Soil Moisture Redistribution and Its Effect on Inter-Annual Active Layer Temperature and Thickness Variations in a Dry Loess Terrace in Adventdalen, Svalbard
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Faro Landscape Hazards
Faro Landscape Hazards Geoscience Mapping for Climate Change Adaptation Planning This publication may be obtained from: Northern Climate ExChange Yukon Research Centre, Yukon College 500 College Drive P.O. Box 2799 Whitehorse, Yukon Y1A 5K4 867.668.8895 1.800.661.0504 yukoncollege.yk.ca/research Recommended citation: Benkert, B.E., Fortier, D., Lipovsky, P., Lewkowicz, A., Roy, L.-P., de Grandpré, I., Grandmont, K., Turner, D., Laxton, S., and Moote, K., 2015. Faro Landscape Hazards: Geoscience Mapping for Climate Change Adaptation Planning. Northern Climate ExChange, Yukon Research Centre, Yukon College. 130 p. and 2 maps. Front cover photograph: Aerial view of Faro looking southeast towards the Pelly River. Photo credit: archbould.com Disclaimer: The report including any associated maps, tables and figures (the “Information”) convey general observations only. The Information is based on an interpretation and extrapolation of discrete data points and is not necessarily indicative of actual conditions at any location. The Information cannot be used or relied upon for design or construction at any location without first conducting site-specific geotechnical investigations by a qualified geotechnical engineer to determine the actual conditions at a specific location (“Site-Specific Investigations”). The Information should only be used or relied upon as a guide to compare locations under consideration for such Site-Specific Investigations. Use of or reli- ance upon the Information for any other purpose is solely at the user’s own risk. Yukon College and the individual authors and contributors to the Information accept no liability for any loss or damage arising from the use of the Information. -
Response of CO2 Exchange in a Tussock Tundra Ecosystem to Permafrost Thaw and Thermokarst Development Jason Vogel,L Edward A
Response of CO2 exchange in a tussock tundra ecosystem to permafrost thaw and thermokarst development Jason Vogel,l Edward A. G. Schuur,2 Christian Trucco,2 and Hanna Lee2 [1] Climate change in high latitudes can lead to permafrost thaw, which in ice-rich soils can result in ground subsidence, or thermokarst. In interior Alaska, we examined seasonal and annual ecosystem CO2 exchange using static and automatic chamber measurements in three areas of a moist acidic tundra ecosystem undergoing varying degrees of permafrost thaw and thermokarst development. One site had extensive thermokarst features, and historic aerial photography indicated it was present at least 50 years prior to this study. A second site had a moderate number of thermokarst features that were known to have developed concurrently with permafrost warming that occurred 15 years prior to this study. A third site had a minimal amount of thermokarst development. The areal extent of thermokarst features reflected the seasonal thaw depth. The "extensive" site had the deepest seasonal thaw depth, and the "moderate" site had thaw depths slightly, but not significantly deeper than the site with "minimal" thermokarst development. Greater permafrost thaw corresponded to significantly greater gross primary productivity (GPP) at the moderate and extensive thaw sites as compared to the minimal thaw site. However, greater ecosystem respiration (Recc) during the spring, fall, and winter resulted in the extensive thaw site being a significant net source of CO2 to the atmosphere over 3 years, while the moderate thaw site was a CO2 sink. The minimal thaw site was near CO2 neutral and not significantly different from the extensive thaw site. -
Surficial Geology Investigations in Wellesley Basin and Nisling Range, Southwest Yukon J.D
Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon J.D. Bond, P.S. Lipovsky and P. von Gaza Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon Jeffrey D. Bond1 and Panya S. Lipovsky2 Yukon Geological Survey Peter von Gaza3 Geomatics Yukon Bond, J.D., Lipovsky, P.S. and von Gaza, P., 2008. Surficial geology investigations in Wellesley basin and Nisling Range, southwest Yukon. In: Yukon Exploration and Geology 2007, D.S. Emond, L.R. Blackburn, R.P. Hill and L.H. Weston (eds.), Yukon Geological Survey, p. 125-138. ABSTRACT Results of surficial geology investigations in Wellesley basin and the Nisling Range can be summarized into four main highlights, which have implications for exploration, development and infrastructure in the region: 1) in contrast to previous glacial-limit mapping for the St. Elias Mountains lobe, no evidence for the late Pliocene/early Pleistocene pre-Reid glacial limits was found in the study area; 2) placer potential was identified along the Reid glacial limit where a significant drainage diversion occurred for Grayling Creek; 3) widespread permafrost was encountered in the study area including near-continuous veneers of sheet-wash; and 4) a monitoring program was initiated at a recently active landslide which has potential to develop into a catastrophic failure that could damage the White River bridge on the Alaska Highway. RÉSUMÉ Les résultats d’études géologiques des formations superficielles dans le bassin de Wellesley et la chaîne Nisling peuvent être résumés en quatre principaux faits saillants qui ont des répercussions pour l’exploration, la mise en valeur et l’infrastructure de la région. -
Contemporary Periglacial Processes in the Swiss Alps: Seasonal, Inter-Annual and Long-Term Variations
Permafrost, Phillips, Springman & Arenson (eds) © 2003 Swets & Zeitlinger, Lisse, ISBN 90 5809 582 7 Contemporary periglacial processes in the Swiss Alps: seasonal, inter-annual and long-term variations N. Matsuoka & A. Ikeda Institute of Geoscience, University of Tsukuba, Ibaraki, Japan K. Hirakawa & T. Watanabe Graduate School of Environmental Earth Science, Hokkaido University, Sapporo, Japan ABSTRACT: Comprehensive monitoring of periglacial weathering and mass wasting has been undertaken near the lower limit of the mountain permafrost belt. Seven years of monitoring highlight both seasonal and inter- annual variations. On the seasonal scale, three types of movements are identified: (A) small magnitude events associated with diurnal freeze-thaw cycles, (B) larger events during early seasonal freezing and (C) sporadic events originating from refreezing of meltwater during seasonal thawing. Type A produces pebbles or smaller fragments from rockwalls and shallow (Ͻ10 cm) frost creep on debris slopes. Types B and C are responsible for larger debris production and deeper (Ͻ50 cm) frost creep/gelifluction. Some of these events contribute to perma- nent opening of rock joints and advance of solifluction lobes. Sporadic large boulder falls enhance inter-annual variation in rockwall retreat rates. On some debris slopes, prolonged snow melting occasionally triggers rapid soil flow, which causes inter-annual variation in rates of soil movement. 1 INTRODUCTION 9º40'E 10º00'E Piz Kesch Real-time monitoring of periglacial slope processes is 3418 Switzerland useful to predict ongoing slope instability problems in Inn alpine regions. Such a prediction, however, needs long- Piz d'Err Piz Ot term variations in slope processes caused by climate 3378 3246 Samedan Italia change to be distinguished from inter-annual scale vari- A 30'E 30'E º St. -
New Insights Into the Drainage of Inundated Arctic Polygonal Tundra
https://doi.org/10.5194/tc-2020-100 Preprint. Discussion started: 5 May 2020 c Author(s) 2020. CC BY 4.0 License. New insights into the drainage of inundated Arctic polygonal tundra using fundamental hydrologic principles Dylan R Harp1, Vitaly Zlotnik2, Charles J Abolt1, Brent D Newman1, Adam L Atchley1, Elchin Jafarov1, and Cathy J Wilson1 1Earth and Environmental Sciences Division, Los Alamos National Laboratory, Los Alamos, NM, 87544 2Earth and Atmospheric Sciences Department, University of Nebraska, Lincoln, NE, 68588-0340 Correspondence: Dylan Harp ([email protected]) Abstract. The pathways and timing of drainage from inundated ice-wedge polygon centers in a warming climate have im- portant implications for carbon flushing, advective heat transport, and transitions from carbon dioxide to methane dominated emissions. This research helps to understand this process by providing the first in-depth analysis of drainage from a single polygon based on fundamental hydrogeological principles. We use a recently developed analytical solution to evaluate the 5 effects of polygon aspect ratios (radius to thawed depth) and hydraulic conductivity anisotropy (horizontal to vertical hydraulic conductivity) on drainage pathways and temporal depletion of ponded water heights of inundated ice-wedge polygon centers. By varying the polygon aspect ratio, we evaluate the effect of polygon size (width), inter-annual increases in active layer thick- ness, and seasonal increases in thaw depth on drainage. One of the primary insights from the model is that most inundated ice-wedge polygon drainage occurs along an annular region of the polygon center near the rims. This implies that inundated 10 polygons are most intensely flushed by drainage in an annular region along their horizontal periphery, with implications for transport of nutrients (such as dissolved organic carbon) and advection of heat towards ice wedge tops. -
Introduction to Foundations in Areas of Significant Frost Penetration
Introduction to Foundations in Areas of Significant Frost Penetration Course No: G03-003 Credit: 3 PDH J. Paul Guyer, P.E., R.A., Fellow ASCE, Fellow AEI Continuing Education and Development, Inc. 22 Stonewall Court Woodcliff Lake, NJ 07677 P: (877) 322-5800 [email protected] An Introduction to Foundations in Areas of Significant Frost Penetration Guyer Partners J. Paul Guyer, P.E., R.A. 44240 Clubhouse Drive El Macero, CA 95618 Paul Guyer is a registered mechanical (530) 758-6637 engineer, civil engineer, fire protection [email protected] engineer and architect with over 35 years experience in the design of buildings and related infrastructure. For an additional 9 years he was a principal advisor to the California Legislature on infrastructure and capital outlay issues. He is a graduate of Stanford University and has held numerous national, state and local offices with the American Society of Civil Engineers, Architectural Engineering Institute, and National Society of Professional Engineers. © J. Paul Guyer 2013 1 CONTENTS 1. INTRODUCTION 2. FACTORS AFFECTING DESIGN OF FOUNDATIONS 3. SITE INVESTIGATIONS 4. FOUNDATION DESIGN (This publication is adapted from the Unified Facilities Criteria of the United States government which are in the public domain, have been authorized for unlimited distribution, and are not copyrighted.) (The figures, tables and formulas in this publication may at times be a little difficult to read, but they are the best available. DO NOT PURCHASE THIS PUBLICATION IF THIS LIMITATION IS NOT ACCEPTABLE TO YOU.) © J. Paul Guyer 2013 2 1. INTRODUCTION. 1.1 TYPES OF AREAS. For purposes of this manual, areas of significant frost penetration may be defined as those in which freezing temperatures occur in the ground to sufficient depth to be a significant factor in foundation design. -
Frost Action in Soils Mustata Sevket Safak
South Dakota State University Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange Electronic Theses and Dissertations 1958 Frost Action in Soils Mustata Sevket Safak Follow this and additional works at: https://openprairie.sdstate.edu/etd Recommended Citation Safak, Mustata Sevket, "Frost Action in Soils" (1958). Electronic Theses and Dissertations. 2535. https://openprairie.sdstate.edu/etd/2535 This Thesis - Open Access is brought to you for free and open access by Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. It has been accepted for inclusion in Electronic Theses and Dissertations by an authorized administrator of Open PRAIRIE: Open Public Research Access Institutional Repository and Information Exchange. For more information, please contact [email protected]. FROST ACTI011 IN $OILS By Mustafa Sevket Sa£sk A 1n thesisof sUbmittedrequirements tor the partialdegree tulf1llmentMaster ot Science the at South Dakota · Stateand co110ge Meehanic or Agriculture Arts � April, 1958 .10.UJHJ2MQJ�,SJ�IE CO\.Ll:GE UJ�aRAF'" This thesis is approved as a creditable, independent investigation by a candidate for the degree, Master of Science, and acceptable as meet ing the thesis requirements for this degree; but without implying that the conclusions reached by the candidate a� necessarily the conclusions of the major department. ii fb ·.,.-tter w.t.she.s .to $Spr·eas bia appre,etatton to .)):,of,. · .r, a. ,Sohnson, Be'ad or t·ne Qivtl lng.1aee-•1ns tie· .ttmoat ·t ,South Daket·a State Coll· ge., Brook:tnC•·• South llakot. • to•, bu belptu1 suggestion$ -and or1tto·te rel.atlve to t.he- pr·ep.u,at1011 at tllis 't11)de�tatng. -
Modeling the Role of Preferential Snow Accumulation in Through Talik OPEN ACCESS Development and Hillslope Groundwater flow in a Transitional
Environmental Research Letters LETTER • OPEN ACCESS Recent citations Modeling the role of preferential snow - Shrub tundra ecohydrology: rainfall interception is a major component of the accumulation in through talik development and water balance hillslope groundwater flow in a transitional Simon Zwieback et al - Development of perennial thaw zones in boreal hillslopes enhances potential permafrost landscape mobilization of permafrost carbon Michelle A Walvoord et al To cite this article: Elchin E Jafarov et al 2018 Environ. Res. Lett. 13 105006 View the article online for updates and enhancements. This content was downloaded from IP address 192.12.184.6 on 08/07/2020 at 18:02 Environ. Res. Lett. 13 (2018) 105006 https://doi.org/10.1088/1748-9326/aadd30 LETTER Modeling the role of preferential snow accumulation in through talik OPEN ACCESS development and hillslope groundwater flow in a transitional RECEIVED 27 March 2018 permafrost landscape REVISED 26 August 2018 Elchin E Jafarov1 , Ethan T Coon2, Dylan R Harp1, Cathy J Wilson1, Scott L Painter2, Adam L Atchley1 and ACCEPTED FOR PUBLICATION Vladimir E Romanovsky3 28 August 2018 1 Los Alamos National Laboratory, Los Alamos, New Mexico, United States of America PUBLISHED 2 15 October 2018 Climate Change Science Institute and Environmental Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America 3 Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska, United States of America Original content from this work may be used under E-mail: [email protected] the terms of the Creative Commons Attribution 3.0 Keywords: permafrost, hydrology, modeling, ATS, talik licence. Any further distribution of this work must maintain attribution to the Abstract author(s) and the title of — — the work, journal citation Through taliks thawed zones extending through the entire permafrost layer represent a critical and DOI. -
The Influence of Shallow Taliks on Permafrost Thaw and Active Layer
PUBLICATIONS Journal of Geophysical Research: Earth Surface RESEARCH ARTICLE The Influence of Shallow Taliks on Permafrost Thaw 10.1002/2017JF004469 and Active Layer Dynamics in Subarctic Canada Key Points: Ryan Connon1 , Élise Devoie2 , Masaki Hayashi3, Tyler Veness1, and William Quinton1 • Shallow, near-surface taliks in subarctic permafrost environments 1Cold Regions Research Centre, Wilfrid Laurier University, Waterloo, Ontario, Canada, 2Department of Civil and fl in uence active layer thickness by 3 limiting the depth of freeze Environmental Engineering, University of Waterloo, Waterloo, Ontario, Canada, Department of Geoscience, University of • Areas with taliks experience more Calgary, Calgary, Alberta, Canada rapid thaw of underlying permafrost than areas without taliks • Proportion of areas with taliks can Abstract Measurements of active layer thickness (ALT) are typically taken at the end of summer, a time increase in years with high ground synonymous with maximum thaw depth. By definition, the active layer is the layer above permafrost that heat flux, potentially creating tipping point for permafrost thaw freezes and thaws annually. This study, conducted in peatlands of subarctic Canada, in the zone of thawing discontinuous permafrost, demonstrates that the entire thickness of ground atop permafrost does not always refreeze over winter. In these instances, a talik exists between the permafrost and active layer, and ALT Correspondence to: must therefore be measured by the depth of refreeze at the end of winter. As talik thickness increases at R. Connon, the expense of the underlying permafrost, ALT is shown to simultaneously decrease. This suggests that the [email protected] active layer has a maximum thickness that is controlled by the amount of energy lost from the ground to the atmosphere during winter. -
Geophysical Mapping of Palsa Peatland Permafrost
The Cryosphere, 9, 465–478, 2015 www.the-cryosphere.net/9/465/2015/ doi:10.5194/tc-9-465-2015 © Author(s) 2015. CC Attribution 3.0 License. Geophysical mapping of palsa peatland permafrost Y. Sjöberg1, P. Marklund2, R. Pettersson2, and S. W. Lyon1 1Department of Physical Geography and the Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden 2Department of Earth Sciences, Uppsala University, Uppsala, Sweden Correspondence to: Y. Sjöberg ([email protected]) Received: 15 August 2014 – Published in The Cryosphere Discuss.: 13 October 2014 Revised: 3 February 2015 – Accepted: 10 February 2015 – Published: 4 March 2015 Abstract. Permafrost peatlands are hydrological and bio- ing in these landscapes are influenced by several factors other geochemical hotspots in the discontinuous permafrost zone. than climate, including hydrological, geological, morpholog- Non-intrusive geophysical methods offer a possibility to ical, and erosional processes that often combine in complex map current permafrost spatial distributions in these envi- interactions (e.g., McKenzie and Voss, 2013; Painter et al., ronments. In this study, we estimate the depths to the per- 2013; Zuidhoff, 2002). Due to these interactions, peatlands mafrost table and base across a peatland in northern Swe- are often dynamic with regards to their thermal structures and den, using ground penetrating radar and electrical resistivity extent, as the distribution of permafrost landforms (such as tomography. Seasonal thaw frost tables (at ∼ 0.5 m depth), dome-shaped palsas and flat-topped peat plateaus) and talik taliks (2.1–6.7 m deep), and the permafrost base (at ∼ 16 m landforms (such as hollows, fens, and lakes) vary with cli- depth) could be detected. -
The Effects of Permafrost Thaw on Soil Hydrologic9 Thermal, and Carbon
Ecosystems (2012) 15: 213-229 DO!: 10.1007/sl0021-0!l-9504-0 !ECOSYSTEMS\ © 2011 Springer Science+Business Media, LLC (outside the USA) The Effects of Permafrost Thaw on Soil Hydrologic9 Thermal, and Carbon Dynan1ics in an Alaskan Peatland Jonathan A. O'Donnell,1 * M. Torre Jorgenson, 2 Jennifer W. Harden, 3 A. David McGuire,4 Mikhail Z. Kanevskiy, 5 and Kimberly P. Wickland1 1 U.S. Geological Survey, 3215 Marine St., Suite E-127, Boulder, Colorado 80303, USA; 2 Alaska Ecoscience, Fairbanks, Alaska 99775, USA; 3 U.S. Geological Survey, 325 Middlefield Rd, MS 962, Menlo Park, California 94025, USA; 4 U.S. Geological Survey, Alaska Cooperative Fish and Wildlife Research Unit, Institute of Arctic Biology, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA; 5/nstitute of Northern Engineering, University of Alaska Fairbanks, Fairbanks, Alaska 99775, USA ABSTRACT Recent warming at high-latitudes has accelerated tion of thawed forest peat reduced deep OC stocks by permafrost thaw in northern peatlands, and thaw can nearly half during the first 100 years following thaw. have profound effects on local hydrology and eco Using a simple mass-balance model, we show that system carbon balance. To assess the impact of per accumulation rates at the bog surface were not suf mafrost thaw on soil organic carbon (OC) dynamics, ficient to balance deep OC losses, resulting in a net loss we measured soil hydrologic and thermal dynamics of OC from the entire peat column. An uncertainty and soil OC stocks across a collapse-scar bog chrono analysis also revealed that the magnitude and timing sequence in interior Alaska. -
Frost Heave Due to Ice Lens Formation in Freezing Soils 1
Nordic Hydrolgy, 26, 1995, 125-146 No pd11 m,ty ix ~rproduredby .my proce\\ w~thoutcomplete leference Frost Heave due to Ice Lens Formation in Freezing Soils 1. Theory and Verification D. Sheng, K. Axelsson and S. Knutsson Department of Civil Engineering, Lulei University of Technology, Sweden A frost heave model which simulates formation of ice lenses is developed for saturated salt-free soils. Quasi-steady state heat and mass flow is considered. Special attention is paid to the transmitted zone, i.e. the frozen fringe. The permeability of the frozen fringe is assumed to vary exponentially as a function of temperature. The rates of water flow in the frozen fringe and in the unfrozen soil are assumed to be constant in space but vary with time. The pore water pres- sure in the frozen fringe is integrated from the Darcy law. The ice pressure in the frozen fringe is detcrmined by the generalized Clapeyron equation. A new ice lens is assumed to form in the liozen fringe when and where the effective stress approaches zero. The neutral stress is determined as a simple function of the un- frozen water content and porosity. The model is implemented on an personal computer. The simulated heave amounts and heaving rates are compared with expcrimental data, which shows that the model generally gives reasonable esti- mation. Introduction The phenomenon of frost heave has been studied both experimentally and theoreti- cally for decades. Experimental observations suggest that frost heave is caused by ice lensing associated with thermally-induced water migration. Water migration can take place at temperatures below the freezing point, by flowing via the unfrozen wa- ter film adsorbed around soil particles.