The Role of Nonassociative Algebra in Projective Geometry

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Nonassociative Algebra in Projective Geometry The Role of Nonassociative Algebra in Projective Geometry John R. Faulkner Graduate Studies in Mathematics Volume 159 American Mathematical Society The Role of Nonassociative Algebra in Projective Geometry https://doi.org/10.1090//gsm/159 The Role of Nonassociative Algebra in Projective Geometry John R. Faulkner Graduate Studies in Mathematics Volume 159 American Mathematical Society Providence, Rhode Island EDITORIAL COMMITTEE Dan Abramovich Daniel S. Freed Rafe Mazzeo (Chair) Gigliola Staffilani 2010 Mathematics Subject Classification. Primary 51A05, 51A20, 51A25, 51A35, 51C05, 17D05, 17C50. For additional information and updates on this book, visit www.ams.org/bookpages/gsm-159 Library of Congress Cataloging-in-Publication Data Faulkner, John R., 1943– author. The role of nonassociative algebra in projective geometry / John R. Faulkner. pages cm. — (Graduate studies in mathematics ; volume 159) Includes bibliographical references and index. ISBN 978-1-4704-1849-6 (alk. paper) 1. Geometry, Projective. 2. Nonassociative algebras. I. Title. QA471.F297 2014 516.5—dc23 2014021979 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society. Requests for such permission should be addressed to the Acquisitions Department, American Mathematical Society, 201 Charles Street, Providence, Rhode Island 02904-2294 USA. Requests can also be made by e-mail to [email protected]. c 2014 by the American Mathematical Society. All rights reserved. The American Mathematical Society retains all rights except those granted to the United States Government. Printed in the United States of America. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10987654321 191817161514 To Nancy Contents Introduction xi Chapter 1. Affine and Projective Planes 1 §1.1. Preview 1 §1.2. Incidence geometry 2 §1.3. Affine planes 3 §1.4. Projective planes 4 §1.5. Duality 8 §1.6. Exercises 10 Chapter 2. Central Automorphisms of Projective Planes 13 §2.1. Preview 13 §2.2. Projections and automorphisms 14 §2.3. Transvections and dilatations 14 §2.4. Transitivity properties 16 §2.5. Exercises 22 Chapter 3. Coordinates for Projective Planes 23 §3.1. Preview 23 §3.2. Ternary systems 24 §3.3. Two coordinatizations related to G(C)31 §3.4. Transvections and algebraic properties 33 §3.5. Exercises 40 vii viii Contents Chapter 4. Alternative Rings 43 §4.1. Preview 43 §4.2. Left Moufang rings 44 §4.3. Artin’s Theorem 47 §4.4. Inverses in alternative rings 49 §4.5. The Cayley-Dickson process 50 §4.6. Composition algebras 54 §4.7. Split and division composition algebras 57 §4.8. Exercises 62 Chapter 5. Configuration Conditions 65 §5.1. Preview 65 §5.2. Desargues condition 66 §5.3. Quadrangle sections 71 §5.4. Pappus condition 75 §5.5. Configurations and central automorphisms 78 §5.6. Exercises 84 Chapter 6. Dimension Theory 87 §6.1. Preview 87 §6.2. Dimensionable sets 88 §6.3. Independence and bases 90 §6.4. Strongly dimensionable sets 94 §6.5. Exercises 96 Chapter 7. Projective Geometries 99 §7.1. Preview 99 §7.2. Projective and nearly projective geometries 100 §7.3. Relation to strongly dimensionable sets 102 §7.4. Classification of projective geometries 104 §7.5. Exercises 112 Chapter 8. Automorphisms of G(V ) 115 §8.1. Preview 115 §8.2. The Fundamental Theorem 116 §8.3. Subgroups of Aut(G(V )) 118 §8.4. Simple groups 120 §8.5. Exercises 121 Contents ix Chapter 9. Quadratic Forms and Orthogonal Groups 123 §9.1. Preview 123 §9.2. Quadratic forms 124 §9.3. Orthogonal groups 126 §9.4. Exercises 129 Chapter 10. Homogeneous Maps 131 §10.1. Preview 131 §10.2. Polarization of homogeneous maps 132 §10.3. Exercises 140 Chapter 11. Norms and Hermitian Matrices 143 §11.1. Preview 143 §11.2. Hermitian matrices and HEn(C) 144 §11.3. Norms on H(Cn) 146 §11.4. Transitivity of HEn(C) 153 §11.5. Trace and adjoint 157 §11.6. H(C3) 160 §11.7. Exercises 165 Chapter 12. Octonion Planes 169 §12.1. Preview 169 §12.2. The construction of octonion planes 170 §12.3. Simplicity of PHE3(O) 174 §12.4. Automorphisms of octonion planes 177 §12.5. Exercises 178 Chapter 13. Projective Remoteness Planes 181 §13.1. Preview 181 §13.2. Definition and examples 182 §13.3. Groups of Steinberg type 186 §13.4. Transvections 192 §13.5. Exercises 195 Chapter 14. Other Geometries 199 §14.1. Preview 199 §14.2. Erlangen program 200 §14.3. The geometry of R-spaces 201 x Contents §14.4. Buildings 206 §14.5. Generalized n-gons 209 §14.6. Moufang sets and structurable algebras 213 §14.7. Freudenthal-Tits magic square 214 §14.8. Exercises 218 Bibliography 221 Index 225 Introduction Discovering a connection between two apparently disjoint areas of mathe- matics has always held a fascination for me. Just as a mental twist provides the punch line of a joke, a theorem giving an unsuspected link between two areas of mathematics is both enlightening and satisfying. The main goal of this book is to provide a largely self-contained, in-depth account of the linkage between nonassociative algebra and projective planes with particular emphasis on octonion planes. There are several new results and many, if not most, of the proofs are new. A knowledge of linear algebra, basic ring theory, and basic group theory is required, as well as the ability to follow a detailed proof, but otherwise, except in Chapter 14, the development will be from first principles. Thus, a course based on this book would be accessible to most graduate students and would give them introductions to two areas which are often referenced but not often taught. Some of these students might continue in nonassociative algebra or use the geometry as a step towards research areas such as buildings or algebraic groups as indicated in Chapter 14. The link between algebra and geometry goes back to the introduction of real coordinates in the Euclidean plane by Descartes. We also will introduce coordinates in a class of axiomatically defined geometries. The axiomatic approach to the Euclidean plane is seldom used after a high school course because a truly rigorous development is very demanding while the Cartesian product of the reals provides an easy-to-use model. However, we shall find it advantageous to start with a simple axiomatization of our geometries to set the scope of our investigation and then determine which algebraic structures can serve as coordinates. These coordinates are not limited to xi xii Introduction algebras over the reals or fields of characteristic 0, or even to nonassociative rings. Our original axiomatization will be restricted to planar geometries for the same reason that high school students study the Euclidean plane. It is easier. However, we will find later that although the classification of higher- dimensional geometries requires more machinery, their structure is actually simpler. Indeed, the coordinates of a higher-dimensional projective geom- etry form an associative division ring, while the coordinates of a projective plane can be more exotic. Unlike the projective case, strictly nonassociative coordinates occur in some of the nonplanar geometries in Chapter 14. (Note that by convention “nonassociative” means “not necessarily associative”, so “strictly nonassociative” is used to rule out associative rings.) Although exceptional Lie (or algebraic) groups or Lie algebras are not mentioned explicitly except in Chapter 14, the simple group associated with the octonion plane in Chapter 12 is, in fact, of type E6 (see [37,Proposition 11.20 with Proposition 12.3, Corollary 12.4, and Theorem 12.7]). Also, there are connections to physics through Lie groups and the use of projective geometries as quantum logic (see [5, p. 833]), although these topics will not be discussed here. I strongly recommend that the reader have a scratch pad handy to sketch parts of the geometric proofs and to keep track of some of the nonassociative identities. The exercises present a lot of additional material not found in the main development, often with directions to the reader for supplying the proof. Each chapter has an informal preview section that introduces the reader to the coming material. We give below an overview of the contents. We begin with affine planes which have the incidence properties of Eu- clidean planes, but we quickly pass to the equivalent notion of projective planes. Projective planes have the advantage that the projection of one line to another from a point is a bijection, which is not true, in general, in affine planes. Looking at automorphisms of projective planes which extend projections leads to the notion of a central automorphism. Coordinates can be introduced into any projective plane, but, in general, the algebraic structure of the coordinates is rather weak. However, the existence of increasing sets of central automorphisms results in an increasing structure on the coordinates, ranging through Cartesian groups, Veblen- Wedderburn systems, nonassociative division rings, left Moufang division rings, alternative division rings, and associative division rings. In particular, a projective plane in which every projection extends to an automorphism has an alternative division ring as coordinates (Theorems 2.8 and 3.17). We employ a trick using special Jordan rings to get identities in left Mo- ufang (and hence alternative) rings. In particular, Micheev’s identity shows Introduction xiii that a left Moufang division ring is alternative (Theorem 4.2 and Corollary 4.3).
Recommended publications
  • SL(2, Q)-Unitals
    SL(2, q)-Unitals Zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften von der KIT-Fakultät für Mathematik des Karlsruher Instituts für Technologie (KIT) genehmigte Dissertation von Verena Möhler Tag der mündlichen Prüfung: 17. März 2020 1. Referent: Prof. Dr. Frank Herrlich 2. Referent: Apl. Prof. Dr. Markus Stroppel Erst kommen die Tränen, dann kommt der Erfolg. — Bastian Schweinsteiger Contents 1 Introduction1 2 About SL(2, q) 3 2.1 Linear and Unitary Groups of Degree 2 over Finite Fields.........3 2.2 Subgroups of SL(2, q) of Orders q and q + 1 ................6 3 Unitals 16 3.1 Unitals as Incidence Structures....................... 16 3.2 SL(2, q)-Unitals................................ 22 3.2.1 Construction of SL(2, q)-Unitals................... 23 3.2.2 Example: The Classical Unital.................... 28 4 Automorphism Groups 32 4.1 Automorphisms of the Geometry of Short Blocks............. 32 4.2 Automorphisms of (Affine) SL(2, q)-Unitals................. 37 4.3 Non-Existence of Isomorphisms....................... 44 5 Parallelisms and Translations 47 5.1 A Class of Parallelisms for Odd Order................... 47 5.2 Translations.................................. 50 6 Computer Results 54 6.1 Search for Arcuate Blocks.......................... 54 6.1.1 Orders 4 and 5............................ 55 6.1.2 Order 7................................ 56 6.1.3 Order 8................................ 61 6.2 Search for Parallelisms............................ 68 6.2.1 Orders 3 and 5............................ 68 6.2.2 Order 4................................ 69 7 Open Problems 75 Bibliography 76 Acknowledgement 79 1 Introduction Unitals of order n are incidence structures consisting of n3 + 1 points such that each block is incident with n + 1 points and such that there are unique joining blocks.
    [Show full text]
  • Projective Geometry: a Short Introduction
    Projective Geometry: A Short Introduction Lecture Notes Edmond Boyer Master MOSIG Introduction to Projective Geometry Contents 1 Introduction 2 1.1 Objective . .2 1.2 Historical Background . .3 1.3 Bibliography . .4 2 Projective Spaces 5 2.1 Definitions . .5 2.2 Properties . .8 2.3 The hyperplane at infinity . 12 3 The projective line 13 3.1 Introduction . 13 3.2 Projective transformation of P1 ................... 14 3.3 The cross-ratio . 14 4 The projective plane 17 4.1 Points and lines . 17 4.2 Line at infinity . 18 4.3 Homographies . 19 4.4 Conics . 20 4.5 Affine transformations . 22 4.6 Euclidean transformations . 22 4.7 Particular transformations . 24 4.8 Transformation hierarchy . 25 Grenoble Universities 1 Master MOSIG Introduction to Projective Geometry Chapter 1 Introduction 1.1 Objective The objective of this course is to give basic notions and intuitions on projective geometry. The interest of projective geometry arises in several visual comput- ing domains, in particular computer vision modelling and computer graphics. It provides a mathematical formalism to describe the geometry of cameras and the associated transformations, hence enabling the design of computational ap- proaches that manipulates 2D projections of 3D objects. In that respect, a fundamental aspect is the fact that objects at infinity can be represented and manipulated with projective geometry and this in contrast to the Euclidean geometry. This allows perspective deformations to be represented as projective transformations. Figure 1.1: Example of perspective deformation or 2D projective transforma- tion. Another argument is that Euclidean geometry is sometimes difficult to use in algorithms, with particular cases arising from non-generic situations (e.g.
    [Show full text]
  • Robot Vision: Projective Geometry
    Robot Vision: Projective Geometry Ass.Prof. Friedrich Fraundorfer SS 2018 1 Learning goals . Understand homogeneous coordinates . Understand points, line, plane parameters and interpret them geometrically . Understand point, line, plane interactions geometrically . Analytical calculations with lines, points and planes . Understand the difference between Euclidean and projective space . Understand the properties of parallel lines and planes in projective space . Understand the concept of the line and plane at infinity 2 Outline . 1D projective geometry . 2D projective geometry ▫ Homogeneous coordinates ▫ Points, Lines ▫ Duality . 3D projective geometry ▫ Points, Lines, Planes ▫ Duality ▫ Plane at infinity 3 Literature . Multiple View Geometry in Computer Vision. Richard Hartley and Andrew Zisserman. Cambridge University Press, March 2004. Mundy, J.L. and Zisserman, A., Geometric Invariance in Computer Vision, Appendix: Projective Geometry for Machine Vision, MIT Press, Cambridge, MA, 1992 . Available online: www.cs.cmu.edu/~ph/869/papers/zisser-mundy.pdf 4 Motivation – Image formation [Source: Charles Gunn] 5 Motivation – Parallel lines [Source: Flickr] 6 Motivation – Epipolar constraint X world point epipolar plane x x’ x‘TEx=0 C T C’ R 7 Euclidean geometry vs. projective geometry Definitions: . Geometry is the teaching of points, lines, planes and their relationships and properties (angles) . Geometries are defined based on invariances (what is changing if you transform a configuration of points, lines etc.) . Geometric transformations
    [Show full text]
  • COMBINATORICS, Volume
    http://dx.doi.org/10.1090/pspum/019 PROCEEDINGS OF SYMPOSIA IN PURE MATHEMATICS Volume XIX COMBINATORICS AMERICAN MATHEMATICAL SOCIETY Providence, Rhode Island 1971 Proceedings of the Symposium in Pure Mathematics of the American Mathematical Society Held at the University of California Los Angeles, California March 21-22, 1968 Prepared by the American Mathematical Society under National Science Foundation Grant GP-8436 Edited by Theodore S. Motzkin AMS 1970 Subject Classifications Primary 05Axx, 05Bxx, 05Cxx, 10-XX, 15-XX, 50-XX Secondary 04A20, 05A05, 05A17, 05A20, 05B05, 05B15, 05B20, 05B25, 05B30, 05C15, 05C99, 06A05, 10A45, 10C05, 14-XX, 20Bxx, 20Fxx, 50A20, 55C05, 55J05, 94A20 International Standard Book Number 0-8218-1419-2 Library of Congress Catalog Number 74-153879 Copyright © 1971 by the American Mathematical Society Printed in the United States of America All rights reserved except those granted to the United States Government May not be produced in any form without permission of the publishers Leo Moser (1921-1970) was active and productive in various aspects of combin• atorics and of its applications to number theory. He was in close contact with those with whom he had common interests: we will remember his sparkling wit, the universality of his anecdotes, and his stimulating presence. This volume, much of whose content he had enjoyed and appreciated, and which contains the re• construction of a contribution by him, is dedicated to his memory. CONTENTS Preface vii Modular Forms on Noncongruence Subgroups BY A. O. L. ATKIN AND H. P. F. SWINNERTON-DYER 1 Selfconjugate Tetrahedra with Respect to the Hermitian Variety xl+xl + *l + ;cg = 0 in PG(3, 22) and a Representation of PG(3, 3) BY R.
    [Show full text]
  • Collineations in Perspective
    Collineations in Perspective Now that we have a decent grasp of one-dimensional projectivities, we move on to their two di- mensional analogs. Although they are more complicated, in a sense, they may be easier to grasp because of the many applications to perspective drawing. Speaking of, let's return to the triangle on the window and its shadow in its full form instead of only looking at one line. Perspective Collineation In one dimension, a perspectivity is a bijective mapping from a line to a line through a point. In two dimensions, a perspective collineation is a bijective mapping from a plane to a plane through a point. To illustrate, consider the triangle on the window plane and its shadow on the ground plane as in Figure 1. We can see that every point on the triangle on the window maps to exactly one point on the shadow, but the collineation is from the entire window plane to the entire ground plane. We understand the window plane to extend infinitely in all directions (even going through the ground), the ground also extends infinitely in all directions (we will assume that the earth is flat here), and we map every point on the window to a point on the ground. Looking at Figure 2, we see that the lamp analogy breaks down when we consider all lines through O. Although it makes sense for the base of the triangle on the window mapped to its shadow on 1 the ground (A to A0 and B to B0), what do we make of the mapping C to C0, or D to D0? C is on the window plane, underground, while C0 is on the ground.
    [Show full text]
  • Finite Projective Geometry 2Nd Year Group Project
    Finite Projective Geometry 2nd year group project. B. Doyle, B. Voce, W.C Lim, C.H Lo Mathematics Department - Imperial College London Supervisor: Ambrus Pal´ June 7, 2015 Abstract The Fano plane has a strong claim on being the simplest symmetrical object with inbuilt mathematical structure in the universe. This is due to the fact that it is the smallest possible projective plane; a set of points with a subsets of lines satisfying just three axioms. We will begin by developing some theory direct from the axioms and uncovering some of the hidden (and not so hidden) symmetries of the Fano plane. Alternatively, some projective planes can be derived from vector space theory and we shall also explore this and the associated linear maps on these spaces. Finally, with the help of some theory of quadratic forms we will give a proof of the surprising Bruck-Ryser theorem, which shows that if a projective plane has order n congruent to 1 or 2 mod 4, then n is the sum of two squares. Thus we will have demonstrated fascinating links between pure mathematical disciplines by incorporating the use of linear algebra, group the- ory and number theory to explain the geometric world of projective planes. 1 Contents 1 Introduction 3 2 Basic Defintions and results 4 3 The Fano Plane 7 3.1 Isomorphism and Automorphism . 8 3.2 Ovals . 10 4 Projective Geometry with fields 12 4.1 Constructing Projective Planes from fields . 12 4.2 Order of Projective Planes over fields . 14 5 Bruck-Ryser 17 A Appendix - Rings and Fields 22 2 1 Introduction Projective planes are geometrical objects that consist of a set of elements called points and sub- sets of these elements called lines constructed following three basic axioms which give the re- sulting object a remarkable level of symmetry.
    [Show full text]
  • On the Existence of O'nan Configurations in Buekenhout
    On the existence of O'Nan configurations in ovoidal Buekenhout-Metz unitals in PG(2; q2) Tao Fenga, Weicong Lia,∗ aSchool of Mathematical Sciences, Zhejiang University, 38 Zheda Road, Hangzhou 310027, Zhejiang P.R China Abstract In this paper, we establish the existence of O'Nan configurations in all nonclassical ovoidal Buekenhout-Metz unitals in PG(2; q2). Keyword: Buekenhout unital, O'Nan configuration, Desargusian plane Mathematics Subject Classification: 51E05, 51E30 1. Introduction A unital of order n is a design with parameters 2 − (n3 + 1; n + 1; 1). All the known unitals have order a prime power except one of order 6 constructed in [1] and [14]. The classical unital of order q, q a prime power, consists of the absolute points and non-absolute lines of a unitary polarity in the Desarguesian plane PG(2; q2). A unital U embedded in a projective plane Π of order q2 is a set of q3 + 1 points of Π such that each line meets U in exactly 1 or q + 1 points. A line that intersects the unital U in 1 or q + 1 points is called a tangent or secant line respectively. The blocks of U consist of the intersections of U with the secant lines. In 1976, Buekenhout [7] used the Bruck-Bose model to show that each two-dimensional translation plane contains a unital. The unitals arising from this construction are called Buekenhout unitals. Metz [15] showed that there are nonclassical Buekenhout unitals in PG(2; q2) for any prime power q > 2. All the known unitals in finite Desraguesian planes are Buekenhout unitals.
    [Show full text]
  • 7 Combinatorial Geometry
    7 Combinatorial Geometry Planes Incidence Structure: An incidence structure is a triple (V; B; ∼) so that V; B are disjoint sets and ∼ is a relation on V × B. We call elements of V points, elements of B blocks or lines and we associate each line with the set of points incident with it. So, if p 2 V and b 2 B satisfy p ∼ b we say that p is contained in b and write p 2 b and if b; b0 2 B we let b \ b0 = fp 2 P : p ∼ b; p ∼ b0g. Levi Graph: If (V; B; ∼) is an incidence structure, the associated Levi Graph is the bipartite graph with bipartition (V; B) and incidence given by ∼. Parallel: We say that the lines b; b0 are parallel, and write bjjb0 if b \ b0 = ;. Affine Plane: An affine plane is an incidence structure P = (V; B; ∼) which satisfies the following properties: (i) Any two distinct points are contained in exactly one line. (ii) If p 2 V and ` 2 B satisfy p 62 `, there is a unique line containing p and parallel to `. (iii) There exist three points not all contained in a common line. n Line: Let ~u;~v 2 F with ~v 6= 0 and let L~u;~v = f~u + t~v : t 2 Fg. Any set of the form L~u;~v is called a line in Fn. AG(2; F): We define AG(2; F) to be the incidence structure (V; B; ∼) where V = F2, B is the set of lines in F2 and if v 2 V and ` 2 B we define v ∼ ` if v 2 `.
    [Show full text]
  • Projective Planes
    Projective Planes A projective plane is an incidence system of points and lines satisfying the following axioms: (P1) Any two distinct points are joined by exactly one line. (P2) Any two distinct lines meet in exactly one point. (P3) There exists a quadrangle: four points of which no three are collinear. In class we will exhibit a projective plane with 57 points and 57 lines: the game of The Fano Plane (of order 2): SpotIt®. (Actually the game is sold with 7 points, 7 lines only 55 lines; for the purposes of this 3 points on each line class I have added the two missing lines.) 3 lines through each point The smallest projective plane, often called the Fano plane, has seven points and seven lines, as shown on the right. The Projective Plane of order 3: 13 points, 13 lines The second smallest 4 points on each line projective plane, 4 lines through each point having thirteen points 0, 1, 2, …, 12 and thirteen lines A, B, C, …, M is shown on the left. These two planes are coordinatized by the fields of order 2 and 3 respectively; this accounts for the term ‘order’ which we shall define shortly. Given any field 퐹, the classical projective plane over 퐹 is constructed from a 3-dimensional vector space 퐹3 = {(푥, 푦, 푧) ∶ 푥, 푦, 푧 ∈ 퐹} as follows: ‘Points’ are one-dimensional subspaces 〈(푥, 푦, 푧)〉. Here (푥, 푦, 푧) ∈ 퐹3 is any nonzero vector; it spans a one-dimensional subspace 〈(푥, 푦, 푧)〉 = {휆(푥, 푦, 푧) ∶ 휆 ∈ 퐹}.
    [Show full text]
  • Set Theory. • Sets Have Elements, Written X ∈ X, and Subsets, Written a ⊆ X. • the Empty Set ∅ Has No Elements
    Set theory. • Sets have elements, written x 2 X, and subsets, written A ⊆ X. • The empty set ? has no elements. • A function f : X ! Y takes an element x 2 X and returns an element f(x) 2 Y . The set X is its domain, and Y is its codomain. Every set X has an identity function idX defined by idX (x) = x. • The composite of functions f : X ! Y and g : Y ! Z is the function g ◦ f defined by (g ◦ f)(x) = g(f(x)). • The function f : X ! Y is a injective or an injection if, for every y 2 Y , there is at most one x 2 X such that f(x) = y (resp. surjective, surjection, at least; bijective, bijection, exactly). In other words, f is a bijection if and only if it is both injective and surjective. Being bijective is equivalent to the existence of an inverse function f −1 such −1 −1 that f ◦ f = idY and f ◦ f = idX . • An equivalence relation on a set X is a relation ∼ such that { (reflexivity) for every x 2 X, x ∼ x; { (symmetry) for every x; y 2 X, if x ∼ y, then y ∼ x; and { (transitivity) for every x; y; z 2 X, if x ∼ y and y ∼ z, then x ∼ z. The equivalence class of x 2 X under the equivalence relation ∼ is [x] = fy 2 X : x ∼ yg: The distinct equivalence classes form a partition of X, i.e., every element of X is con- tained in a unique equivalence class. Incidence geometry.
    [Show full text]
  • PROJECTIVE GEOMETRY Contents 1. Basic Definitions 1 2. Axioms Of
    PROJECTIVE GEOMETRY KRISTIN DEAN Abstract. This paper investigates the nature of finite geometries. It will focus on the finite geometries known as projective planes and conclude with the example of the Fano plane. Contents 1. Basic Definitions 1 2. Axioms of Projective Geometry 2 3. Linear Algebra with Geometries 3 4. Quotient Geometries 4 5. Finite Projective Spaces 5 6. The Fano Plane 7 References 8 1. Basic Definitions First, we must begin with a few basic definitions relating to geometries. A geometry can be thought of as a set of objects and a relation on those elements. Definition 1.1. A geometry is denoted G = (Ω,I), where Ω is a set and I a relation which is both symmetric and reflexive. The relation on a geometry is called an incidence relation. For example, consider the tradional Euclidean geometry. In this geometry, the objects of the set Ω are points and lines. A point is incident to a line if it lies on that line, and two lines are incident if they have all points in common - only when they are the same line. There is often this same natural division of the elements of Ω into different kinds such as the points and lines. Definition 1.2. Suppose G = (Ω,I) is a geometry. Then a flag of G is a set of elements of Ω which are mutually incident. If there is no element outside of the flag, F, which can be added and also be a flag, then F is called maximal. Definition 1.3. A geometry G = (Ω,I) has rank r if it can be partitioned into sets Ω1,..., Ωr such that every maximal flag contains exactly one element of each set.
    [Show full text]
  • ON the STRUCTURE of COLLINEATION GROUPS of FINITE PROJECTIVE PLANES by WILLIAM M
    ON THE STRUCTURE OF COLLINEATION GROUPS OF FINITE PROJECTIVE PLANES By WILLIAM M. KANTORf [Received 31 December 1973—Revised 24 September 1974] 1. Introduction The study of a collineation group F of a finite projective plane SP splits into two parts: the determination first of the abstract structure of F, and then of the manner in which F acts on 3P. If F contains no perspectivities, almost nothing general is known about it. We shall study both questions in the case where F is generated by involutory perspectivities. To avoid unstructured situations, F will be assumed to contain at least two such perspectivities having different centres or axes. The determination of the structure of F is then not difficult if the order n of 2P is even (see § 8, Remark 1). Consequently, we shall concentrate on the case of odd n. The main reason for the difficulties occurring for odd n is that the permutation representation of F on the set of centres (or axes) of involutory perspectivi- ties has no nice group-theoretic properties; this is the exact opposite of the situation occurring for even n. As usual, Z(T) and O(F) will denote the centre and largest normal subgroup of odd order of F; av denotes the conjugacy class of a in F; and Cr(A) and <A> are the centralizer of, and subgroup generated by, the subset A. THEOREM A. Let ^ be a finite projective plane of odd order n, and F a collineation group of & generated by involutory homologies and 0(T). Assume that F contains commuting involutory homologies having different axes, and that there is no involutory homology a for which oO{T) e Z(F/O{T)).
    [Show full text]