Playing Music in Just Intonation-A Dynamically Adapting Tuning
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Chapter 1 Geometric Generalizations of the Tonnetz and Their Relation To
November 22, 2017 12:45 ws-rv9x6 Book Title yustTonnetzSub page 1 Chapter 1 Geometric Generalizations of the Tonnetz and their Relation to Fourier Phases Spaces Jason Yust Boston University School of Music, 855 Comm. Ave., Boston, MA, 02215 [email protected] Some recent work on generalized Tonnetze has examined the topologies resulting from Richard Cohn's common-tone based formulation, while Tymoczko has reformulated the Tonnetz as a network of voice-leading re- lationships and investigated the resulting geometries. This paper adopts the original common-tone based formulation and takes a geometrical ap- proach, showing that Tonnetze can always be realized in toroidal spaces, and that the resulting spaces always correspond to one of the possible Fourier phase spaces. We can therefore use the DFT to optimize the given Tonnetz to the space (or vice-versa). I interpret two-dimensional Tonnetze as triangulations of the 2-torus into regions associated with the representatives of a single trichord type. The natural generalization to three dimensions is therefore a triangulation of the 3-torus. This means that a three-dimensional Tonnetze is, in the general case, a network of three tetrachord-types related by shared trichordal subsets. Other Ton- netze that have been proposed with bounded or otherwise non-toroidal topologies, including Tymoczko's voice-leading Tonnetze, can be under- stood as the embedding of the toroidal Tonnetze in other spaces, or as foldings of toroidal Tonnetze with duplicated interval types. 1. Formulations of the Tonnetz The Tonnetz originated in nineteenth-century German harmonic theory as a network of pitch classes connected by consonant intervals. -
Enharmonic Substitution in Bernard Herrmann's Early Works
Enharmonic Substitution in Bernard Herrmann’s Early Works By William Wrobel In the course of my research of Bernard Herrmann scores over the years, I’ve recently come across what I assume to be an interesting notational inconsistency in Herrmann’s scores. Several months ago I began to earnestly focus on his scores prior to 1947, especially while doing research of his Citizen Kane score (1941) for my Film Score Rundowns website (http://www.filmmusic.cjb.net). Also I visited UCSB to study his Symphony (1941) and earlier scores. What I noticed is that roughly prior to 1947 Herrmann tended to consistently write enharmonic notes for certain diatonic chords, especially E substituted for Fb (F-flat) in, say, Fb major 7th (Fb/Ab/Cb/Eb) chords, and (less frequently) B substituted for Cb in, say, Ab minor (Ab/Cb/Eb) triads. Occasionally I would see instances of other note exchanges such as Gb for F# in a D maj 7 chord. This enharmonic substitution (or “equivalence” if you prefer that term) is overwhelmingly consistent in Herrmann’ notational practice in scores roughly prior to 1947, and curiously abandoned by the composer afterwards. The notational “inconsistency,” therefore, relates to the change of practice split between these two periods of Herrmann’s career, almost a form of “Before” and “After” portrayal of his notational habits. Indeed, after examination of several dozens of his scores in the “After” period, I have seen (so far in this ongoing research) only one instance of enharmonic substitution similar to what Herrmann engaged in before 1947 (see my discussion in point # 19 on Battle of Neretva). -
Finale Transposition Chart, by Makemusic User Forum Member Motet (6/5/2016) Trans
Finale Transposition Chart, by MakeMusic user forum member Motet (6/5/2016) Trans. Sounding Written Inter- Key Usage (Some Common Western Instruments) val Alter C Up 2 octaves Down 2 octaves -14 0 Glockenspiel D¯ Up min. 9th Down min. 9th -8 5 D¯ Piccolo C* Up octave Down octave -7 0 Piccolo, Celesta, Xylophone, Handbells B¯ Up min. 7th Down min. 7th -6 2 B¯ Piccolo Trumpet, Soprillo Sax A Up maj. 6th Down maj. 6th -5 -3 A Piccolo Trumpet A¯ Up min. 6th Down min. 6th -5 4 A¯ Clarinet F Up perf. 4th Down perf. 4th -3 1 F Trumpet E Up maj. 3rd Down maj. 3rd -2 -4 E Trumpet E¯* Up min. 3rd Down min. 3rd -2 3 E¯ Clarinet, E¯ Flute, E¯ Trumpet, Soprano Cornet, Sopranino Sax D Up maj. 2nd Down maj. 2nd -1 -2 D Clarinet, D Trumpet D¯ Up min. 2nd Down min. 2nd -1 5 D¯ Flute C Unison Unison 0 0 Concert pitch, Horn in C alto B Down min. 2nd Up min. 2nd 1 -5 Horn in B (natural) alto, B Trumpet B¯* Down maj. 2nd Up maj. 2nd 1 2 B¯ Clarinet, B¯ Trumpet, Soprano Sax, Horn in B¯ alto, Flugelhorn A* Down min. 3rd Up min. 3rd 2 -3 A Clarinet, Horn in A, Oboe d’Amore A¯ Down maj. 3rd Up maj. 3rd 2 4 Horn in A¯ G* Down perf. 4th Up perf. 4th 3 -1 Horn in G, Alto Flute G¯ Down aug. 4th Up aug. 4th 3 6 Horn in G¯ F# Down dim. -
Accordion Electronic Keyboard Electric Organ
Accordion Electronic Keyboard Electric Organ Technical Requirements & Discussion Questions for Recorded Graded Exams The following list of technical requirements should be performed to make up the Technical Work component of the exam for: • Accordion (pp.1-5 • Electronic Keyboard (pp.!-1" • Electric Organ (pp. 11-1# Candidates may choose which scales or arpeggios to perform but should& where possible& select a variety of different ke%s. Close attention should be paid to instructions on articulation and dynamics. Further guidelines on specific requirements for each grade (such as the set scales for each grade and instructions on hands together or separate performance) can be found in the rele'ant L$*+ syllabus. Accordion Grade Technical Requirements Scales ,ne ma-or scale ,ne minor scale C chromatic scale .ellow shake in C "hords - a mixture of full and broken chords should be performed in a variety of ke%s and in'ersions: one ma-or one minor one augmented one dominant 7th one diminished 7th Discussion Questions .oth questions to be answered at an% point during the exam: • Which of the pieces you pla%ed today is your fa'ourite and wh%0 • What is the mood of this piece0 1 Grade $% Technical Requirements Scales ,ne ma-or scale ,ne minor scale C chromatic scale .ellow shake in C "hords - a mixture of full and broken chords should be performed in a variety of ke%s and in'ersions: two ma-or two minor one augmented one dominant 7ths one diminished 7ths Discussion Questions .oth questions to be answered at an% point during the exam: • Which of -
MX300 User Guide IMPORTANT SAFETY INSTRUCTIONS
Stereo Reverb MX300 Effects Procesor MX300 User Guide IMPORTANT SAFETY INSTRUCTIONS WARNING FOR YOUR PROTECTION READ THE FOLLOWING: READ THESE INSTRUCTIONS. KEEP THESE INSTRUCTIONS. HEED ALL WARNINGS. FOLLOW ALL INSTRUCTIONS. The symbols shown above are internationally accepted symbols that warn of potential hazards with electrical products. The lightning flash with arrowpoint in an equilateral triangle means DO NOT USE THIS APPARATUS NEAR WATER. that there are dangerous voltages present within the unit. The exclamation point in an equilateral triangle indicates that it is CLEAN ONLY WITH A DRY CLOTH. necessary for the user to refer to the owner’s manual. FOR INDOOR USE ONLY. These symbols warn that there are no user serviceable parts inside the unit. Do not open the unit. Do not attempt to service the unit DO NOT BLOCK ANY OF THE VENTILATION OPENINGS. INSTALL IN ACCORDANCE yourself. Refer all servicing to qualified personnel. Opening the WITH THE MANUFACTURER’S INSTRUCTIONS. chassis for any reason will void the manufacturer’s warranty. Do not get the unit wet. If liquid is spilled on the unit, shut it off DO NOT INSTALL NEAR ANY HEAT SOURCES SUCH AS RADIATORS, HEAT REGISTERS, immediately and take it to a dealer for service. Disconnect the unit STOVES, OR OTHER APPARATUS (INCLUDING AMPLIFIERS) THAT PRODUCE HEAT. during storms to prevent damage. ONLY USE ATTACHMENTS/ACCESSORIES SPECIFIED BY THE MANUFACTURER. The following is indicative of low altitude use; do not use this product above UNPLUG THIS APPARATUS DURING LIGHTNING STORMS OR WHEN UNUSED FOR 2000m. LONG PERIODS OF TIME. Do not defeat the safety purpose of the polarized or grounding-type plug. -
Written Vs. Sounding Pitch
Written Vs. Sounding Pitch Donald Byrd School of Music, Indiana University January 2004; revised January 2005 Thanks to Alan Belkin, Myron Bloom, Tim Crawford, Michael Good, Caitlin Hunter, Eric Isaacson, Dave Meredith, Susan Moses, Paul Nadler, and Janet Scott for information and for comments on this document. "*" indicates scores I haven't seen personally. It is generally believed that converting written pitch to sounding pitch in conventional music notation is always a straightforward process. This is not true. In fact, it's sometimes barely possible to convert written pitch to sounding pitch with real confidence, at least for anyone but an expert who has examined the music closely. There are many reasons for this; a list follows. Note that the first seven or eight items are specific to various instruments, while the others are more generic. Note also that most of these items affect only the octave, so errors are easily overlooked and, as a practical matter, not that serious, though octave errors can result in mistakes in identifying the outer voices. The exceptions are timpani notation and accidental carrying, which can produce semitone errors; natural harmonics notated at fingered pitch, which can produce errors of a few large intervals; baritone horn and euphonium clef dependencies, which can produce errors of a major 9th; and scordatura and C scores, which can lead to errors of almost any amount. Obviously these are quite serious, even disasterous. It is also generally considered that the difference between written and sounding pitch is simply a matter of transposition. Several of these cases make it obvious that that view is correct only if the "transposition" can vary from note to note, and if it can be one or more octaves, or a smaller interval plus one or more octaves. -
Tuning Forks As Time Travel Machines: Pitch Standardisation and Historicism for ”Sonic Things”: Special Issue of Sound Studies Fanny Gribenski
Tuning forks as time travel machines: Pitch standardisation and historicism For ”Sonic Things”: Special issue of Sound Studies Fanny Gribenski To cite this version: Fanny Gribenski. Tuning forks as time travel machines: Pitch standardisation and historicism For ”Sonic Things”: Special issue of Sound Studies. Sound Studies: An Interdisciplinary Journal, Taylor & Francis Online, 2020. hal-03005009 HAL Id: hal-03005009 https://hal.archives-ouvertes.fr/hal-03005009 Submitted on 13 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Tuning forks as time travel machines: Pitch standardisation and historicism Fanny Gribenski CNRS / IRCAM, Paris For “Sonic Things”: Special issue of Sound Studies Biographical note: Fanny Gribenski is a Research Scholar at the Centre National de la Recherche Scientifique and IRCAM, in Paris. She studied musicology and history at the École Normale Supérieure of Lyon, the Paris Conservatory, and the École des hautes études en sciences sociales. She obtained her PhD in 2015 with a dissertation on the history of concert life in nineteenth-century French churches, which served as the basis for her first book, L’Église comme lieu de concert. Pratiques musicales et usages de l’espace (1830– 1905) (Arles: Actes Sud / Palazzetto Bru Zane, 2019). -
Piano / Keyboard for Absolute Beginners
Learn How to Play Piano / Keyboard For Absolute Beginners A Self Tuition Book For Adults and Teenagers! Martin Woodward ISBN: Copyright © Martin Woodward 2015 All rights reserved Printing for buyers use only is permitted Enquires: http://gonkmusic.com 2 Copyright © Martin Woodward 2015 - www.gonkmusic.com 2 Acknowledgements To all the fantastic musicians who I’ve had the privilege of working with back in the 1960s / 70s including: Pip Williams (guitarist / record producer); Tex Marsh (drummer); Roger Flavell (bassist); Kevin Fogarty (guitarist); Ralph Denyer (singer / songwriter); Phil Childs (bassist); Jim Smith (drums); George Lee (saxophonist); Ron Thomas (bassist); Emile Ford (No. 1 UK singer / songwriter). To my early mentors: Alan Simonds (guitarist / vocalist); big bruv Steve (guitarist) and Mr. Henley (my inspirational music teacher at Warlingham School 1960 - 65). And to Myriad Software: http://www.myriad-online.com for the Melody Assistant music notation software which was used for the production of this book. - Thanks! 3 Copyright © Martin Woodward 2015 - www.gonkmusic.com 3 4 Copyright © Martin Woodward 2015 - www.gonkmusic.com 4 Contents Introduction ............................................................................................................. 11 Get the Best from this Book ................................................................................ 12 Using the links ..................................................................................................... 12 Trust Your Self ................................................................................................... -
Pedagogical Practices Related to the Ability to Discern and Correct
Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School 2014 Pedagogical Practices Related to the Ability to Discern and Correct Intonation Errors: An Evaluation of Current Practices, Expectations, and a Model for Instruction Ryan Vincent Scherber Follow this and additional works at the FSU Digital Library. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF MUSIC PEDAGOGICAL PRACTICES RELATED TO THE ABILITY TO DISCERN AND CORRECT INTONATION ERRORS: AN EVALUATION OF CURRENT PRACTICES, EXPECTATIONS, AND A MODEL FOR INSTRUCTION By RYAN VINCENT SCHERBER A Dissertation submitted to the College of Music in partial fulfillment of the requirements for the degree of Doctor of Philosophy Degree Awarded: Summer Semester, 2014 Ryan V. Scherber defended this dissertation on June 18, 2014. The members of the supervisory committee were: William Fredrickson Professor Directing Dissertation Alexander Jimenez University Representative John Geringer Committee Member Patrick Dunnigan Committee Member Clifford Madsen Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii For Mary Scherber, a selfless individual to whom I owe much. iii ACKNOWLEDGEMENTS The completion of this journey would not have been possible without the care and support of my family, mentors, colleagues, and friends. Your support and encouragement have proven invaluable throughout this process and I feel privileged to have earned your kindness and assistance. To Dr. William Fredrickson, I extend my deepest and most sincere gratitude. You have been a remarkable inspiration during my time at FSU and I will be eternally thankful for the opportunity to have worked closely with you. -
Playing Music in Just Intonation: a Dynamically Adaptive Tuning Scheme
Karolin Stange,∗ Christoph Wick,† Playing Music in Just and Haye Hinrichsen∗∗ ∗Hochschule fur¨ Musik, Intonation: A Dynamically Hofstallstraße 6-8, 97070 Wurzburg,¨ Germany Adaptive Tuning Scheme †Fakultat¨ fur¨ Mathematik und Informatik ∗∗Fakultat¨ fur¨ Physik und Astronomie †∗∗Universitat¨ Wurzburg¨ Am Hubland, Campus Sud,¨ 97074 Wurzburg,¨ Germany Web: www.just-intonation.org [email protected] [email protected] [email protected] Abstract: We investigate a dynamically adaptive tuning scheme for microtonal tuning of musical instruments, allowing the performer to play music in just intonation in any key. Unlike other methods, which are based on a procedural analysis of the chordal structure, our tuning scheme continually solves a system of linear equations, rather than relying on sequences of conditional if-then clauses. In complex situations, where not all intervals of a chord can be tuned according to the frequency ratios of just intonation, the method automatically yields a tempered compromise. We outline the implementation of the algorithm in an open-source software project that we have provided to demonstrate the feasibility of the tuning method. The first attempts to mathematically characterize is particularly pronounced if m and n are small. musical intervals date back to Pythagoras, who Examples include the perfect octave (m:n = 2:1), noted that the consonance of two tones played on the perfect fifth (3:2), and the perfect fourth (4:3). a monochord can be related to simple fractions Larger values of mand n tend to correspond to more of the corresponding string lengths (for a general dissonant intervals. If a normally consonant interval introduction see, e.g., Geller 1997; White and White is sufficiently detuned from just intonation (i.e., the 2014). -
AIR Creative Collection Provides a Comprehensive Set of Digital Signal Processing Tools for Professional Audio Production with Pro Tools
AIR® Creative Collection User Guide English User Guide (English) Chapter 1: Audio Plug-Ins Overview Plug-ins are special-purpose software components that provide additional signal processing and other functionality to Avid® Pro Tools®. These include plug-ins that come with Pro Tools, as well as many other plug-ins that can be added to your system. Additional plug-ins are available both from AIR and third-party developers. See the documentation that came with the plug-in for operational information. AIR Audio Plug-Ins AIR Creative Collection provides a comprehensive set of digital signal processing tools for professional audio production with Pro Tools. Other AIR plug-ins are available for purchase from AIR at www.airmusictech.com. AIR Creative Collection is included with Pro Tools, providing a comprehensive suite of digital signal processing effects that include EQ, dynamics, delay, and other essential audio processing tools. The following sound-processing, effects, and utility plug-ins are included: Chorus Ensemble Fuzz-Wah Multi-Delay Spring Reverb Distortion Filter Gate Kill EQ Non-Linear Reverb Stereo Width Dynamic Delay Flanger Lo-Fi Phaser Talkbox Enhancer Frequency Shifter Multi-Chorus Reverb Vintage Filter The following virtual instrument plug-ins are also included: Boom Drum machine and sequencer DB-33 Tonewheel organ emulator with rotating speaker simulation Mini Grand Acoustic grand piano Structure Free Sample player Vacuum Vacuum tube–modeled monophonic synthesizer Xpand!2 Multitimbral synthesizer and sampler workstation Avid and Pro Tools are trademarks or registered trademarks of Avid Technology, Inc. in the U.S. and other countries. 3 AAX Plug-In Format AAX (Avid Audio Extension) plug-ins provide real-time plug-in processing using host-based ("Native") or DSP-based (Pro Tools HD with Avid HDX hardware accelerated systems only) processing. -
A Brief, Comprehensive History of the Cordovox and Other Electronic Accordions” by Fabio G
“A Brief, Comprehensive History of the Cordovox and other electronic accordions” By Fabio G. Giotta Many technical and musical geniuses poured their hearts and souls in to the design and production of these amazing instruments whose electronic technology originated in the late 1950’s, 60’s and 70’s; the Ages of Technology, Space and Jet Travel. The acoustic accordion technology (typically 15,000 parts in a full size instrument) spans from roughly 1900 through the age of its electronic counterparts. This article endeavors to correct some of the rampant inaccuracies and invalid opinions about the Cordovox and other electronic accordions found on the World Wide Web, including some of the statements posted at Google Answers, and errant statements by some Ebay sellers and non-accordion oriented retailers, including musical instrument shops. Herein, I opine and make a combination of declarations, observations, and well-educated guesses based on my own personal experience with these instruments, continuing interaction with accordion industry experts such as: Gordon Piatanesi (Colombo & Sons Accordions-San Francisco, CA), Joe Petosa (Petosa Accordions-Seattle, WA), The curators of the Museo Internazionale Della Fisarmonica-Castelfidardo, Italia (International Museum of the Accordion), including Paolo Brandoni (Brandoni & Sons Accordions-General Accordion Co.), Fabio Petromilli (Comune of Castelfidardo), Beniamino Bugiolacchi-Museum President, and their colleagues Maestro Gervasio Marcosignori, concert accordionist, arranger, recording artist, and former Director of Instrument Development for Farfisa S.p.A. Organ electronics experts such as *Dave Matthews, *David Trouse, *David Tonelli and *Peter Miller, and study of written, official documents such as books, brochures, advertisements, owner’s guides, service manuals, and historical accounts, inlcluding the following: The Golden Age of the Accordion--Flynn/Davison/Chavez, Super VI Scandalli…Una Fisarmonica Nella Storia--Jercog, and Per Una Storia Della Farfisa-- Strologo.