Lean Kaizen: How to Rapidly Identify and Agree on Improvement Ideas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Root Cause Analysis in Context of WHO International Classification for Patient Safety
Root cause analysis in context of WHO International Classification for Patient Safety Dr David Cousins Associate Director Safe Medication Practice and Medical Devices 1 NHS | Presentation to [XXXX Company] | [Type Date] How heath care provider organisations manage patient safety incidents Incident External organisation Healthcare Patient/Carer or agency professional Department of Health Incident report Complaint Regulators Health & Safety Request Risk/complaint Request additional manager additional Healthcare information information commissioners and purchasers Local analysis and learning Industry Feed back External report Root Cause AnalysisWhy RCA? (RCA) To identify the root causes and key learning from serious incidents and use this information to significantly reduce the likelihood of future harm to patients Objectives To establish the facts i.e. what happened (effect), to whom, when, where, how and why To establish whether failings occurred in care or treatment To look for improvements rather than to apportion blame To establish how recurrence may be reduced or eliminated To formulate recommendations and an action plan To provide a report and record of the investigation process & outcome To provide a means of sharing learning from the incident To identify routes of sharing learning from the incident Basic elements of RCA WHAT HOW it WHY it happened happened happened Human Contributory Unsafe Acts Behaviour Factors Direct Care Delivery Problems – unsafe acts or omissions by staff Service Delivery Problems – unsafe systems, procedures -
Guidance for Performing Root Cause Analysis (RCA) with Pips
Guidance for Performing Root Cause Analysis (RCA) with Performance Improvement Projects (PIPs) Overview: RCA is a structured facilitated team process to identify root causes of an event that resulted in an undesired outcome and develop corrective actions. The RCA process provides you with a way to identify breakdowns in processes and systems that contributed to the event and how to prevent future events. The purpose of an RCA is to find out what happened, why it happened, and determine what changes need to be made. It can be an early step in a PIP, helping to identify what needs to be changed to improve performance. Once you have identified what changes need to be made, the steps you will follow are those you would use in any type of PIP. Note there are a number of tools you can use to perform RCA, described below. Directions: Use this guide to walk through a Root Cause Analysis (RCA) to investigate events in your facility (e.g., adverse event, incident, near miss, complaint). Facilities accredited by the Joint Commission or in states with regulations governing completion of RCAs should refer to those requirements to be sure all necessary steps are followed. Below is a quick overview of the steps a PIP team might use to conduct RCA. Steps Explanation 1. Identify the event to be Events and issues can come from many sources (e.g., incident report, investigated and gather risk management referral, resident or family complaint, health preliminary information department citation). The facility should have a process for selecting events that will undergo an RCA. -
Root Cause Analysis in Surgical Site Infections (Ssis) 1Mashood Ahmed, 2Mohd
International Journal of Pharmaceutical Science Invention ISSN (Online): 2319 – 6718, ISSN (Print): 2319 – 670X www.ijpsi.org Volume 1 Issue 1 ‖‖ December. 2012 ‖‖ PP.11-15 Root cause analysis in surgical site infections (SSIs) 1Mashood Ahmed, 2Mohd. Shahimi Mustapha, 3 4 Mohd. Gousuddin, Ms. Sandeep kaur 1Mashood Ahmed Shah (Master of Medical Laboratory Technology, Lecturer, Faculty of Pharmacy, Lincoln University College, Malaysia) 2Prof.Dr.Mohd. Shahimi Mustapha,(Dean, Faculty of Pharmacy, Lincoln University College, Malaysia) 3Mohd.Gousuddin, Master of Pharmacy (Lecturer, Faculty of Pharmacy, Lincoln University College, Malaysia) 4Sandeep kaur,(Student of Infection Prevention and control, Wairiki Institute of Technology, School of Nursing and Health Studies, Rotorua: NZ ) ABSTRACT: Surgical site infections (SSIs) are wound infections that usually occur within 30 days after invasive procedures. The development of infections at surgical incision site leads to extend of infection to adjacent tissues and structures.Wound infections are the most common infections in surgical patients, about 38% of all surgical patients will develop a SSI.The studies show that among post-surgical procedures, there is an increased risk of acquiring a nosocomial infection.Root cause analysis is a method used to investigate and analyze a serious event to identify causes and contributing factors, and to recommend actions to prevent a recurrence including clinical as well as administrative review. It is particularly useful for improving patient safety systems. The risk management process is done for any given scenario in three steps: perioperative condition, during operation and post-operative condition. Based upon the extensive searches in several biomedical science journals and web-based reports, we discussed the updated facts and phenomena related to the surgical site infections (SSIs) with emphasis on the root causes and various preventive measures of surgical site infections in this review. -
Root Cause Analysis: the Essential Ingredient Las Vegas IIA Chapter February 22, 2018 Agenda • Overview
Root Cause Analysis: The Essential Ingredient Las Vegas IIA Chapter February 22, 2018 Agenda • Overview . Concept . Guidance . Required Skills . Level of Effort . RCA Process . Benefits . Considerations • Planning . Information Gathering • Fieldwork . RCA Tools and Techniques • Reporting . 5 C’s Screen 2 of 65 OVERVIEW Root Cause Analysis (RCA) A root cause is the most reasonably identified basic causal factor or factors, which, when corrected or removed, will prevent (or significantly reduce) the recurrence of a situation, such as an error in performing a procedure. It is also the earliest point where you can take action that will reduce the chance of the incident happening. RCA is an objective, structured approach employed to identify the most likely underlying causes of a problem or undesired events within an organization. Screen 4 of 65 IPPF Standards, Implementation Guide, and Additional Guidance IIA guidance includes: • Standard 2320 – Analysis and Evaluation • Implementation Guide: Standard 2320 – Analysis and Evaluation Additional guidance includes: • PCAOB Initiatives to Improve Audit Quality – Root Cause Analysis, Audit Quality Indicators, and Quality Control Standards Screen 5 of 65 Required Auditor Skills for RCA Collaboration Critical Thinking Creative Problem Solving Communication Business Acumen Screen 6 of 65 Level of Effort The resources spent on RCA should be commensurate with the impact of the issue or potential future issues and risks. Screen 7 of 65 Steps for Performing RCA 04 02 Formulate and implement Identify the corrective actions contributing to eliminate the factors. root cause(s). 01 03 Define the Identify the root problem. cause(s). Screen 8 of 65 Steps for Performing RCA Risk Assessment Root Cause Analysis 1. -
Improving Performance of Epidemic Healthcare Management During COVID-19 Outbreak Using LSS DMAIC Approach: a Case Study for Bangladesh Aquib Irteza Reshad, Md
Proceedings of the 5th NA International Conference on Industrial Engineering and Operations Management, Detroit, Michigan, USA, August 10 - 14, 2020 Improving Performance of Epidemic Healthcare Management during COVID-19 Outbreak using LSS DMAIC Approach: A Case Study for Bangladesh Aquib Irteza Reshad, Md. Mozibur Rahman and Naquib Mahmud Chowdhury Department of Industrial and Production Engineering Bangladesh University of Engineering and Technology(BUET) Dhaka-1000 [email protected], [email protected], [email protected] Abstract The recent outbreak of coronavirus (COVID-19) pandemic has exposed the weakness of the existing healthcare facilities in developing countries like Bangladesh. The increasing amount of patients has made this condition more vulnerable. There is a high possibility that, these increasing amount of symptomatic patients might create a shortage in RT-PCR test kits in upcoming days. The objective of this study is to use Define, Measure, Analyze, Improve, and Control (DMAIC) in improving the epidemic healthcare management system during the COVID-19 outbreak in Bangladesh. The goal of this study is to use LSS methodology, especially the DMAIC improvement format in the existing dedicated healthcare management system for coronavirus treatment. The root cause analysis behind the higher response time and improper service for the Institute of Epidemiology, Disease Control and Research (IEDCR), and other dedicated healthcare providers regarding, coronavirus treatment in the current situation has been performed. FMEA (Failure Mode and Effect Analysis) was conducted in order to assess the potential failure modes in the existing healthcare management system. A simulation study regarding the implementation of pooled testing in Bangladesh for improving efficiency and optimizing the usage of RT-PCR test kits has also been carried out. -
A DMAIC Framework for Improving Software Quality in Organizations: Case Study at RK Company Team Composition
MCGILL UNIVERSITY Montreal, Quebec September 20 – 21, 2016 A DMAIC Framework for Improving Software Quality in Organizations: Case Study at RK Company Team Composition • Racha Karout • Anjali Awasthi Outline 1. Introduction 1.1 Background 1.2 Problem Definition 1.3 Research Objectives 2. Literature Review 3. Solution Approach 4. Conclusions and Future Works 1.1 Background • To compete in today‘s world, every business needs to improve. • Software has increasingly become a critical component in many industries (telecoms, banking, insurance, … etc.). • Software quality is crucial and poor quality is not acceptable. • Software development has not been consistently successful. What is Software Quality? • Software quality is the degree to which a system, component or process meets specified requirements, in other words, the degree to which a system, component or process meets customer or user needs or expectation (IEEE, 1991). • The software should not have bugs that reduce the quality attributes (functionality, reliability, usability and maintainability) (Chang et al., 2006). • There should not be issues that affect its ability to maintain or re-establish its level of performance. • Easy to use and maintain. 1.2 Problem Definition • In today’s market competition and the need for rapid delivery, software quality is often sacrificed, leading to the failure of the software project • The use of traditional methodology (waterfall) with the current market pace, continuous change of customer requirements and rapid development of technology plays a major role in poor software quality. • People jump to solutions without fully understanding the problem or finding the root cause of poor quality. 1.3 Research Objectives 1. -
Statistical Process Control for Monitoring Nonlinear Profiles: a Six Sigma Project on Curing Process
This is the author’s final, peer-reviewed manuscript as accepted for publication. The publisher-formatted version may be available through the publisher’s web site or your institution’s library. Statistical process control for monitoring nonlinear profiles: a six sigma project on curing process Shing I. Chang, Tzong-Ru Tsai, Dennis K. J. Lin, Shih-Hsiung Chou, & Yu-Siang Lin How to cite this manuscript If you make reference to this version of the manuscript, use the following information: Chang, S. I., Tsai, T., Lin, D. K. J., Chou, S., & Lin, Y. (2012). Statistical process control for monitoring nonlinear profiles: A six sigma project on curing process. Retrieved from http://krex.ksu.edu Published Version Information Citation: Chang, S. I., Tsai, T., Lin, D. K. J., Chou, S., & Lin, Y. (2012). Statistical process control for monitoring nonlinear profiles: A six sigma project on curing process. Quality Engineering, 24(2), 251-263. Copyright: Copyright © Taylor & Francis Group, LLC. Digital Object Identifier (DOI): doi:10.1080/08982112.2012.641149 Publisher’s Link: http://www.tandfonline.com/doi/abs/10.1080/08982112.2012.641149 This item was retrieved from the K-State Research Exchange (K-REx), the institutional repository of Kansas State University. K-REx is available at http://krex.ksu.edu Statistical Process Control for Monitoring Nonlinear Profiles: A Six Sigma Project on Curing Process Shing I Chang1, Tzong‐Ru Tsai2, Dennis K.J. Lin3, Shih‐Hsiung Chou1 & Yu‐Siang Lin4 1Quality Engineering Laboratory, Department of Industrial and Manufacturing Systems Engineering, Kansas State University, USA 2Department of Statistics, Tamkang University, Danshui District, New Taipei City 25137 Taiwan 3Department of Statistics, Pennsylvania State University, USA 4Department of Industrial Management, National Taiwan University of Science and Technology, Taipei, Taiwan ABSTRACT Curing duration and target temperature are the most critical process parameters for high- pressure hose products. -
Quality Control
Topic Gateway Series Quality control Quality Control Topic Gateway Series No. 37 1 Prepared by Bill Haskins and Technical Information Service July 2007 Topic Gateway Series Quality control About Topic Gateways Topic Gateways are intended as a refresher or introduction to topics of interest to CIMA members. They include a basic definition, a brief overview and a fuller explanation of practical application. Finally they signpost some further resources for detailed understanding and research. Topic Gateways are available electronically to CIMA members only in the CPD Centre on the CIMA website, along with a number of electronic resources. About the Technical Information Service CIMA supports its members and students with its Technical Information Service (TIS) for their work and CPD needs. Our information specialists and accounting specialists work closely together to identify or create authoritative resources to help members resolve their work related information needs. Additionally, our accounting specialists can help CIMA members and students with the interpretation of guidance on financial reporting, financial management and performance management, as defined in the CIMA Official Terminology 2005 edition. CIMA members and students should sign into My CIMA to access these services and resources. The Chartered Institute of Management Accountants 26 Chapter Street London SW1P 4NP United Kingdom T. +44 (0)20 8849 2259 F. +44 (0)20 8849 2468 E. [email protected] www.cimaglobal.com 2 Topic Gateway Series Quality control Definition Definitions -
Modular Kaizen: Dealing with Disruptions Is a Publication of the Public Health Foundation, with a Limited First Printing in March 2011
Modular kaizen: Dealing with Disruptions is a publication of the Public Health Foundation, with a limited first printing in March 2011. Suggested Citation Bialek, R, Duffy, G, Moran, J. Modular kaizen: Dealing with Disruptions. Washington, DC: the Public Health Foundation; 2011. Additional Resources To find other Quality Improvement publications, please visit the Public Health Foundation bookstore at: http://bookstore.phf.org/ To explore free tools, resources and samples, please visit the Public Health Foundation website at: http://www.phf.org/Pages/default.aspx _______________________________________________________________________ Modular kaizen: Dealing with Disruptions Modular kaizen Table of Contents Acknowledgement ii Preface and Overview iii Chapter 1: The Value of Performance Management 1 Chapter 2: The House of Modular kaizen 13 Chapter 3: Implementing Performance Improvement through Modular kaizen 23 Chapter 4: A System View of the Disrupted Process 31 Chapter 5: Focus on the Disruption – Develop the Response Team 45 Chapter 6: Modular Flow for Rapid Cycle Improvement 55 Chapter 7: Tri-Metric Matrix 69 Chapter 8: Standardizing and Controlling the New System 77 Chapter 9: Change Management 91 Chapter 10: Daily Work Management: Using Quality Improvement Skills in Daily Work 101 Appendices Appendix A: Dr. W. Edwards Deming 111 Appendix B: Additional References 113 Appendix C: Templates and Examples 117 Appendix D: Author Biographies 133 Index 135 i _______________________________________________________________________ Modular kaizen: Dealing with Disruptions Acknowledgements After ten years of practicing and developing the concepts of Modular kaizen, the authors thank the Centers for Disease Control and Prevention (CDC) for making possible the publication of this book, supported by Cooperative Agreement Number 3U38HM000518. The contents of this book are solely the responsibility of the authors and do not necessarily represent the official views of CDC. -
Root Cause Analysis in Health Care Tools and Techniques
Root Cause Analysis in Health Care Tools and Techniques SIXTH EDITION Includes Flash Drive! Senior Editor: Laura Hible Project Manager: Lisa King Associate Director, Publications: Helen M. Fry, MA Associate Director, Production: Johanna Harris Executive Director, Global Publishing: Catherine Chopp Hinckley, MA, PhD Joint Commission/JCR Reviewers for the sixth edition: Dawn Allbee; Anne Marie Benedicto; Kathy Brooks; Lisa Buczkowski; Gerard Castro; Patty Chappell; Adam Fonseca; Brian Patterson; Jessica Gacki-Smith Joint Commission Resources Mission The mission of Joint Commission Resources (JCR) is to continuously improve the safety and quality of health care in the United States and in the international community through the provision of education, publications, consultation, and evaluation services. Joint Commission Resources educational programs and publications support, but are separate from, the accreditation activities of The Joint Commission. Attendees at Joint Commission Resources educational programs and purchasers of Joint Commission Resources publications receive no special consideration or treatment in, or confidential information about, the accreditation process. The inclusion of an organization name, product, or service in a Joint Commission Resources publication should not be construed as an endorsement of such organization, product, or service, nor is failure to include an organization name, product, or service to be construed as disapproval. This publication is designed to provide accurate and authoritative information in regard to the subject matter covered. Every attempt has been made to ensure accuracy at the time of publication; however, please note that laws, regulations, and standards are subject to change. Please also note that some of the examples in this publication are specific to the laws and regulations of the locality of the facility. -
An Empirical Approach to Improve the Quality and Dependability of Critical Systems Engineering
Nuno Pedro de Jesus Silva An Empirical Approach to Improve the Quality and Dependability of Critical Systems Engineering PhD Thesis in Doctoral Program in Information Science and Technology, supervised by Professor Marco Vieira and presented to the Department of Informatics Engineering of the Faculty of Sciences and Technology of the University of Coimbra August 2017 An Empirical Approach to Improve the Quality and Dependability of Critical Systems Engineering Nuno Pedro de Jesus Silva Thesis submitted to the University of Coimbra in partial fulfillment of the requirements for the degree of Doctor of Philosophy August 2017 Department of Informatics Engineering Faculty of Sciences and Technology University of Coimbra This research has been developed as part of the requirements of the Doctoral Program in Information Science and Technology of the Faculty of Sciences and Technology of the University of Coimbra. This work is within the Dependable Systems specialization domain and was carried out in the Software and Systems Engineering Group of the Center for Informatics and Systems of the University of Coimbra (CISUC). This work was supported financially by the Top-Knowledge program of CRITICAL Software, S.A. and carried out partially in the frame of the European Marie Curie Project FP7-2012-324334-CECRIS (Certification of CRItical Systems). This work has been supervised by Professor Marco Vieira, Full Professor (Professor Catedrático), Department of Informatics Engineering, Faculty of Sciences and Technology, University of Coimbra. iii iv “Safety is not an option!” James H. Miller Miller, James H. "2009 CEOs Who "Get It"" Interview. Safety and Health Magazine.” February 1, 2009. Accessed October 13, 2016. -
Operational Excellence
Chapter 6 Operational Excellence ©2016 Montgomery County Community College Objectives This chapter provides an introduction to the role that Operational Excellence (OPEX or OE) plays in the continuous improvement of biomanufacturing operations. The chapter is not intended to serve as a comprehensive guide to every quality improvement, but rather as an overview of tools and techniques which illustrate many of the basic principles of Statistical Process Control (SPC). SPC is a methodology that uses statistical tools and analysis to monitor variations in a process in order to manage and control it. After completing this chapter the student will be able to: describe a process identify potential sources of waste in a process define when a process is “in control” versus “out of control” explain the simple tools used in Lean and Six Sigma improvement methodology list the steps in a Six Sigma process improvement select and apply general Lean Six Sigma tools to simulated problems recognize deployment challenges to OEX strategies 28 Chapter 6 - Operational Excellence Terms 5S (Sort, Straighten, Shine, Standardize, and Sustain): a workplace discipline used to ensure reliable work practices and a clean working environment; used in the West but originally from Japan. The term 5S is derived from the original Japanese usage of S-prefix words: Seiri, Seition, Seiso, Seiketsu, and Shitsuke. Andon: a visual management tool and component of the lean philosophy; these are lights placed on or adjacent to machines or production lines to indicate operation status. Correlation: a statistical relation between two or more variables such that systematic changes in the value of one variable are accompanied by systematic changes in the other.