An Axiomatic Foundation for the Expected Shortfall
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Back-Testing of Expected Shortfall: Main Challenges and Methodologies
© CHAPPUIS HALDER & CO Back-testing of Expected Shortfall: Main challenges and methodologies By Leonard BRIE with Benoit GENEST and Matthieu ARSAC Global Research & Analytics 1 1 This work was supported by the Global Research & Analytics Dept. of Chappuis Halder & Co. Many collaborators from Chappuis Halder & Co. have been involved in the writing and the reflection around this paper; hence we would like to send out special thanks to Claire Poinsignon, Mahdi Kallel, Mikaël Benizri and Julien Desnoyers-Chehade © Global Research & Analytics Dept.| 2018 | All rights reserved Executive Summary In a context of an ever-changing regulatory environment over the last years, Banks have witnessed the draft and publication of several regulatory guidelines and requirements in order to frame and structure their internal Risk Management. Among these guidelines, one has been specifically designed for the risk measurement of market activities. In January 2016, the Basel Committee on Banking Supervision (BCBS) published the Fundamental Review of the Trading Book (FRTB). Amid the multiple evolutions discussed in this paper, the BCBS presents the technical context in which the potential loss estimation has changed from a Value-at-Risk (VaR) computation to an Expected Shortfall (ES) evaluation. The many advantages of an ES measure are not to be demonstrated, however this measure is also known for its major drawback: its difficulty to be back-tested. Therefore, after recalling the context around the VaR and ES models, this white paper will review ES back-testing findings and insights along many methodologies; these have either been drawn from the latest publications or have been developed by the Global Research & Analytics (GRA) team of Chappuis Halder & Co. -
Incorporating Extreme Events Into Risk Measurement
Lecture notes on risk management, public policy, and the financial system Incorporating extreme events into risk measurement Allan M. Malz Columbia University Incorporating extreme events into risk measurement Outline Stress testing and scenario analysis Expected shortfall Extreme value theory © 2021 Allan M. Malz Last updated: July 25, 2021 2/24 Incorporating extreme events into risk measurement Stress testing and scenario analysis Stress testing and scenario analysis Stress testing and scenario analysis Expected shortfall Extreme value theory 3/24 Incorporating extreme events into risk measurement Stress testing and scenario analysis Stress testing and scenario analysis What are stress tests? Stress tests analyze performance under extreme loss scenarios Heuristic portfolio analysis Steps in carrying out a stress test 1. Determine appropriate scenarios 2. Calculate shocks to risk factors in each scenario 3. Value the portfolio in each scenario Objectives of stress testing Address tail risk Reduce model risk by reducing reliance on models “Know the book”: stress tests can reveal vulnerabilities in specfic positions or groups of positions Criteria for appropriate stress scenarios Should be tailored to firm’s specific key vulnerabilities And avoid assumptions that favor the firm, e.g. competitive advantages in a crisis Should be extreme but not implausible 4/24 Incorporating extreme events into risk measurement Stress testing and scenario analysis Stress testing and scenario analysis Approaches to formulating stress scenarios Historical -
Var and Other Risk Measures
What is Risk? Risk Measures Methods of estimating risk measures Bibliography VaR and other Risk Measures Francisco Ramírez Calixto International Actuarial Association November 27th, 2018 Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Outline 1 What is Risk? 2 Risk Measures 3 Methods of estimating risk measures Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography What is Risk? Risk 6= size of loss or size of a cost Risk lies in the unexpected losses. Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Types of Financial Risk In Basel III, there are three major broad risk categories: Credit Risk: Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Types of Financial Risk Operational Risk: Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Types of Financial Risk Market risk: Each one of these risks must be measured in order to allocate economic capital as a buer so that if a catastrophic event happens, the bank won't go bankrupt. Francisco Ramírez Calixto VaR and other Risk Measures What is Risk? Risk Measures Methods of estimating risk measures Bibliography Risk Measures Def. A risk measure is used to determine the amount of an asset or assets (traditionally currency) to be kept in reserve in order to cover for unexpected losses. -
Expected Shortfall
REPRINTED FROM Cutting edge RISK MANAGEMENT • DERIVATIVES • REGULATION Back-testing expected shortfall In depth The shortfalls of Risk.net December 2014 expected shortfall Expected shortfall The future? Cutting edge: Introduction End of the back-test quest? Ever since regulators suggested replacing value-at-risk with expected shortfall, the industry has been debating how and whether it can be back-tested. Quants at MSCI are proposing three methods. Nazneen Sherif introduces this month’s technical articles rom the start, expected shortfall has suffered in comparison with one It’s too soon to break out the champagne, however. The trading book of the key advantages of the measure it is supposed to be replacing: it review also attempts to capture liquidity risks by introducing a spread of dif- cannot be back-tested, critics claimed, while tests of value-at-risk are ferent time horizons for individual risk factors, which would sink any Fsimple and intuitive. attempt to back-test, Acerbi warns: “Back-testing any measure, including Regulators have ploughed on regardless. Expected shortfall has been VAR, on asynchronous time horizons spoils a fundamental assumption in endorsed as VAR’s successor in two consultation papers on the Fundamental back-testing – time independence of different observations. No back-testing review of the trading book because of its supposed benefits as a measure of tail risk. The widely contested solution to back-testing difficulties is to perform capital calculations using expected shortfall, and then to back-test using VAR. This means the tail is left untested, an outcome regulators concede “Expected shortfall has better properties than VAR, so looks odd (www.risk.net/2375204). -
On Estimation of Loss Distributions and Risk Measures
ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 16, Number 1, 2012 Available online at www.math.ut.ee/acta/ On estimation of loss distributions and risk measures Meelis Käärik and Anastassia Žegulova Abstract. The estimation of certain loss distribution and analyzing its properties is a key issue in several finance mathematical and actuarial applications. It is common to apply the tools of extreme value theory and generalized Pareto distribution in problems related to heavy-tailed data. Our main goal is to study third party liability claims data obtained from Estonian Traffic Insurance Fund (ETIF). The data is quite typical for insurance claims containing very many observations and being heavy- tailed. In our approach the fitting consists of two parts: for main part of the distribution we use lognormal fit (which was the most suitable based on our previous studies) and a generalized Pareto distribution is used for the tail. Main emphasis of the fitting techniques is on the proper threshold selection. We seek for stability of parameter estimates and study the behaviour of risk measures at a wide range of thresholds. Two related lemmas will be proved. 1. Introduction The estimation of loss distributions has several practical and theoretical aspects, first of them being the choice of theoretical candidate distributions. There are few intuitive choices like lognormal, gamma, log-gamma, Weibull and Pareto distributions, but it is not rare that mentioned distributions do not fit very well. This work is a follow-up to our preliminary research (Käärik and Umbleja, 2010, 2011) where we established that lognormal distribution had best fit among the candidates. -
Measuring Systemic Risk∗
Measuring Systemic Risk∗ Viral V. Acharya, Lasse H. Pedersen, Thomas Philippon, and Matthew Richardsony First version: March 10, 2010 This version: July, 2016 Abstract We present an economic model of systemic risk in which undercapitalization of the financial sector as a whole is assumed to harm the real economy, leading to a systemic risk externality. Each financial institution's contribution to systemic risk can be measured as its systemic expected shortfall (SES), that is, its propensity to be undercapitalized when the system as a whole is under- capitalized. SES increases in the institution's leverage and its marginal expected shortfall (MES), that is, its losses in the tail of the system's loss distribution. We demonstrate empirically the ability of components of SES to predict emerging systemic risk during the financial crisis of 2007-2009. ∗ We would like to thank Rob Engle for many useful discussions. We are grateful to Christian Brownlees, Farhang Farazmand, Hanh Le and Tianyue Ruan for excellent research assistance. We also received useful comments from Tobias Adrian, Mark Carey, Matthias Drehman, Dale Gray and Jabonn Kim (discussants), Andrew Karolyi (editor), and seminar participants at several central banks and universities where the current paper and related systemic risk rankings at vlab.stern.nyu.edu/welcome/risk have been presented. Pedersen gratefully acknowledges support from the European Research Council (ERC grant no. 312417) and the FRIC Center for Financial Frictions (grant no. DNRF102). y Acharya, Philippon, and Richardson are at New York University, Stern School of Business, 44 West 4th St., New York, NY 10012; Pedersen is at Copenhagen Business School, New York University, AQR Capital Management, and CEPR. -
Comparative Analyses of Expected Shortfall and Value-At-Risk Under Market Stress1
Comparative analyses of expected shortfall and value-at-risk under market stress1 Yasuhiro Yamai and Toshinao Yoshiba, Bank of Japan Abstract In this paper, we compare value-at-risk (VaR) and expected shortfall under market stress. Assuming that the multivariate extreme value distribution represents asset returns under market stress, we simulate asset returns with this distribution. With these simulated asset returns, we examine whether market stress affects the properties of VaR and expected shortfall. Our findings are as follows. First, VaR and expected shortfall may underestimate the risk of securities with fat-tailed properties and a high potential for large losses. Second, VaR and expected shortfall may both disregard the tail dependence of asset returns. Third, expected shortfall has less of a problem in disregarding the fat tails and the tail dependence than VaR does. 1. Introduction It is a well known fact that value-at-risk2 (VaR) models do not work under market stress. VaR models are usually based on normal asset returns and do not work under extreme price fluctuations. The case in point is the financial market crisis of autumn 1998. Concerning this crisis, CGFS (1999) notes that “a large majority of interviewees admitted that last autumn’s events were in the “tails” of distributions and that VaR models were useless for measuring and monitoring market risk”. Our question is this: Is this a problem of the estimation methods, or of VaR as a risk measure? The estimation methods used for standard VaR models have problems for measuring extreme price movements. They assume that the asset returns follow a normal distribution. -
Minimizing Spectral Risk Measures Applied to Markov Decision Processes 3
MINIMIZING SPECTRAL RISK MEASURES APPLIED TO MARKOV DECISION PROCESSES NICOLE BAUERLE¨ AND ALEXANDER GLAUNER Abstract. We study the minimization of a spectral risk measure of the total discounted cost generated by a Markov Decision Process (MDP) over a finite or infinite planning horizon. The MDP is assumed to have Borel state and action spaces and the cost function may be unbounded above. The optimization problem is split into two minimization problems using an infimum representation for spectral risk measures. We show that the inner minimization problem can be solved as an ordinary MDP on an extended state space and give sufficient conditions under which an optimal policy exists. Regarding the infinite dimensional outer minimization problem, we prove the existence of a solution and derive an algorithm for its numerical approximation. Our results include the findings in B¨auerle and Ott (2011) in the special case that the risk measure is Expected Shortfall. As an application, we present a dynamic extension of the classical static optimal reinsurance problem, where an insurance company minimizes its cost of capital. Key words: Risk-Sensitive Markov Decision Process; Spectral Risk Measure; Dy- namic Reinsurance AMS subject classifications: 90C40, 91G70, 91G05 1. Introduction In the last decade, there have been various proposals to replace the expectation in the opti- mization of Markov Decision Processes (MDPs) by risk measures. The idea behind it is to take the risk-sensitivity of the decision maker into account. Using simply the expectation models a risk-neutral decision maker whose optimal policy sometimes can be very risky, for an example see e.g. -
Fitting a Distribution to Value-At-Risk and Expected Shortfall, with an Application to Covered Bonds Arxiv:1505.07484V2 [Q-Fin
Fitting a distribution to Value-at-Risk and Expected Shortfall, with an application to covered bonds Dirk Tasche∗ Covered bonds are a specific example of senior secured debt. If the issuer of the bonds defaults the proceeds of the assets in the cover pool are used for their debt service. If in this situation the cover pool proceeds do not suffice for the debt service, the creditors of the bonds have recourse to the issuer's assets and their claims are pari passu with the claims of the creditors of senior unsecured debt. Historically, covered bonds have been very safe invest- ments. During their more than two hundred years of existence, investors never suffered losses due to missed payments from covered bonds. From a risk management perspective, therefore modelling covered bonds losses is mainly of interest for estimating the impact that the asset encumbrance by the cover pool has on the loss characteristics of the issuer's senior unsecured debt. We explore one-period structural modelling approaches for covered bonds and senior un- secured debt losses with one and two asset value variables respectively. Obviously, two-assets models with separate values of the cover pool and the issuer's remaining portfolio allow for more realistic modelling. However, we demonstrate that exact calibration of such models may be impossible. We also investigate a one-asset model in which the riskiness of the cover pool is reflected by a risk-based adjustment of the encumbrance ratio of the issuer's assets. Keywords: Covered bonds, expected loss, asset value distribution, quantile, expected short- fall, method of moments, two-parameter distribution family. -
Robust Spectral Risk Optimization When Information on Risk Spectrum Is Incomplete
Robust Spectral Risk Optimization When Information on Risk Spectrum Is Incomplete Wei Wangy Huifu Xuz June 25, 2020 Abstract Spectral risk measure (SRM) is a weighted average of value at risk (VaR) where the weighting function (also known as risk spectrum or distortion function) characterizes decision maker's risk attitude. In this paper, we consider the case where the decision maker's risk spectrum is ambiguous and introduce a robust SRM model based on the worst risk spectrum from a ball of risk spectra centred at a nominal risk spectrum. When the ball consists of step-like risk spectra, we show that the robust SRM can be computed by solving a linear programming problem. For general case, we propose a step-like approximation scheme and derive an error bound for the approximation. As an application, we apply the proposed robust SRM to one-stage stochastic optimization with objective of minimizing the robust SRM and propose an alternating iterative algorithm for solving the resulting minimax optimization problem. Moreover, to examine stability of the robust spectral risk optimization model with respect to perturbation of observed data from the underlying exogenous uncertainty in data- driven environments, we investigate statistical robustness of the model and derive sufficient conditions for the required stability. Keywords: robust spectral risk measure, robust spectral risk optimization, step-like ap- proximation, alternating iterative algorithm, statistical robustness 1 Introduction Spectral risk measure (SRM) is a weighted average of value at risk (VaR) where the weighting function captures an investor's risk preference. The weighting function is formally called risk spectrum as it determines the nature of SRM. -
Divergence-Based Risk Measures: a Discussion on Sensitivities and Extensions
entropy Article Divergence-Based Risk Measures: A Discussion on Sensitivities and Extensions Meng Xu 1 and José M. Angulo 2,* 1 School of Economics, Sichuan University, Chengdu 610065, China 2 Department of Statistics and Operations Research, University of Granada, 18071 Granada, Spain * Correspondence: [email protected]; Tel.: +34-958-240492 Received: 13 June 2019; Accepted: 24 June 2019; Published: 27 June 2019 Abstract: This paper introduces a new family of the convex divergence-based risk measure by specifying (h, f)-divergence, corresponding with the dual representation. First, the sensitivity characteristics of the modified divergence risk measure with respect to profit and loss (P&L) and the reference probability in the penalty term are discussed, in view of the certainty equivalent and robust statistics. Secondly, a similar sensitivity property of (h, f)-divergence risk measure with respect to P&L is shown, and boundedness by the analytic risk measure is proved. Numerical studies designed for Rényi- and Tsallis-divergence risk measure are provided. This new family integrates a wide spectrum of divergence risk measures and relates to divergence preferences. Keywords: convex risk measure; preference; sensitivity analysis; ambiguity; f-divergence 1. Introduction In the last two decades, there has been a substantial development of a well-founded risk measure theory, particularly propelled since the axiomatic approach introduced by [1] in relation to the concept of coherency. While, to a large extent, the theory has been fundamentally inspired and motivated with financial risk assessment objectives in perspective, many other areas of application are currently or potentially benefited by the formal mathematical construction of the discipline. -
G-Expectations with Application to Risk Measures
g-Expectations with application to risk measures Sonja C. Offwood Programme in Advanced Mathematics of Finance, University of the Witwatersrand, Johannesburg. 5 August 2012 Abstract Peng introduced a typical filtration consistent nonlinear expectation, called a g-expectation in [40]. It satisfies all properties of the classical mathematical ex- pectation besides the linearity. Peng's conditional g-expectation is a solution to a backward stochastic differential equation (BSDE) within the classical framework of It^o'scalculus, with terminal condition given at some fixed time T . In addition, this g-expectation is uniquely specified by a real function g satisfying certain properties. Many properties of the g-expectation, which will be presented, follow from the spec- ification of this function. Martingales, super- and submartingales have been defined in the nonlinear setting of g-expectations. Consequently, a nonlinear Doob-Meyer decomposition theorem was proved. Applications of g-expectations in the mathematical financial world have also been of great interest. g-Expectations have been applied to the pricing of contin- gent claims in the financial market, as well as to risk measures. Risk measures were introduced to quantify the riskiness of any financial position. They also give an indi- cation as to which positions carry an acceptable amount of risk and which positions do not. Coherent risk measures and convex risk measures will be examined. These risk measures were extended into a nonlinear setting using the g-expectation. In many cases due to intermediate cashflows, we want to work with a multi-period, dy- namic risk measure. Conditional g-expectations were then used to extend dynamic risk measures into the nonlinear setting.