer to / are about something • Non-conceptual (sensation) • Conceptual (thoughts/believes) https://www.nytimes.com/2016/05/27/world/europe/greece-aristotle-tomb.html 8 Concept Conceptual mental representation → Rely on representation primitives = concepts Concept • Reflects regularities in reality that are cognitively relevant to us • Cognitive filter → strip out properties unnecessary for the problem 9 Concept Example Navigating on the Belgian’s highways Ordering of road segments Road segment Intersection between road segments Filtered: width, distance of or traffic on the road segments https://en.wikipedia.org/wiki/List_of_motorways_in_Belgium 10 Conceptualization = set of concepts in the mind of an agent • Individual concepts (e.g., E19) • Relational concepts: associations that relate individual concepts https://thesaurus.plus/antonyms/conceptualization 11 Overview 12 Mental Model The external reality filtered through the lens of a conceptualization Different levels of generality: • Reflect general beliefs (e.g., every road segment has -
On Using Conceptual Modeling for Ontologies
On Using Conceptual Modeling for Ontologies S. Spaccapietra1, C. Parent2, C.Vangenot1 and N. Cullot3 1 Database Laboratory, EPFL, 1015 Lausanne, Switzerland [email protected], [email protected] 2 HEC-INFORGE, University of Lausanne, 1015 Lausanne, Switzerland [email protected] 3LE2I Laboratory of Business, University of Burgundy, 21000 Dijon, France [email protected] Abstract. Are database concepts and techniques suitable for ontology design and management? The question has been on the floor for some time already. It gets a new emphasis today, thanks to the focus on ontologies and ontology services due to the spread of web services as a new paradigm for information management. This paper analyzes some of the arguments that are relevant to the debate, in particular the question whether conceptual data models would adequately support the design and use of ontologies. It concludes suggesting a hybrid approach, combining databases and logic-based services.1 1. Introduction Nowadays, all major economic players have decentralized organizational structures, with multiple autonomous units acting in parallel. New information systems have to handle a variety of information sources, from proprietary ones to those available in web services worldwide. Their complexity is best controlled using a network of coordinated web services capable of grasping relevant information wherever it may be and exchanging information with all potential partners. Data semantics is at the heart of such multi-agent systems. Interacting agents in an open environment do not necessarily share a common understanding of the world at hand, as used to be the case in traditional enterprise information systems. -
Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes
Using Telelogic DOORS and Microsoft Visio to Model and Visualize Complex Business Processes “The Business Driven Application Lifecycle” Bob Sherman Procter & Gamble Pharmaceuticals [email protected] Michael Sutherland Galactic Solutions Group, LLC [email protected] Prepared for the Telelogic 2005 User Group Conference, Americas & Asia/Pacific http://www.telelogic.com/news/usergroup/us2005/index.cfm 24 October 2005 Abstract: The fact that most Information Technology (IT) projects fail as a result of requirements management problems is common knowledge. What is not commonly recognized is that the widely haled “use case” and Object Oriented Analysis and Design (OOAD) phenomenon have resulted in little (if any) abatement of IT project failures. In fact, ten years after the advent of these methods, every major IT industry research group remains aligned on the fact that these projects are still failing at an alarming rate (less than a 30% success rate). Ironically, the popularity of use case and OOAD (e.g. UML) methods may be doing more harm than good by diverting our attention away from addressing the real root cause of IT project failures (when you have a new hammer, everything looks like a nail). This paper asserts that, the real root cause of IT project failures centers around the failure to map requirements to an accurate, precise, comprehensive, optimized business model. This argument will be supported by a using a brief recap of the history of use case and OOAD methods to identify differences between the problems these methods were intended to address and the challenges of today’s IT projects. -
A Multi-Paradigm Modeling Framework for Modeling and Simulating Problem Situations
Proceedings of the 2014 Winter Simulation Conference A. Tolk, S. Y. Diallo, I. O. Ryzhov, L. Yilmaz, S. Buckley, and J. A. Miller, eds. A MULTI-PARADIGM MODELING FRAMEWORK FOR MODELING AND SIMULATING PROBLEM SITUATIONS Christopher Lynch Jose Padilla Saikou Diallo John Sokolowski Catherine Banks Virginia Modeling, Analysis and Simulation Center Old Dominion University 1030 University Boulevard Suffolk, VA 23435, USA ABSTRACT This paper proposes a multi-paradigm modeling framework (MPMF) for modeling and simulating problem situations (problems whose specification is not agreed upon). The MPMF allows for a different set of questions to be addressed from a problem situation than is possible through the use of a single modeling paradigm. The framework identifies different levels of granularity (macro, meso, and micro) from what is known and assumed about the problem situation. These levels of granularity are independently mapped to different modeling paradigms. These modeling paradigms are then combined to provide a comprehensive model and corresponding simulation of the problem situation. Finally, the MPMF is implemented to model and simulate the problem situation of representing the spread of obesity. 1 INTRODUCTION When building models and simulations, it is desirable to have a well-defined problem and an agreed upon solution for representing that problem, yet most models depart from this premise. This is difficult to achieve when representing problem situations where there is no agreed upon specification due to differences in opinions of the team (Vennix, 1999). Modeling this type of problem has been addressed by reaching a consensus on what the problem is as proposed in soft-systems methodology (Checkland, 2000).