Groups with Conditions on Non-Permutable Subgroups

Total Page:16

File Type:pdf, Size:1020Kb

Groups with Conditions on Non-Permutable Subgroups GROUPS WITH CONDITIONS ON NON-PERMUTABLE SUBGROUPS by LAXMI KANT CHATAUT MARTYN R. DIXON, COMMITTEE CHAIR MARTIN J. EVANS JON M. CORSON DREW LEWIS RICHARD BORIE A DISSERTATION Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the Department of Mathematics in the Graduate School of The University of Alabama TUSCALOOSA, ALABAMA 2015 Copyright Laxmi Kant Chataut 2015 ALL RIGHTS RESERVED ABSTRACT In this dissertation, we study the structure of groups satisfying the weak minimal condi- tion and weak maximal condition on non-permutable subgroups. In Chapter 1, we discuss some definitions and well-known results that we will be using during the dissertation. In Chapter 2, we establish some preliminary results which will be useful during the proof of the main results. In Chapter 3, we express our main results, one of which states that a locally finite group satisfying the weak minimal condition on non-permutable subgroups is either Chernikov or quasihamiltonian. We also prove that, a generalized radical group sat- isfying the weak minimal condition on non-permutable subgroups is either Chernikov or is soluble-by-finite of finite rank. In the Final Chapter, we will discuss the class of groups satisfying the weak maximal condition on non-permutable subgroups. ii DEDICATION I would like to dedicate this dissertation to my parents. First, to my deceased mother who taught me invaluable lessons in life. Second to my father, who always provided me unconditional moral as well as financial support. iii LIST OF ABBREVIATIONS AND SYMBOLS hxi Subgroup generated by x Aut G The automorphism group of G CG(H) Centralizer of the subgroup H in G NG(H) Normalizer of H in G jG : Hj Index of H in G G0 = [G; G] Derived subgroup of group G H ¡ G H is a normal subgroup of the group G T (G) The torsion subgroup of the group G Gp The p-primary component of the group G Dr Aλ The direct product of the groups fAλjλ 2 Λg λ2Λ Q Hλ The product of the groups fHλjλ 2 Λg λ2Λ rp(G) The p-rank of the group G r0(G) The torsion-free rank of the group G r(G) The rank of the group G CoreH (G) Core of H in G H per GH is permutable in G o Semi direct product ζ(G) Center of the group G Cp1 Quasicyclic p-group, or Pr¨ufer p-group iv ACKNOWLEDGMENTS My deepest gratitude is to my advisor Dr. Martyn R. Dixon for his valuable guidance and advice throughout the course of dissertation. I was fortunate enough to have an advisor like him. His patience, motivation and immense knowledge helped me all the time in my research work and writing of this dissertation. If it wasn't for him this dissertation would not be possible. Besides my advisor, I would like to take this opportunity to thank and appreciate the rest of my dissertation committee: Dr. Martin J. Evans, Dr. Jon Corson, Dr. Drew Lewis and Dr. Richard Borie for their insightful comments and encouragement. I would like to thank the University of Alabama for supporting me financially during the studies. My appreciation also goes to the Chair of the Department of Mathematics, Dr. Wei Shen Hsia, and the Graduate Advisor of the Department of Mathematics, Dr. Vo Liem for their help and contribution, starting from my application process for the Ph.D. program, until the preparation of this dissertation. I must acknowledge as well the many friends, colleagues, students, and professors, who assisted, advised, and supported me in one way or other during my studies back in Nepal as well as at the University of Alabama over the years. I would also like to thank my family to whom I owe a great deal. To my late mother, Janaki Chataut, thank you for teaching me important lessons in life. To my father, Kr- ishna Datta Chataut, for always prioritizing my education and providing me the best of the opportunities even during the time of financial difficulties. My elder brother Ramesh Chataut deserves appreciation for his continuous financial and moral support during my stay in Kathmandu for the higher education. Also thanks to my sister Hemlata, other siblings and sister-in-laws for always being by my side whenever I needed them. v Last but not least, none of this would have been possible without the love and patience of my better half Sara Chataut. Her generosity, understanding and motivation during the course of writing this dissertation was immense. vi CONTENTS ABSTRACT ..........................................................................ii DEDICATION . iii LIST OF ABBREVIATIONS AND SYMBOLS . iv ACKNOWLEDGMENTS . v 1. INTRODUCTION . .1 1.1.Permutable Subgroups . 2 1.2. Min-P and Max-P ...............................................................5 1.3. Weak-Min-P and Weak-Max-P ................................................13 1.4. Groups of Finite Rank . .17 2. PRELIMINARY RESULTS . .20 3. PROOF OF MAIN THEOREMS . 32 4. GROUPS WITH THE WEAK MAXIMAL CONDITION ON NON-PERMUTABLE SUBGROUPS . 46 REFERENCES . 55 vii CHAPTER 1 INTRODUCTION The structure of infinite groups satisfying the minimal (respectively maximal) condition or the weak minimal (respectively weak maximal) condition has been one of the important aspects for the development of infinite group theory. If P is a subgroup theoretical property or class of groups then P¯ denotes the class of all groups that are either not P-groups or are trivial. In 1964, S. N. Chernikov started the investigation of groups satisfying the minimal condition on subgroups which do not have the property P, denoted by min-P¯, in a series of articles (for a general reference, see [4]). In particular, he studied groups satisfying the minimal condition on non-abelian subgroups and groups satisfying the minimal condition on non-normal subgroups. He proved that if such a group has a series with finite factors, then either the group satisfies the minimal condition on all subgroups or all the subgroups have the prescribed property P. Later, Philips and Wilson [19] investigated the same type of problem for several different choices of the property P, and proved in particular that a locally graded group satisfying the minimal condition on non-normal subgroups either is a Chernikov group or has all its subgroups normal. Taking motivation from such work, in their paper [3], M.R. Celentani and Antonella Leone considered the class of groups satisfying the minimal condition on non-quasinormal subgroups. The structure of such groups was given by the following result: Theorem 1.1. [3, Theorem C] Let G be a group which either is non-periodic or locally graded. If G satisfies the minimal condition on non-quasinormal subgroups, then either G is quasihamiltonian or it is a Chernikov group. The concept of the weak minimal condition was introduced by D. I. Zaitsev [24]. In [25], he investigated the class of groups satisfying the weak minimal condition on non-abelian 1 subgroups where he was able to show that in the case of locally soluble-by-finite (also known as locally almost soluble) groups the weak minimal condition on non-abelian subgroups is equivalent to the weak minimal condition on subgroups. By virtue of the result in [25] such a group is then a soluble-by-finite minimax group. Groups with the weak minimal condition on non-normal subgroups and non-subnormal subgroups were the subject of interest in [13] and [14] respectively. In [14], the authors were able to establish the following theorem: Theorem 1.2. [14, Theorem C] Let G be a generalized radical group with weak minimal condition on non-subnormal subgroups. Then either G is soluble-by-finite and minimax or every subgroup of G is subnormal. The results in these papers and similar other papers were enough to motivate us to investigate the structure of groups satisfying the weak minimal condition on non-permutable subgroups. The main purpose of this dissertation is to study the structure of generalized radical groups satisfying the weak minimal condition on non-permutable subgroups, which we will discuss in Chapter 3. In the coming sections of this chapter, we will go through some important definitions, and results which will be useful in the further chapters and which will also explain some of the terminology used in the Introduction. 1.1 Permutable Subgroups In this first section we discuss the notion of permutable subgroups. We begin the section with the definition of permutable subgroup. Definition 1.1. A subgroup H of a group G is said to be permutable or quasinormal in G if HK = KH for every subgroup K of G. This is equivalent to affirming that HK is a subgroup of G. We often write H per G for H is permutable in G. The concept of permutability was introduced by Ore [17], who called permutable sub- groups quasinormal. Later S. E. Stonehewer introduced the term permutable and the be- havior of permutable subgroups was later investigated by various authors. Obviously, every 2 normal subgroup is permutable but the converse is not true. This can be seen by let- ting the group G be the semidirect product of a cyclic group hxi of order p2 and a cyclic group hyi of order p acting non-trivially. In other words: G is a group of order p3 gen- erated by x and y satisfying the relations xp2 = yp = 1 and y−1xy = xp+1. That is, G = hx; y j xp2 = yp = 1; y−1xy = xp+1i. We claim that the subgroup hyi is permutable in G, but it is not normal. Let H be the subgroup generated by the elements of order p.
Recommended publications
  • An Exploration on the Hamiltonicity of Cayley Digraphs
    AN EXPLORATION ON THE HAMILTONICITY OF CAYLEY DIGRAPHS by Erica Bajo Calderon Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Mathematics Program YOUNGSTOWN STATE UNIVERSITY May, 2021 An Exploration on Hamiltonicity of Cayley Digraphs Erica Bajo Calderon I hereby release this thesis to the public. I understand that this thesis will be made available from the OhioLINK ETD Center and the Maag Library Circulation Desk for public access. I also authorize the University or other individuals to make copies of this thesis as needed for scholarly research. Signature: Erica Bajo Calderon, Student Date Approval: Dr. A. Byers, Thesis Advisor Date Dr. T. Madsen, Committee Member Date Dr. A. O’Mellan, Committee Member Date Dr. Salvatore A. Sanders, Dean of Graduate Studies Date ABSTRACT In 1969, Lászlo Lovász launched a conjecture that remains open to this day. Throughout the years, variations of the conjecture have surfaced; the version we used for this study is: “Every finite connected Cayley graph is Hamiltonian”. Several studies have determined and proved Hamiltonicity for the Cayley graphs of specific types of groups with a minimal generating set. However, there are few results on the Hamiltonicity of the directed Cayley graphs. In this thesis, we look at some of the cases for which the Hamiltonicity on Cayley digraphs has been determined and we prove that the Cayley digraph of group G such that G = Zp2 × Zq is non-Hamiltonian with a standard generating set. iii ACKNOWLEDGEMENTS First, I would like to thank Dr. Byers who has put a considerable amount of time and effort into helping me succeed as a graduate student at YSU even before she was my thesis advisor.
    [Show full text]
  • Generalized Dedekind Groups
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector JOURNALOFALGEBRA 17,310-316(1971) Generalized Dedekind Groups D. CAPPITT University of Kent at Canterbury Communicated by J. A. Green Received August 7, 1969 A group G is called a Dedekind group if every subgroup is normal. Equiv- alently, it may be defined as a group, G, in which the intersection of the non- normal subgroups is G, or one in which the subgroup they generate is trivial. In [l], Blackburn considered a generalization in terms of the first of these two definitions, namely to groups in which the intersection of non-normal subgroups is non-trivial. In this paper we take the second definition and determine some of the properties of groups in which the non-normal sub- groups generate a proper subgroup. For any group G, define S(G) to be the subgroup of G generated by all the subgroups which are not normal in G. G is a Dedekind group if and only if S(G) = 1. S(G) is a characteristic subgroup of G, and the quotient group of G by S(G) is a Dedekind group. THEOREM 1. If G is a group in which S(G) # G, then G can be expressed as a direct product H x K where H is a p-group for some prime p, S(H) # H, and K is a Dedekind group containing no element of order p. If, further, G is a non-abelian p-group, then the derived group G’ is cyclic and central, and either G has finite exponent or G has an infinite locally cyclic subgroup Z and the quotient group G/Z has finite exponent.
    [Show full text]
  • On the Centralizer of an Element of Order Four in a Locally Finite Group
    Glasgow Math. J. 49 (2007) 411–415. C 2007 Glasgow Mathematical Journal Trust. doi:10.1017/S0017089507003746. Printed in the United Kingdom ON THE CENTRALIZER OF AN ELEMENT OF ORDER FOUR IN A LOCALLY FINITE GROUP PAVEL SHUMYATSKY Department of Mathematics, University of Brasilia, Brasilia-DF, 70910-900 Brazil e-mail: [email protected] (Received 12 December, 2006; revised 6 March, 2007; accepted 10 March, 2007) Abstract. We prove that if G is a locally finite group admitting an automorphism φ of order four such that CG(φ) is Chernikov, then G has a soluble subgroup of finite index. 1. Introduction. The study of centralizers in locally finite groups is an interesting direction of group theory. In particular, the situation that a locally finite group G admits an automorphism φ of finite order (or, equivalenly, contains an element φ) such that CG(φ) is Chernikov has received some attention in the past. Recall that a group C is Chernikov if it has a subgroup of finite index that is a direct product of finitely many groups of type Cp∞ for various primes p (quasicyclic p-groups). By a deep result obtained independently by Shunkov [22] and also by Kegel and Wehrfritz [7] Chernikov groups are precisely the locally finite groups satisfying the minimal condition on subgroups; that is, any non-empty set of subgroups possesses a minimal subgroup. Hartley proved in 1988 that if φ is of prime-power order, then G has a locally soluble subgroup of finite index (see [4, Theorem 1]). The case of the theorem where φ has order two was handled by Asar in [1] and for automorphisms of arbitrary prime order the theorem was proved by Turau in [25].
    [Show full text]
  • Groups with Bounded Centralizer Chains and The~ Borovik--Khukhro
    Groups with bounded centralizer chains and the Borovik–Khukhro conjecture A. A. Buturlakin1,2,3, D. O. Revin1,2, A. V. Vasil′ev1,2 Abstract Let G be a locally finite group and F (G) the Hirsch–Plotkin radical of G. Denote by S the full inverse image of the generalized Fitting subgroup of G/F (G) in G. Assume that there is a number k such that the length of every chain of nested centralizers in G does not exceed k. The Borovik–Khukhro conjecture states, in particular, that under this assumption the quotient G/S contains an abelian subgroup of index bounded in terms of k. We disprove this statement and prove some its weaker analog. Keywords: locally finite groups, centralizer lattice, c-dimension, k-tuple Dick- son’s conjecture Introduction Following [24], the maximal length of chains of nested centralizers of a group G is called the c-dimension of G (the same number is also known as the length of the centralizer lattice of G, see, e.g., [25]). Here we consider groups of finite c-dimension. The class of such groups is quite wide: it includes, for example, abelian groups, linear groups, torsion-free hyperbolic groups, and hence free groups. It is closed under taking subgroups, finite direct products, and extensions by finite groups; however, the c-dimension of a homomorphic image of a group from this class can be infinite. Obviously, each group of finite c-dimension satisfies the minimal condition on centralizers, therefore, it is a so-called MC -group. The minimal condition on centralizers is a useful notion in the class of arXiv:1708.03057v1 [math.GR] 10 Aug 2017 locally finite groups.
    [Show full text]
  • HAMILTONICITY in CAYLEY GRAPHS and DIGRAPHS of FINITE ABELIAN GROUPS. Contents 1. Introduction. 1 2. Graph Theory: Introductory
    HAMILTONICITY IN CAYLEY GRAPHS AND DIGRAPHS OF FINITE ABELIAN GROUPS. MARY STELOW Abstract. Cayley graphs and digraphs are introduced, and their importance and utility in group theory is formally shown. Several results are then pre- sented: firstly, it is shown that if G is an abelian group, then G has a Cayley digraph with a Hamiltonian cycle. It is then proven that every Cayley di- graph of a Dedekind group has a Hamiltonian path. Finally, we show that all Cayley graphs of Abelian groups have Hamiltonian cycles. Further results, applications, and significance of the study of Hamiltonicity of Cayley graphs and digraphs are then discussed. Contents 1. Introduction. 1 2. Graph Theory: Introductory Definitions. 2 3. Cayley Graphs and Digraphs. 2 4. Hamiltonian Cycles in Cayley Digraphs of Finite Abelian Groups 5 5. Hamiltonian Paths in Cayley Digraphs of Dedekind Groups. 7 6. Cayley Graphs of Finite Abelian Groups are Guaranteed a Hamiltonian Cycle. 8 7. Conclusion; Further Applications and Research. 9 8. Acknowledgements. 9 References 10 1. Introduction. The topic of Cayley digraphs and graphs exhibits an interesting and important intersection between the world of groups, group theory, and abstract algebra and the world of graph theory and combinatorics. In this paper, I aim to highlight this intersection and to introduce an area in the field for which many basic problems re- main open.The theorems presented are taken from various discrete math journals. Here, these theorems are analyzed and given lengthier treatment in order to be more accessible to those without much background in group or graph theory.
    [Show full text]
  • Uniformly Recurrent Subgroups of Simple Locally Finite Groups
    UNIFORMLY RECURRENT SUBGROUPS OF SIMPLE LOCALLY FINITE GROUPS SIMON THOMAS Abstract. We study the uniformly recurrent subgroups of simple locally finite groups. 1. Introduction Let G be a countably infinite group and let SubG be the compact space of subgroups H 6 G. Then G acts as a group of homeomorphisms of SubG via the g −1 conjugation action, H 7! gHg . Following Glasner-Weiss [5], a subset X ⊆ SubG is said to be a uniformly recurrent subgroup or URS if X is a minimal G-invariant closed subset of SubG. For example, if N E G is a normal subgroup, then the singleton set f N g is a URS of G. Throughout this paper, these singleton URSs will be regarded as trivial URSs. More interesting examples of URSs arise as the stabilizer URSs of minimal actions. For example, suppose that ∆ is a compact space and that G y ∆ is a minimal G-action. Let f : ∆ ! SubG be the G-equivariant stabilizer map defined by x 7! Gx = f g 2 G j g · x = x g: and let X∆ = f(∆). If f is continuous, then it follows easily that X∆ is a URS of G; and, as expected, X∆ is called the stabilizer URS of the minimal action G y ∆. (It is well-known and easily checked that the map f : ∆ ! SubG is continuous if and only Fix∆(g) = f x 2 ∆ j g · x = x g is clopen for every g 2 G.) By Matte-Bon- Tsankov [16], if X ⊆ SubG is any URS of G, then there exists a minimal action G y ∆ such that the stabilizer map f : ∆ ! SubG is continuous and f(∆) = X.
    [Show full text]
  • Some Properties of Representation of Quaternion Group
    ICBSA 2018 International Conference on Basic Sciences and Its Applications Volume 2019 Conference Paper Some Properties of Representation of Quaternion Group Sri Rahayu, Maria Soviana, Yanita, and Admi Nazra Department of Mathematics, Andalas University, Limau Manis, Padang, 25163, Indonesia Abstract The quaternions are a number system in the form 푎 + 푏푖 + 푐푗 + 푑푘. The quaternions ±1, ±푖, ±푗, ±푘 form a non-abelian group of order eight called quaternion group. Quaternion group can be represented as a subgroup of the general linear group 퐺퐿2(C). In this paper, we discuss some group properties of representation of quaternion group related to Hamiltonian group, solvable group, nilpotent group, and metacyclic group. Keywords: representation of quaternion group, hamiltonian group, solvable group, nilpotent group, metacyclic group Corresponding Author: Sri Rahayu [email protected] Received: 19 February 2019 1. Introduction Accepted: 5 March 2019 Published: 16 April 2019 First we review that quaternion group, denoted by 푄8, was obtained based on the Publishing services provided by calculation of quaternions 푎 + 푏푖 + 푐푗 + 푑푘. Quaternions were first described by William Knowledge E Rowan Hamilton on October 1843 [1]. The quaternion group is a non-abelian group of Sri Rahayu et al. This article is order eight. distributed under the terms of the Creative Commons Attribution License, which 2. Materials and Methods permits unrestricted use and redistribution provided that the original author and source are Here we provide Definitions of quaternion group dan matrix representation. credited. Selection and Peer-review under Definition 1.1. [2] The quaternion group, 푄8, is defined by the responsibility of the ICBSA Conference Committee.
    [Show full text]
  • Bounding the Minimal Number of Generators of Groups and Monoids
    Bounding the minimal number of generators of groups and monoids of cellular automata Alonso Castillo-Ramirez∗ and Miguel Sanchez-Alvarez† Department of Mathematics, University Centre of Exact Sciences and Engineering, University of Guadalajara, Guadalajara, Mexico. June 11, 2019 Abstract For a group G and a finite set A, denote by CA(G; A) the monoid of all cellular automata over AG and by ICA(G; A) its group of units. We study the minimal cardinality of a generating set, known as the rank, of ICA(G; A). In the first part, when G is a finite group, we give upper bounds for the rank in terms of the number of conjugacy classes of subgroups of G. The case when G is a finite cyclic group has been studied before, so here we focus on the cases when G is a finite dihedral group or a finite Dedekind group. In the second part, we find a basic lower bound for the rank of ICA(G; A) when G is a finite group, and we apply this to show that, for any infinite abelian group H, the monoid CA(H; A) is not finitely generated. The same is true for various kinds of infinite groups, so we ask if there exists an infinite group H such that CA(H; A) is finitely generated. Keywords: Monoid of cellular automata, invertible cellular automata, minimal number of generators. MSC 2010: 68Q80, 05E18, 20M20. 1 Introduction The theory of cellular automata (CA) has important connections with many areas of mathematics, arXiv:1901.02808v4 [math.GR] 9 Jun 2019 such as group theory, topology, symbolic dynamics, coding theory, and cryptography.
    [Show full text]
  • Applications of Lie Ring Methods to Group Theory
    Applications of Lie ring methods to group theory Pavel Shumyatsky1 Department of Mathematics University of Brasilia 70910-900 Brasilia - DF, Brazil e-mail: [email protected] Abstract. This article was published in 2000. Its aim is to illustrate how a Lie-theoretic result of Zelmanov enables one to treat various problems in group theory. 1. Introduction Lie rings were associated with p-groups in the 30s in the context of the Restricted Burnside Problem and since then Lie ring methods proved to be an important and very effective tool of group theory. In the last 10 years the sphere of use of Lie rings was amplified considerably, mainly due to Zelmanov’s outstanding contribution. It has been known for some time that the following assertions are equiva- lent. 1.1. Let m and n be positive integers. Then there exists a number B(m, n) depending only on m and n such that the order of any m-generator finite group of exponent n is at most B(m, n). arXiv:1706.07963v1 [math.GR] 24 Jun 2017 1.2. The class of locally nilpotent groups of exponent n is a variety. 1.3. The class of locally finite groups of exponent n is a variety. 1.4. Any residually finite group of exponent n is locally finite. 1Research supported by FAPDF and CNPq 1 The Restricted Burnside Problem is exactly the question whether the first of the above assertions is true. In 1956 P. Hall and G. Higman reduced the problem to the case of prime-power exponent [11].
    [Show full text]
  • On Certain Groups with Finite Centraliser Dimension
    ON CERTAIN GROUPS WITH FINITE CENTRALISER DIMENSION A thesis submitted to The University of Manchester for the degree of Doctor of Philosophy in the Faculty of Science and Engineering 2020 Ulla Karhum¨aki Department of Mathematics Contents Abstract5 Declaration7 Copyright Statement8 Acknowledgements9 1 Introduction 14 1.1 Structure of this thesis........................... 19 2 Group-theoretic background material 23 2.1 Notation and elementary group theory.................. 23 2.2 Groups with finite centraliser dimension................. 28 2.3 Linear algebraic groups........................... 30 2.3.1 Groups of Lie type......................... 32 2.3.2 Automorphisms of Chevalley groups................ 34 2.4 Locally finite groups............................ 35 2.4.1 Frattini Argument for locally finite groups of finite centraliser dimension.............................. 36 2.4.2 Derived lengths of solvable subgroups of locally finite groups of finite centraliser dimension..................... 37 2.4.3 Simple locally finite groups..................... 37 3 Some model theory 41 3.1 Languages, structures and theories.................... 41 3.2 Definable sets and interpretability..................... 44 2 3.2.1 The space of types......................... 48 3.3 Stable structures.............................. 48 3.3.1 Stable groups............................ 50 3.4 Ultraproducts and pseudofinite structures................ 52 4 Locally finite groups of finite centraliser dimension 55 4.1 The structural theorem........................... 55 4.1.1 Control of sections......................... 56 4.1.2 Quasisimple locally finite groups of Lie type........... 58 4.1.3 Proof of Theorem 4.1.1; the solvable radical and the layer.... 59 4.1.4 Action of G on G=S ........................ 63 4.1.5 The factor group G=L is abelian-by-finite............. 63 4.1.6 The Frattini Argument......................
    [Show full text]
  • The CI Problem for Infinite Groups
    The CI problem for infinite groups Joy Morris∗ Department of Mathematics and Computer Science University of Lethbridge Lethbridge, AB. T1K 3M4. Canada [email protected] Submitted: Feb 24, 2015; Accepted: Nov 21, 2016; Published: Dec 9, 2016 Mathematics Subject Classifications: 05C25, 20B27 Abstract A finite group G is a DCI-group if, whenever S and S0 are subsets of G with the Cayley graphs Cay(G; S) and Cay(G; S0) isomorphic, there exists an automorphism ' of G with '(S) = S0. It is a CI-group if this condition holds under the restricted assumption that S = S−1. We extend these definitions to infinite groups, and make two closely-related definitions: an infinite group is a strongly (D)CIf -group if the same condition holds under the restricted assumption that S is finite; and an infinite group is a (D)CIf -group if the same condition holds whenever S is both finite and generates G. We prove that an infinite (D)CI-group must be a torsion group that is not locally- finite. We find infinite families of groups that are (D)CIf -groups but not strongly (D)CIf -groups, and that are strongly (D)CIf -groups but not (D)CI-groups. We discuss which of these properties are inherited by subgroups. Finally, we completely n characterise the locally-finite DCI-graphs on Z . We suggest several open problems related to these ideas, including the question of whether or not any infinite (D)CI- group exists. 1 Introduction Although there has been considerable work done on the Cayley Isomorphism problem for finite groups and graphs, little attention has been paid to its extension to the infinite case.
    [Show full text]
  • Finite Groups Determined by an Inequality of the Orders of Their Normal Subgroups
    ANALELE S¸TIINT¸IFICE ALE UNIVERSITAT¸II˘ \AL.I. CUZA" DIN IAS¸I (S.N.) MATEMATICA,˘ Tomul LVII, 2011, f.2 DOI: 10.2478/v10157-011-0022-3 FINITE GROUPS DETERMINED BY AN INEQUALITY OF THE ORDERS OF THEIR NORMAL SUBGROUPS BY MARIUS TARN˘ AUCEANU˘ Abstract. In this article we introduce and study a class of finite groups for which the orders of normal subgroups satisfy a certain inequality. It is closely connected to some well-known arithmetic classes of natural numbers. Mathematics Subject Classification 2000: 20D60, 20D30, 11A25, 11A99. Key words: finite groups, subgroup lattices, normal subgroup lattices, deficient numbers, perfect numbers. 1. Introduction Let n be a natural number and σ(n) be the sum of all divisors of n. We say that n is a deficient number if σ(n) < 2n and a perfect number if σ(n) = 2n (for more details on these numbers, see [5]). Thus, the set consisting of both the deficientP numbers and the perfect numbers can be characterized by the inequality d ≤ 2n; where L = fd 2 N j djng: d2Ln n Now, let G be a finite group. Then the set L(G) of all subgroups of G forms a complete lattice with respect to set inclusion, called the subgroup lattice of G. A remarkable subposet of L(G) is constituted by all cyclic subgroups of G. It is called the poset of cyclic subgroups of G and will be denoted by C(G). If the group G is cyclic of order n, then L(G) = C(G) and they are isomorphic to the lattice Ln.
    [Show full text]