Levothyroxine for Hypothyroidism
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1: Clinical Pharmacokinetics 1
1: CLINICAL PHARMACOKINETICS 1 General overview: clinical pharmacokinetics, 2 Pharmacokinetics, 4 Drug clearance (CL), 6 Volume of distribution (Vd), 8 The half-life (t½), 10 Oral availability (F), 12 Protein binding (PB), 14 pH and pharmacokinetics, 16 1 Clinical pharmacokinetics General overview General overview: clinical pharmacokinetics 1 The ultimate aim of drug therapy is to achieve effi cacy without toxicity. This involves achieving a plasma concentration (Cp) within the ‘therapeutic window’, i.e. above the min- imal effective concentration (MEC), but below the minimal toxic concentration (MTC). Clinical pharmacokinetics is about all the factors that determine variability in the Cp and its time-course. The various factors are dealt with in subsequent chapters. Ideal therapeutics: effi cacy without toxicity Minimum Toxic Concentration (MTC) Ideal dosing Minimum Effective Concentration (MEC) Drug concentration Time The graph shows a continuous IV infusion at steady state, where the dose-rate is exactly appropriate for the patient’s clearance (CL). Inappropriate dosing Dosing too high in relation to the patient’s CL – toxicity likely Minimum Toxic Concentration (MTC) Minimum Effective Concentration (MEC) Dosing too low in relation to the Drug concentration patient’s CL – drug may be ineffective Time Some reasons for variation in CL Low CL High CL Normal variation Normal variation Renal impairment Increased renal blood fl ow Genetic poor metabolism Genetic hypermetabolism Liver impairment Enzyme induction Enzyme inhibition Old age/neonate 2 General overview Clinical Pharmacokinetics Pharmacokinetic factors determining ideal therapeutics If immediate effect is needed, a loading dose (LD) must be given to achieve a desired 1 concentration. The LD is determined by the volume of distribution (Vd). -
Bioequivalence Study Protocol
Study Code: Date: NOV2020/01917 NCT04406194 28.04.2020 Version: Clinical Study Protocol 1.0 OPEN-LABEL, RANDOMISED, SINGLE ORAL DOSE, TWO-PERIOD, CROSS-OVER TRIAL TO ASSESS THE FAVICOVIR 200 MG FILM BIOEQUIVALENCE OF TABLET (TEST DRUG) IN COMPARISON WITH AVIGAN 200 MG FILM TABLET (REFERENCE DRUG) IN HEALTHY MALE SUBJECTS UNDER FASTING CONDITIONS CLINICAL STUDY PROTOCOL “CONFIDENTIAL” Principal Investigator: Prof. Dr. Muradiye Nacak Clinical Center: Gaziantep Üniversitesi FARMAGEN GCP Center, Gaziantep –Turkey Sponsor: Atabay Kimya San. ve Tic. A.Ş. İstanbul-Turkey Contract Research Organisation (CRO) : ALPAN Farma Ltd.Şti. Kayseri- Turkey Contracted Analytical Laboratory: Novagenix Bioanalytical Drug R&D Centre, Ankara - Turkey NOTE: No part of this document may be reproduced. The document should be treated as the confidential property of Atabay Kimya San. ve Tic. A.Ş., Alpan Farma and Novagenix. Not divulged to unauthorised persons in any form, including publications and presentations, without written consent of Atabay Kimya San. ve Tic. A.Ş., Alpan Farma and Novagenix. Page 1 of 67 Study Code: Date: NOV2020/01917 28.04.2020 Version: Clinical Study Protocol 1.0 STUDY SYNOPSIS Study Title: Open-label, randomised, single oral dose, two-period, cross-over trial Favicovir 200 mg Film Tablet(Test to assess to bioequivalence of Drug) Avigan 200 mg Film Tablet (Reference in comparison with Drug) in healthy male subjects under fasting conditions Study Code: NOV2020/01917 Drugs: Test Drug* Favicovir 200 mg Film Tablet : “ ” containing 200 mg (Atabay-Turkey). favipiravir *: This drug is manufactured by Atabay Kimya San. ve Tic. A.Ş., Turkey. Reference Drug** Avigan 200 mg Film Tablet : “ ” containing 200 mg (Toyama Chemical Industry Co.Ltd./Japan). -
CPT Fellowship Psychopharm Focus
Clinical Pharmacology and Toxicology Residency Program, McGill University One year Fellowship in Clinical Pharmacology and Toxicology: Psychopharmacology Focus Fellowship Director: Dr. Theodore Kolivakis, MD, FRCPC Program Director: Dr. Howard Margolese Location: MUHC (70-90%) JGH (10-20%) DH (10-20%) (% Depends on Selectives chosen based on interest of the Fellow) Number of Positions: 1 Length of Program: 1 year. The ‘academic’ year is July 1 to June 30, however ‘off-cycle’ candidates will also be considered Program General Information: The Clinical Pharmacology and Toxicology Fellowship: Psychopharmacology Focus is a one-year supervised training program open to qualified psychiatry residents who have completed their Psychiatry Postgraduate training and are eligible for practice in Canada. This fellowship program is based in the Clinical Psychopharmacology and Therapeutics Unit of the McGill University Health Centre (MUHC), Department of Psychiatry, McGill University, and is carried out in collaboration with a number of University hospitals and centers, namely the Clinical Toxicology Service of the MUHC, Alan Edwards Centre for Research on Pain at the MUHC, Internal Medicine at the MUHC or JGH (Hypertension clinic), Douglas Mental Health University Institute, and the Montreal Neurological Hospital and Institute; as well as the Department of Pharmacy of the MUHC. The objective of this program is to provide advanced training in clinical pharmacology and toxicology with a psychopharmacology focus to residents interested in gaining an expertise in the pharmacological treatment of their patients. Specifically they will learn best practices for 1. patients with complex medication regimes, 2. treatment resistant patients, 3. adverse drug reactions including iatrogenic ADR 4. consultation based care and practices After successfully completing the fellowship it is expected that fellows will become experts in the management of the most difficult psychiatric patients who are often those with significant other medical co-morbidities. -
Narrow Therapeutic Index
Therapeutic Drug Monitoring Some drugs have a narrow therapeutic index, which means that there is only a small difference between the minimum effective concentrations and the minimum toxic concentrations in the blood. With such drugs, small increases in dose or in blood/serum concentrations could lead to toxic effects. Therapeutic drug monitoring may help to optimise treatment in cases where there is a firm relationship between the toxic/therapeutic effects and drug concentrations in whole blood/serum. A therapeutic interval has been defined for the drugs in the following tables. This is the minimum effective and maximum safe concentration for compliant patients, on stabilised regimens. Levels within these limits should prove satisfactory in most cases. Whole blood or serum drug concentrations are useful for determining patient compliance or for assessing whether or not: 1. adequate concentrations are being achieved or, 2. potentially toxic concentrations are being reached. Depending on clinical conditions, dosage adjustments may be needed when levels are outside the therapeutic interval. Therapeutic drug monitoring can also be useful when changes are made to other medications that could affect serum or whole blood concentrations and lead to a reduction in effectiveness or increased toxicity. Although plasma drug concentrations and the therapeutic interval are useful in evaluating drug therapy, they should not be the only criteria on which treatment is based. Always remember to treat the patient, not the level. Drug concentrations in serum or whole blood are only meaningful if the correct procedures are followed regarding the timing of specimens and selection of sample tube. It is vitally important to note the exact time the sample is taken and when each dose of the drug is given. -
Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development
Clinical Pharmacology 1: Phase 1 Studies and Early Drug Development Gerlie Gieser, Ph.D. Office of Clinical Pharmacology, Div. IV Objectives • Outline the Phase 1 studies conducted to characterize the Clinical Pharmacology of a drug; describe important design elements of and the information gained from these studies. • List the Clinical Pharmacology characteristics of an Ideal Drug • Describe how the Clinical Pharmacology information from Phase 1 can help design Phase 2/3 trials • Discuss the timing of Clinical Pharmacology studies during drug development, and provide examples of how the information generated could impact the overall clinical development plan and product labeling. Phase 1 of Drug Development CLINICAL DEVELOPMENT RESEARCH PRE POST AND CLINICAL APPROVAL 1 DISCOVERY DEVELOPMENT 2 3 PHASE e e e s s s a a a h h h P P P Clinical Pharmacology Studies Initial IND (first in human) NDA/BLA SUBMISSION Phase 1 – studies designed mainly to investigate the safety/tolerability (if possible, identify MTD), pharmacokinetics and pharmacodynamics of an investigational drug in humans Clinical Pharmacology • Study of the Pharmacokinetics (PK) and Pharmacodynamics (PD) of the drug in humans – PK: what the body does to the drug (Absorption, Distribution, Metabolism, Excretion) – PD: what the drug does to the body • PK and PD profiles of the drug are influenced by physicochemical properties of the drug, product/formulation, administration route, patient’s intrinsic and extrinsic factors (e.g., organ dysfunction, diseases, concomitant medications, -
IJBCP International Journal of Basic & Clinical Pharmacology Antibiotic
Print ISSN: 2319-2003 | Online ISSN: 2279-0780 IJBCP International Journal of Basic & Clinical Pharmacology DOI: http://dx.doi.org/10.18203/2319-2003.ijbcp20191567 Original Research Article Antibiotic sensitivity profile and resistance of microorganisms isolated from south Indian population, a hospital based study at Velappanchavady, Chennai, India Brethis C. S.1*, Mahender G.2, Thamizharasan S.1, Suresh Kumar K.3, Sudharson T.3 1Department of Pharmacology, A.C.S Medical College and ABSTRACT Hospital, Velappanchavadi, Chennai, Tamil Nadu, India Background: Increasing rates of antibiotic drug resistance has been noted in 2Department of Forensic recent times and this adversely affects the prognosis and outcomes of patients. Medicine and Toxicology, There is a greater need for local resistance prevalence data in order to guide District Hospital Gajwel, empirical prescription and to identify areas in which medical need for newer Telangana, India antimicrobial agents is greater. 3Department of Forensic Methods: A prospective hospital based observational study was carried out to Medicine and Toxicology, determine antibiotic sensitivity profile and resistance pattern of microorganisms. A.C.S Medical College and Samples were collected from urinary tract infections, while cultures from blood Hospital, Velappanchavadi, stream infections, sputum samples and Serology. Antibiotic susceptibility was Chennai, Tamil Nadu, India determined by the standard disc diffusion method. Data interpretation was based on CLSI, 2017 guidelines for antimicrobial susceptibility testing. Received: 14 April 2019 Results: The predominant isolates from the samples were, Staphylococcus Accepted: 19 April 2019 aureus (16.7%) 67, K. pneumoniae (11.5%) 46, E. coli (29.4%) 118, P. aeruginosa (6%) 24. Escherichia coli, the most common causative organism *Correspondence to: showed high resistance to commonly used drugs such as Ampicillin (60.1%) 71, Dr. -
Narrow Therapeutic Index Drugs: a Clinical Pharmacological Consideration to Flecainide Juan Tamargo, Jean-Yves Le Heuzey, Phillipe Mabo
Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide Juan Tamargo, Jean-Yves Le Heuzey, Phillipe Mabo To cite this version: Juan Tamargo, Jean-Yves Le Heuzey, Phillipe Mabo. Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide. European Journal of Clinical Pharmacology, Springer Verlag, 2015, 71 (5), pp.549-567. 10.1007/s00228-015-1832-0. hal-01143095 HAL Id: hal-01143095 https://hal-univ-rennes1.archives-ouvertes.fr/hal-01143095 Submitted on 16 Apr 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Eur J Clin Pharmacol (2015) 71:549–567 DOI 10.1007/s00228-015-1832-0 REVIEW ARTICLE Narrow therapeutic index drugs: a clinical pharmacological consideration to flecainide Juan Tamargo & Jean-Yves Le Heuzey & Phillipe Mabo Received: 5 December 2014 /Accepted: 4 March 2015 /Published online: 15 April 2015 # The Author(s) 2015. This article is published with open access at Springerlink.com Abstract specify flecainide as an NTID. The literature review demon- Purpose The therapeutic index (TI) is the range of doses at strated that flecainide displays NTID characteristics including which a medication is effective without unacceptable adverse a steep drug dose–response relationship for safety and effica- events. -
Clinical Pharmacology and Pharmacogenomics Fellowship Research Training
CCPP COMMITTEE ON CLINICAL PHARMACOLOGY AND PHARMACOGENOMICS Clinical Pharmacology and Pharmacogenomics Fellowship Research Training The Committee on Clinical Pharmacology and Pharmacogenomics at the University of Chicago, chaired by M. Eileen Dolan, PhD, is seeking motivated trainees for our clinical pharmacology and pharmacogenomics fellowship training program. Candidates should have a PhD, MD, PharmD/PhD or PharmD degree and have successfully completed a clinical residency. Ability to demonstrate a commitment to research, including but not limited to evidence provided by a record of prior publication is encouraged. This program is open to those interested in personalized medicine, pharmacogenomics, new drug development, clinical pharmacology, clinical trial design, genome wide association studies, genetics of drug abuse and/or overcoming drug resistance. Our two-year American Board of Clinical Pharmacology (ABCP) accredited program is a multidisciplinary, comprehensive and collaborative initiative that emphasizes individual creativity in the context of an encouraging environment. The two-year fellowship provides salary support/benefits for protected research time dedicated to research efforts along with support to attend meetings. Trainees will have the opportunity to tailor their work to emphasize clinical, translational or basic science research spending protected time devoted to their research efforts with the remainder dedicated to core curriculum and clinical activities (as applicable). After successful completion, trainees are eligible to become board certified in Clinical Pharmacology. General information at: http://ccpp.uchicago.edu/ or contact the programs’ educational manager, Michelle Domecki at [email protected]. Candidates who are U.S. citizens or permanent residents will be considered for support via an institutional training grant. The University of Chicago is an Equal Opportunity/Affirmative Action Employer. -
Pharmacogenetic Testing: a Tool for Personalized Drug Therapy Optimization
pharmaceutics Review Pharmacogenetic Testing: A Tool for Personalized Drug Therapy Optimization Kristina A. Malsagova 1,* , Tatyana V. Butkova 1 , Arthur T. Kopylov 1 , Alexander A. Izotov 1, Natalia V. Potoldykova 2, Dmitry V. Enikeev 2, Vagarshak Grigoryan 2, Alexander Tarasov 3, Alexander A. Stepanov 1 and Anna L. Kaysheva 1 1 Biobanking Group, Branch of Institute of Biomedical Chemistry “Scientific and Education Center”, 109028 Moscow, Russia; [email protected] (T.V.B.); [email protected] (A.T.K.); [email protected] (A.A.I.); [email protected] (A.A.S.); [email protected] (A.L.K.) 2 Institute of Urology and Reproductive Health, Sechenov University, 119992 Moscow, Russia; [email protected] (N.V.P.); [email protected] (D.V.E.); [email protected] (V.G.) 3 Institute of Linguistics and Intercultural Communication, Sechenov University, 119992 Moscow, Russia; [email protected] * Correspondence: [email protected]; Tel.: +7-499-764-9878 Received: 2 November 2020; Accepted: 17 December 2020; Published: 19 December 2020 Abstract: Pharmacogenomics is a study of how the genome background is associated with drug resistance and how therapy strategy can be modified for a certain person to achieve benefit. The pharmacogenomics (PGx) testing becomes of great opportunity for physicians to make the proper decision regarding each non-trivial patient that does not respond to therapy. Although pharmacogenomics has become of growing interest to the healthcare market during the past five to ten years the exact mechanisms linking the genetic polymorphisms and observable responses to drug therapy are not always clear. Therefore, the success of PGx testing depends on the physician’s ability to understand the obtained results in a standardized way for each particular patient. -
Narrow Therapeutic Index Drugs
Quality and Bioequivalence Standards for Narrow Therapeutic Index Drugs Lawrence X. Yu, Ph.D. Deputy Director for Science and Chemistry Office of Generic Drugs Center for Drug Evaluation and Research Food and Drug Administration GPhA 2011 Fall Technical Workshop 1 Bioequivalence • The absence of a significant difference in the rate and extent to which the active ingredient or active moiety in pharmaceutical equivalents or pharmaceutical alternatives becomes available at the site of drug action when administrated at the same molar dose under similar conditions in an appropriately designed study…” (21 CFR §320.1) 2 Plasma Concentration Profile Cmax 10000 AUC ln Concentration 1000 Concentration Time Tmax - time of maximum concentration 100 Time 3 0 5 10 15 20 25 Possible Outcome of BE Studies Demonstrate BE Fail to Demonstrate BIE Fail to Demonstrate BE Demonstrate BIE Demonstrate BIE 80% T/R (%) 125% 4 5 FDA 12 Year BE Data Distribution of AUCt Ratios Average difference = 3.56% 10 N = 2069 8 6 Percent of Total(%) of Percent 4 2 0 0.84 0.86 0.88 0.90 0.92 0.94 0.96 0.98 1.00 1.02 1.04 1.06 1.08 1.10 1.12 1.14 1.16 1.18 1.20 6 AUC Point Estimate (T/R) Effect of Variability on BE Studies High variability 80% T/R (%) 125% 7 Development of BE Standard for Highly Variable Drugs 4/2004 First presentation to the FDA Advisory Committee 10/2006 Second presentation to the FDA Advisory Committee 3/2007 Received the first ANDA which used the new FDA BE approach 5/2007 Critical Path Opportunities for Generic Drugs BE of HVD 1/2008 FDA OGD’s first publication on BE of HVD (Pharm. -
Warfarin Sodium
Contains Nonbinding Recommendations Draft Guidance on Warfarin Sodium This draft guidance, once finalized, will represent the Food and Drug Administration's (FDA's) current thinking on this topic. It does not create or confer any rights for or on any person and does not operate to bind FDA or the public. You can use an alternative approach if the approach satisfies the requirements of the applicable statutes and regulations. If you want to discuss an alternative approach, contact the Office of Generic Drugs. Active ingredient: Warfarin Sodium Form/Route: Tablet/Oral Recommended studies: 2 studies 1. Type of study: Fasting Design: 4-way, fully replicated crossover design in-vivo Strength: 10 mg Subjects: Healthy males and nonpregnant females, general population. Additional Comments: Warfarin has a long terminal elimination half-life. Please ensure adequate washout periods between treatments in the crossover studies. For long half-life drug products, an AUC truncated to 72 hours may be used in place of AUC0-t or AUC0-∞, as described in the Guidance for Industry: “Bioavailability and Bioequivalence Studies for Orally Administered Drug Products – General Considerations”. Applicants may consider using the reference-scaled average bioequivalence approach for warfarin described below. 2. Type of study: Fed Design: 4-way, fully replicated crossover design in-vivo Strength: 10 mg Subjects: Healthy males and nonpregnant females, general population. Additional Comments: See additional comments above. See Amantadine Hydrochloride Oral Tablet guidance -
Bioavailability and Bioequivalence Studies Submitted in Ndas Or Inds — General Considerations
Guidance for Industry Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs — General Considerations DRAFT GUIDANCE This guidance document is being distributed for comment purposes only. Comments and suggestions regarding this draft document should be submitted within 60 days of publication in the Federal Register of the notice announcing the availability of the draft guidance. Submit electronic comments to http://www.regulations.gov. Submit written comments to the Division of Dockets Management (HFA-305), Food and Drug Administration, 5630 Fishers Lane, rm. 1061, Rockville, MD 20852. All comments should be identified with the docket number listed in the notice of availability that publishes in the Federal Register. For questions regarding this draft document contact the CDER Office of Clinical Pharmacology at 301-796-5008 or [email protected]. U.S. Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research (CDER) March 2014 Biopharmaceutics Guidance for Industry Bioavailability and Bioequivalence Studies Submitted in NDAs or INDs— General Considerations Additional copies are available from: Office of Communications Division of Drug Information, WO51, Room 2201 Center for Drug Evaluation and Research Food and Drug Administration 10903 New Hampshire Avenue, Silver Spring, MD 20993 http://www.fda.gov/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/default.htm Phone: 301-796-3400; Fax: 301-847-8714 [email protected] U.S. Department of Health and Human Services Food