Genomic Investigations of Diversity Within the Milkweed Genus Asclepias, at Multiple Scales

Total Page:16

File Type:pdf, Size:1020Kb

Genomic Investigations of Diversity Within the Milkweed Genus Asclepias, at Multiple Scales AN ABSTRACT OF THE DISSERTATION OF Kevin A. Weitemier for the degree of Doctor of Philosophy in Botany and Plant Pathology presented on September 7, 2016. Title: Genomic Investigations of Diversity within the Milkweed Genus Asclepias, at Multiple Scales Abstract approved: ________________________________________________________________________ Aaron I. Liston At a time when the biodiversity on Earth is being rapidly lost, new technologies and methods in genomic analysis are fortunately allowing scientists to catalog and explore the diversity that remains more efficiently and precisely. The studies in this dissertation investigate genomic diversity within the milkweed genus, Asclepias, at multiple scales, including diversity found within a single individual, diversity within and among populations in a species, and diversity across the entire genus. These investigations contribute to our understanding of the genomic content and architecture within Asclepias and the Gentianales, patterns of population diversification in the western United States, and the evolutionary history of select loci within Asclepias, with implications across flowering plants. Chapter 2 investigates patterns of polymorphisms among paralogous copies of nuclear ribosomal DNA (nrDNA) within individual genomes, and presents a bioinformatic pipeline for characterizing polymorphisms among copies of a high-copy locus. Results are presented for intragenomic nrDNA polymorphisms across Asclepias. The 18S-26S portion of the nrDNA cistron of Asclepias syriaca served as a reference for assembly of the region from 124 samples representing 90 species of Asclepias. Reads were mapped back to each individual’s consensus and at each position reads differing from the consensus were tallied using a custom Perl script. Low frequency polymorphisms existed in all individuals (mean = 5.8%). Most nrDNA positions (91%) were polymorphic in at least one individual, with polymorphic sites being less frequent in subunit regions and loops. Highly polymorphic sites existed in each individual, with highest abundance in the “noncoding” ITS regions. Phylogenetic signal was present in the distribution of intragenomic polymorphisms across the genus. Intragenomic polymorphisms in nrDNA are common in Asclepias, being found at higher frequency than any other study to date. The high and variable frequency of polymorphisms across species highlights concerns that phylogenetic applications of nrDNA may be error-prone. The new analytical approach provided in this chapter is applicable to other taxa and other high-copy regions characterized by low coverage genome sequencing (genome skimming). Chapter 3 presents Hyb-Seq, a new method combining target enrichment and genome skimming to allow simultaneous data collection for low-copy nuclear genes and high-copy genomic targets for plant systematics and evolution studies. A program is presented that takes genome and transcriptome assemblies and locates loci likely to be low copy and phylogenetically informative, to be used for probe development and enrichment in sequence libraries. A workflow is presented for processing data, from raw sequence reads to assembled exons and reconstructed trees. Genome and transcriptome assemblies for Asclepias syriaca were used to design enrichment probes for 3385 exons from 768 genes (>1.6 Mbp) followed by Illumina sequencing of enriched libraries. Hyb-Seq of 12 individuals (10 Asclepias species and two related genera) resulted in at least partial assembly of 92.6% of exons and 99.7% of genes and an average assembly length >2 Mbp. Importantly, complete plastomes and nrDNA cistrons were assembled using off-target reads. Phylogenomic analyses demonstrated signal conflict between genomes. The Hyb-Seq approach enables targeted sequencing of thousands of low-copy nuclear exons and flanking regions, as well as genome skimming of high-copy repeats and organellar genomes, to efficiently produce genome-scale data sets for phylogenomics. Chapter 4 presents an assembly of the genome of the common milkweed, Asclepias syriaca. It uses principles from Chapter 3 to target SNPs and reconstruct linkage groups, enabling an analysis of chromosomal evolution within Gentianales, the order containing Asclepias. Asclepias syriaca is the first species in Apocynaceae with reconstructions of the nuclear, chloroplast, and mitochondrial genomes, and the first to have linkage group information incorporated into the nuclear assembly. The final assembly of Asclepias syriaca contains 54,266 scaffolds ≥1 kbp, with N50 = 3415 bp, representing 37% (156.6 Mbp) of the estimated 420 Mbp genome. Scaffolds ≥200 bp sum to 229.7 Mbp, with N50 = 1904 bp. A total of 14,474 protein coding genes were identified based on transcript evidence, closely related proteins, and ab initio models, and 95% of genes were annotated based on genes from Coffea canephora and Catharanthus rosea. A large proportion of gene space is represented in the assembly, with 96.7% of Asclepias transcripts, 88.4% of transcripts from the related genus Calotropis, and 90.6% of proteins from Coffea mapping to the assembly. Analyses were performed for three gene families, involved in rubber production, light sensing, and cardenolide production, with the finding that the cardenolide related progesterone 5β- reductase gene family is likely reduced in Asclepias relative to other Apocynaceae. Scaffolds covering 75 Mbp of the Asclepias assembly were grouped into eleven linkage groups. Comparisons of these groups with pseudochromosomes in Coffea found that six chromosome show consistent stability in gene content, while one may have a long history of fragmentation and rearrangement. Finally, in Chapter 5, diversity within a species across its entire range is investigated with a phylogeographic study of the jewel milkweed, Asclepias cryptoceras. This study applies the SNP targets developed from Chapter 4 to populations of A. cryptoceras, asking whether two recognized subspecies are genetically distinct, and searching for the origin of populations that are morphologically intermediate between the two. A total of 54,673 SNPs were found on 7372 contigs, across 96 individuals from ten populations. Principal component analysis and measures of allelic differentiation indicate a clear disjunction between subspecies cryptoceras and davisii (FST = 0.092 between geographic regions). For intermediate populations, estimates of hybrid index below 0.25 and measures of allelic diversity and private alleles, argue against a hybrid origin due to secondary contact, and instead support their origin as stepping stone populations during expansion along a southern corridor from east to west. ©Copyright by Kevin A. Weitemier September 7, 2016 All Rights Reserved Genomic Investigations of Diversity within the Milkweed Genus Asclepias, at Multiple Scales by Kevin A. Weitemier A DISSERTATION submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Presented September 7, 2016 Commencement June 2017 Doctor of Philosophy dissertation of Kevin A. Weitemier presented on September 7, 2016. APPROVED: ________________________________________________________________________ Major Professor, representing Botany and Plant Pathology ________________________________________________________________________ Head of the Department of Botany and Plant Pathology ________________________________________________________________________ Dean of the Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. ________________________________________________________________________ Kevin A. Weitemier, Author ACKNOWLEDGEMENTS The title page of this work lists a single author, but without the support of many people it could not have been completed. First, thanks to my advisor, Dr. Aaron Liston. You have helped me reject unworkable ideas, sharpen those that remained, and provided fresh thoughts when I was at a loss. Your continually positive outlook has helped me overcome frustration and tedium. Your door was literally and figuratively always open, and I never felt that I couldn’t come to you for consultation or advice. Thanks to Dr. Richard Cronn. Your assistance with laboratory techniques has been invaluable, including allowing me to inhabit your lab for hours at a time. Your ability to envision a broader application or scope of a study has helped on numerous occasions, and my work is greater for it. Thanks to Drs. Shannon Straub and Matthew Parks. As office-mates and collaborators you have modeled dedication and perseverance with cheerfulness, as well as the ability to take time away from work for the (many) more important things in life. Thank you to the many friends I have met while in graduate school. Without the moral support I have received and the joy you have provided my professional work would not only have suffered, but the many years I have spent in its pursuit would have been truly wasted. Thanks to the Coalition of Graduate Employees. Not only have I materially benefited from its work, I have received leadership opportunities and have developed a deep sense of professionalism in my employment, and an awareness of advocacy and activism. Thanks to the Native Plant Society of Oregon. It is an organization with a deep network of knowledge. It spreads the importance of our botanical heritage to the public and looks out for even
Recommended publications
  • Natural Heritage Program List of Rare Plant Species of North Carolina 2016
    Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Revised February 24, 2017 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org C ur Alleghany rit Ashe Northampton Gates C uc Surry am k Stokes P d Rockingham Caswell Person Vance Warren a e P s n Hertford e qu Chowan r Granville q ot ui a Mountains Watauga Halifax m nk an Wilkes Yadkin s Mitchell Avery Forsyth Orange Guilford Franklin Bertie Alamance Durham Nash Yancey Alexander Madison Caldwell Davie Edgecombe Washington Tyrrell Iredell Martin Dare Burke Davidson Wake McDowell Randolph Chatham Wilson Buncombe Catawba Rowan Beaufort Haywood Pitt Swain Hyde Lee Lincoln Greene Rutherford Johnston Graham Henderson Jackson Cabarrus Montgomery Harnett Cleveland Wayne Polk Gaston Stanly Cherokee Macon Transylvania Lenoir Mecklenburg Moore Clay Pamlico Hoke Union d Cumberland Jones Anson on Sampson hm Duplin ic Craven Piedmont R nd tla Onslow Carteret co S Robeson Bladen Pender Sandhills Columbus New Hanover Tidewater Coastal Plain Brunswick THE COUNTIES AND PHYSIOGRAPHIC PROVINCES OF NORTH CAROLINA Natural Heritage Program List of Rare Plant Species of North Carolina 2016 Compiled by Laura Gadd Robinson, Botanist John T. Finnegan, Information Systems Manager North Carolina Natural Heritage Program N.C. Department of Natural and Cultural Resources Raleigh, NC 27699-1651 www.ncnhp.org This list is dynamic and is revised frequently as new data become available. New species are added to the list, and others are dropped from the list as appropriate.
    [Show full text]
  • Asclepias Incarnata L
    Swamp milkweed Asclepias incarnata L. Group: Dicot Family: Asclepiadaceae (milkweed) Growth Habit: Forb/herb Duration: Perennial U.S. Nativity: Native, most of U.S. Natural Enemies Attracted: Small numbers of Chalcidoidea, Empididae, Salticidae, Orius insidiosus, Sphecidae, Cynipoidea, Coccinellidae, Chrysopidae and Dolichopodidae. Pests Attracted: Small numbers of aphids, lygus bugs, leaf beetles, leafhoppers, thrips, Japanese beetles and tephritid fruit flies. Bees attracted: Moderate numbers (between 1-5 bees per meter square in a 30 second sample) of bees including yellow-faced bees, sweat bees, and large Species Notes: Pale and dark pink flower clusters about 3 inches wide open at the top of the plant. Plants filled in well, grew robustly, and grew 3-4 feet tall. Plants bloomed from mid July to mid August. This species was one of the less attractive to natural enemies in the mid season, with the same number of natural enemies as in the grass control. Developed by: Doug Landis, Anna Fiedler and Rufus Isaacs; Department of Entomology, Michigan State University. Please note: The information presented should be considered a guideline to be adapted for your situation. MSU makes no warranty about the use of the information presented here. About the Plant Species Graph: Plant Species Graph Average number of beneficial insects collected at each plant species the week before, during, and after peak bloom, for plant species blooming from mid-August through early October (+ standard error). Swamp milkweed (Asclepias incarnata) boxed in red. Bars for natural enemies are in green, bars for bees are in yellow. Bars for native plants are solid and nonnative plants are striped.
    [Show full text]
  • Butterfly Plant List
    Butterfly Plant List Butterflies and moths (Lepidoptera) go through what is known as a * This list of plants is seperated by host (larval/caterpilar stage) "complete" lifecycle. This means they go through metamorphosis, and nectar (Adult feeding stage) plants. Note that plants under the where there is a period between immature and adult stages where host stage are consumed by the caterpillars as they mature and the insect forms a protective case/cocoon or pupae in order to form their chrysalis. Most caterpilars and mothswill form their transform into its adult/reproductive stage. In butterflies this case cocoon on the host plant. is called a Chrysilas and can come in various shapes, textures, and colors. Host Plants/Larval Stage Perennials/Annuals Vines Common Name Scientific Common Name Scientific Aster Asteracea spp. Dutchman's pipe Aristolochia durior Beard Tongue Penstamon spp. Passion vine Passiflora spp. Bleeding Heart Dicentra spp. Wisteria Wisteria sinensis Butterfly Weed Asclepias tuberosa Dill Anethum graveolens Shrubs Common Fennel Foeniculum vulgare Common Name Scientific Common Foxglove Digitalis purpurea Cape Plumbago Plumbago auriculata Joe-Pye Weed Eupatorium purpureum Hibiscus Hibiscus spp. Garden Nasturtium Tropaeolum majus Mallow Malva spp. Parsley Petroselinum crispum Rose Rosa spp. Snapdragon Antirrhinum majus Senna Cassia spp. Speedwell Veronica spp. Spicebush Lindera benzoin Spider Flower Cleome hasslerana Spirea Spirea spp. Sunflower Helianthus spp. Viburnum Viburnum spp. Swamp Milkweed Asclepias incarnata Trees Trees Common Name Scientific Common Name Scientific Birch Betula spp. Pine Pinus spp. Cherry and Plum Prunus spp. Sassafrass Sassafrass albidum Citrus Citrus spp. Sweet Bay Magnolia virginiana Dogwood Cornus spp. Sycamore Platanus spp. Hawthorn Crataegus spp.
    [Show full text]
  • Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas
    Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Texas milkweed (Asclepias texana), courtesy Bill Carr Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Identification of Milkweeds (Asclepias, Family Apocynaceae) in Texas Created in partnership with the Lady Bird Johnson Wildflower Center Design and layout by Elishea Smith Compiled by Jason Singhurst and Ben Hutchins [email protected] [email protected] Texas Parks and Wildlife Department Austin, Texas and Walter C. Holmes [email protected] Department of Biology Baylor University Waco, Texas Introduction This document has been produced to serve as a quick guide to the identification of milkweeds (Asclepias spp.) in Texas. For the species listed in Table 1 below, basic information such as range (in this case county distribution), habitat, and key identification characteristics accompany a photograph of each species. This information comes from a variety of sources that includes the Manual of the Vascular Flora of Texas, Biota of North America Project, knowledge of the authors, and various other publications (cited in the text). All photographs are used with permission and are fully credited to the copyright holder and/or originator. Other items, but in particular scientific publications, traditionally do not require permissions, but only citations to the author(s) if used for scientific and/or nonprofit purposes. Names, both common and scientific, follow those in USDA NRCS (2015). When identifying milkweeds in the field, attention should be focused on the distinguishing characteristics listed for each species.
    [Show full text]
  • State of New York City's Plants 2018
    STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species.
    [Show full text]
  • Glycosides Pharmacognosy Dr
    GLYCOSIDES PHARMACOGNOSY DR. KIBOI Glycosides Glycosides • Glycosides consist of a sugar residue covalently bound to a different structure called the aglycone • The sugar residue is in its cyclic form and the point of attachment is the hydroxyl group of the hemiacetal function. The sugar moiety can be joined to the aglycone in various ways: 1.Oxygen (O-glycoside) 2.Sulphur (S-glycoside) 3.Nitrogen (N-glycoside) 4.Carbon ( Cglycoside) • α-Glycosides and β-glycosides are distinguished by the configuration of the hemiacetal hydroxyl group. • The majority of naturally-occurring glycosides are β-glycosides. • O-Glycosides can easily be cleaved into sugar and aglycone by hydrolysis with acids or enzymes. • Almost all plants that contain glycosides also contain enzymes that bring about their hydrolysis (glycosidases ). • Glycosides are usually soluble in water and in polar organic solvents, whereas aglycones are normally insoluble or only slightly soluble in water. • It is often very difficult to isolate intact glycosides because of their polar character. • Many important drugs are glycosides and their pharmacological effects are largely determined by the structure of the aglycone. • The term 'glycoside' is a very general one which embraces all the many and varied combinations of sugars and aglycones. • More precise terms are available to describe particular classes. Some of these terms refer to: 1.the sugar part of the molecule (e.g. glucoside ). 2.the aglycone (e.g. anthraquinone). 3.the physical or pharmacological property (e.g. saponin “soap-like ”, cardiac “having an action on the heart ”). • Modern system of naming glycosides uses the termination '-oside' (e.g. sennoside). • Although glycosides form a natural group in that they all contain a sugar unit, the aglycones are of such varied nature and complexity that glycosides vary very much in their physical and chemical properties and in their pharmacological action.
    [Show full text]
  • Chemistry, Spectroscopic Characteristics and Biological Activity of Natural Occurring Cardiac Glycosides
    IOSR Journal of Biotechnology and Biochemistry (IOSR-JBB) ISSN: 2455-264X, Volume 2, Issue 6 Part: II (Sep. – Oct. 2016), PP 20-35 www.iosrjournals.org Chemistry, spectroscopic characteristics and biological activity of natural occurring cardiac glycosides Marzough Aziz DagerAlbalawi1* 1 Department of Chemistry, University college- Alwajh, University of Tabuk, Saudi Arabia Abstract:Cardiac glycosides are organic compounds containing two types namely Cardenolide and Bufadienolide. Cardiac glycosides are found in a diverse group of plants including Digitalis purpurea and Digitalis lanata (foxgloves), Nerium oleander (oleander),Thevetiaperuviana (yellow oleander), Convallariamajalis (lily of the valley), Urgineamaritima and Urgineaindica (squill), Strophanthusgratus (ouabain),Apocynumcannabinum (dogbane), and Cheiranthuscheiri (wallflower). In addition, the venom gland of cane toad (Bufomarinus) contains large quantities of a purported aphrodisiac substance that has resulted in cardiac glycoside poisoning.Therapeutic use of herbal cardiac glycosides continues to be a source of toxicity today. Recently, D.lanata was mistakenly substituted for plantain in herbal products marketed to cleanse the bowel; human toxicity resulted. Cardiac glycosides have been also found in Asian herbal products and have been a source of human toxicity.The most important use of Cardiac glycosides is its affects in treatment of cardiac failure and anticancer agent for several types of cancer. The therapeutic benefits of digitalis were first described by William Withering in 1785. Initially, digitalis was used to treat dropsy, which is an old term for edema. Subsequent investigations found that digitalis was most useful for edema that was caused by a weakened heart. Digitalis compounds have historically been used in the treatment of chronic heart failure owing to their cardiotonic effect.
    [Show full text]
  • Functional Response of Phytoseiulus
    U niv. j. zool. Rajshahi. Univ. Vol. 29, 2010 pp. 77-80 ISSN 1023-61041 http://journals.sfu.ca/bd/index.php/UJZRU © Rajshahi University Zoological Society Short Note Larvicidal effect of latex from Calotropis gigantea (L.) W.T. Aiton against the mosquito, Culex quinquefasciatus Say (Diptera: Culicidae) Khondkar Ehteshamul Kabir1, Ataur Rahman Khan2 and A.S.M. Shafiqur Rahman*2 1Laboratory of Integrated Pest Management, Institute of Biological Sciences, University of Rajshahi; 2Department of Zoology, University of Rajshahi; Rajshahi-6205, Bangladesh Key words: Culex quinquefasciatus, Calotropis gigantea, latex, larvicidal effect. *Corresponding author The milkweed, Calotropis gigantea (L.) W.T. Aiton Test material: Milky latex of C. gigantea, grown in (Gentianales: Asclepiadaceae) locally known as the campus of Rajshahi University, Bangladesh, Akond, is an evergreen, perennial shrub, and is was collected in early-March of 2000 with widely distributed in sub-tropical and tropical punching of the young stems using sharp pins. countries. It has been reported that latices of the Before making the various concentrations of latex milkweeds including C. gigantea contain cardiac in ppm, the collected latex was poured into pre- glycosides that vary in amount and type between weighed conical flask and weighed to obtain the species, between various plant parts of the same wet weight of the latex. Then the latex was dried species and through time, and other noxious in the same flask for 24 h at 60° C, and the flasks chemical substances including pyrrolizidinic were weighed again to obtain the dry weight of the alkaloids (Farrell et al., 1991). latex. The stock solution of the semisolid latex in MeOH (w/v) was then appropriately added to the The pant latex functions as defense chemicals test water medium to obtain the desired against insect herbivores (Konno et al., 2006).
    [Show full text]
  • Milkweed and Monarchs
    OHIO DEPARTMENT OF NATURAL RESOURCES DIVISION OF WILDLIFE MILKWEEDS AND MONARCHS Acknowledgments Table of Contents We thank Dr. David Horn, past president of the Ohio Lepidopterists, 03 MONARCH LIFE CYCLE for his thoughtful review of this publication. Our appreciation goes 04 MONARCH MIGRATION to the Ohio Lepidopterists, and Monarch Watch. These organizations work tirelessly to promote the conservation of butterflies and moths. 05 PROBLEMS & DECLINE COVER PHOTO BY KELLY NELSON 06 MILKWEEDS 07 OTHER MILKWEED SPECIALISTS 08 MONARCH NURSERY GARDEN Introduction 09 FIVE EXCELLENT MILKWEEDS Text and photos by Jim McCormac, Ohio Division of Wildlife, unless otherwise stated. 10 SUPERB MONARCH NECTAR SOURCES The Monarch butterfly (Danaus plexippus) is one of North Amer- ica’s most iconic insects. The gorgeous golden-brown and black but- terfly is probably the most celebrated insect on the continent, and the migration of the eastern population is conspicuous and spectacular. Southbound Monarchs can appear anywhere, even in highly urban- ized locales, and the butterflies often use backyard gardens as way sta- tions. Occasionally a resting swarm of hundreds or even thousands of butterflies is encountered. The spectacle of trees dripping with living leaves of butterflies is unlikely to be forgotten. PHOTO BY CHRIS FROST A Pictorial Journey From Caterpillar to Chrysalis to Butterfly PHOTOS BY STEVEN RUSSEL SMITH Monarch Butterfly Life Cycle Like all species in the order Lepidoptera (moths and butterflies), soon hatch. The caterpillars begin eating the milkweed foliage, and Monarchs engage in complete metamorphosis. This term indicates grow rapidly. The growth process involves five molts where the cater- that there are four parts to the life cycle: egg, caterpillar, pupa, and pillar sheds its skin and emerges as a larger animal.
    [Show full text]
  • Hyb-Seq: Combining Target Enrichment and Genome Skimming for Plant Phylogenomics Author(S): Kevin Weitemier, Shannon C
    Hyb-Seq: Combining Target Enrichment and Genome Skimming for Plant Phylogenomics Author(s): Kevin Weitemier, Shannon C. K. Straub, Richard C. Cronn, Mark Fishbein, Roswitha Schmickl, Angela McDonnell, and Aaron Liston Source: Applications in Plant Sciences, 2(9) 2014. Published By: Botanical Society of America DOI: http://dx.doi.org/10.3732/apps.1400042 URL: http://www.bioone.org/doi/full/10.3732/apps.1400042 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Applications Applications in Plant Sciences 2014 2 ( 9 ): 1400042 in Plant Sciences P ROTOCOL NOTE H YB-SEQ: COMBINING TARGET ENRICHMENT AND GENOME 1 SKIMMING FOR PLANT PHYLOGENOMICS K EVIN W EITEMIER
    [Show full text]
  • SEASONAL and INTRAPLANT VARIATION of CARDENOLIDE CONTENT in the CALIFORNIA MILKWEED, Asclepias Eriocarpa, and IMPLICATIONS for PLANT DEFENSE 1
    Journal of Chemical Ecology, VoL 7, No. 6, 1981 SEASONAL AND INTRAPLANT VARIATION OF CARDENOLIDE CONTENT IN THE CALIFORNIA MILKWEED, Asclepias eriocarpa, AND IMPLICATIONS FOR PLANT DEFENSE 1 C.J. NELSONY J.N. SEIBER, 2 and L.P. BROWER 3,1 2Department of Environmental Toxicology University of California, Davis, California 95616 3Department of Zoology, University of Florida, Gainesville, Florida 32611 (Received October 31, 1980; revised January 19, 1981) Abstract--Root, stem, leaf, and latex samples of Asclepias eriocarpa collected from three plots in one population at 12 monthly intervals were assayed for total cardenolide content by spectroassay and for individual cardenolides by thin-layer chromatography. From May to September mean milligram equivalents of digitoxin per gram of dried plant were: latices, 56.8 >~ stems, 6.12 ~ leaves, 4.0 > roots, 2.5. With the exception of the roots, significant changes in gross cardenolide content occurred for each sample type with time of collection during the growing season, whereas variation within this population was found to be small. Labriformin, a nitrogen- containing cardenolide of low polarity, predominated in the latices. Leaf samples contained labriformin, labriformidin, desglucosyrioside, and other unidentified cardenolides. In addition to most of the same cardenolides as the leaves, the stems also contained uzarigenin. The roots contained desglucosyrioside and several polar cardenolides. The results are compared with those for other cardenolide-containingplants, and discussed in relation to anti-herbivore defense based on plant cardcnolide content. Arguments are advanced for a central role of the latex in cardenolide storage and deployment which maximizes the defensive qualities of the cardenolides while preventing toxicity to the plant.
    [Show full text]
  • Docket 07-Afc-5
    DOCKET 07-AFC-5 DATE JAN 22 2009 RECD. JAN 23 2009 TABLE 1 Summary of 2007 and 2008 Rare Plant Survey Data from Ivanpah Solar Generating System Locality Population Identification Survey Scientific Name Common Name Size Number Latitude Longitude X Coordinate Y Coordinate Observer Date Surveys Conducted Year Habitat Type 1 Plant Associates 1 Small-flowered See 2008 CNDDB Androstephium breviflorum 1 1 35.553029287 -115.464780484 7315759.205 2397112.792 CH2M HILL 4/3 – 4/22 excluding 4/19 2008 See 2008 CNDDB forms androstephium forms Small-flowered See 2008 CNDDB Androstephium breviflorum 8 2 35.541973173 -115.454208600 7319005.027 2393168.943 CH2M HILL 4/3 – 4/22 excluding 4/19 2008 See 2008 CNDDB forms androstephium forms Small-flowered See 2008 CNDDB Androstephium breviflorum 2 3 35.540259697 -115.452438361 7319547.342 2392558.752 CH2M HILL 4/3 – 4/22 excluding 4/19 2008 See 2008 CNDDB forms androstephium forms Small-flowered See 2008 CNDDB Androstephium breviflorum 1 4 35.539270216 -115.459668623 7317405.954 2392144.243 CH2M HILL 4/3 – 4/22 excluding 4/19 2008 See 2008 CNDDB forms androstephium forms See 2008 CNDDB Asclepias nyctaginifolia Mojave milkweed 1 1 35.593006631 -115.487691829 7308582.04 2411489.738 CH2M HILL 4/3 – 4/22 excluding 4/19 2008 See 2008 CNDDB forms forms See 2008 CNDDB Asclepias nyctaginifolia Mojave milkweed 3 2 35.595074932 -115.484543169 7309499.109 2412265.826 CH2M HILL 4/3 – 4/22 excluding 4/19 2008 See 2008 CNDDB forms forms See 2008 CNDDB Asclepias nyctaginifolia Mojave milkweed 2 3 35.590589429 -115.482537832
    [Show full text]