Pest and Disease Management Handbook

Total Page:16

File Type:pdf, Size:1020Kb

Pest and Disease Management Handbook Pest and Disease Management Handbook Edited by David V Alford BSc PhD Published for the British Crop Protection Council by Blackwell Science b Blackwell Science Pest and Disease Management Handbook Edited by David V Alford BSc PhD Published for the British Crop Protection Council by Blackwell Science b Blackwell Science # (Chapter 1) Crown copyright, 2000; British DISTRIBUTORS Crop Protection Enterprises, 2000 Marston Book Services Ltd Blackwell Science Ltd POBox 269 Editorial Offices: Abingdon Osney Mead, Oxford OX2 0EL Oxon OX14 4YN 25 John Street, London WC1N 2BS (Orders: Tel: 01235 465500 23 Ainslie Place, Edinburgh EH3 6AJ Fax: 01235 465555) 350 Main Street, Malden MA 02148 5018, USA USA 54 University Street, Carlton Blackwell Science, Inc. Victoria 3053, Australia Commerce Place 10, rue Casimir Delavigne 350 Main Street 75006 Paris, France Malden, MA 02148 5018 (Orders: Tel: 800 759 6102 Other Editorial Offices: 781 388 8250 Fax: 781 388 8255) Blackwell Wissenschafts-Verlag GmbH KurfuÈ rstendamm 57 Canada 10707 Berlin, Germany Login Brothers Book Company 324 Saulteaux Crescent Blackwell Science KK Winnipeg, Manitoba R3J 3T2 MG Kodenmacho Building (Orders: Tel: 204 837-2987 7±10 Kodenmacho Nihombashi Fax: 204 837-3116) Chuo-ko, Tokyo 104, Japan Australia The right of the Author to be identified as the Blackwell Science Pty Ltd Author of this Work has been asserted in 54 University Street accordance with the Copyright, Designs and Carlton, Victoria 3053 Patents Act 1988. (Orders: Tel: 03 9347 0300 Fax: 03 9347 5001) All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, A catalogue record for this title is available from or transmitted, in any form or by any means, the British Library electronic, mechanical, photocopying, recording ISBN 0-632-05503-0 or otherwise, except as permitted by the UK Copyright, Designs and Patents Act 1988, Library of Congress without the prior permission of the publisher. Cataloging-in-Publication Data is available First published 2000 For further information on Blackwell Science, visit our website: Set in 10/12.5pt Times www.blackwell-science.com by DP Photosetting, Aylesbury, Bucks Printed and bound in Great Britain by MPG Books Ltd, Bodmin, Cornwall The Blackwell Science logo is a trade mark of Blackwell Science Ltd, registered at the United Kingdom Trade Marks Registry Contents Foreword iv Preface v Abbreviations vii 1 Principles of pest and disease management in crop protection 1 2 Pests and diseases of cereals 19 3 Pests and diseases of oilseeds, brassica seed crops and field beans 52 4 Pests and diseases of forage and amenity grass and fodder crops 84 5 Pests and diseases of potatoes 123 6 Pests and diseases of sugar beet 166 7 Pests and diseases of field vegetables 185 8 Pests and diseases of fruit and hops 258 9 Pests and diseases of protected vegetables and mushrooms 317 10 Pests and diseases of protected ornamental flowering crops 374 11 Pests and diseases of outdoor ornamentals, including hardy nursery stock 429 12 Pests and diseases of outdoor bulbs and corms 542 Selected bibliography and further reading 560 Glossary 577 Pest index 583 Disease, pathogen and disorder index 592 General index 602 iii Foreword The British Crop Protection Council (BCPC) is a registered charity (formed in 1967) now having the principal objective of promoting the development, use and understanding of effective and sustainable crop protection practice. It brings together a wide range of organisations interested in the improvement of crop protection. The members of the Council represent the interests of government departments, the agrochemical industry, farmers' organizations, the advisory services and independent consultants, distributors, the research councils, agri- cultural engineers, environment interests, consumer groups, training and over- seas development. For over 30 years, the Council has published independently or with colla- borators a range of literature: conference proceedings, information manuals, guides and indices covering a great many aspects of crop protection. Among these have been the highly successful series of handbooks, Pest and Disease Control, and Weed Control. Each has run to several editions, evidence of their value to many sectors of UK agriculture. This has been achieved for each edition by careful choice of topics and contributors, to ensure that the contents are totally relevant to current issues and practices in the ever-changing agricultural scene. This freshness is evident in the new edition of the Pest and Disease Management Handbook. Indeed, the small but significant alteration in the title from the pre- vious 1989 edition (namely, the substitution of `control' by `management') is indicative of the changed perceptions of and attitudes towards crop protection over the past decade. The BCPC has been fortunate in obtaining the services of Dr D V Alford, with his distinguished career in applied entomology, as editor, and of a group of eminent colleagues, each bringing up-to-date knowledge of field practice to their respective chapters. I strongly recommend this new edition as a worthy successor in the series, and especially its use alongside the revised titles in the extensive BCPC book cata- logue, in particular Boom and Fruit Sprayers Handbook, Hand-held and Amenity Sprayers Handbook, The UK Pesticide Guide, Using Pesticides and The BioPes- ticide Manual. Trevor Lewis CBE Lawes Trust Senior Fellow IACR-Rothamsted iv Preface This handbook updates the third edition of the Pest and Disease Control Hand- book, a series that began life as the Insecticide and Fungicide Handbook for Crop Protection, first published in 1963. The original title ran to five editions: 1963, 1965, 1969, 1972 and 1976; the second ran to three: 1979, 1983 and 1989. This handbook differs from its immediate predecessor in excluding a range of introductory chapters that covered general topics such as the future of crop protection, the safe and efficient use of pesticides, the application of pesticides, and the principles of insecticide and fungicide evaluation. These have been replaced by a new introductory chapter on the principles of pest and disease management. This chapter (and the title of the handbook) acknowledges the advances being made in integrated crop management and the trends towards the more rational use of pesticides on UK crops. Although the main thrust of the handbook is pest and disease management, in a few cases (e.g. potato tubers) mention is made of physiological disorders. In recognition of the polarization of protected crops, the original chapter on protected crops has been subdivided into one on protected vegetable crops and mushrooms, and another on protected ornamentals. Also, `turf grass', originally included in the chapter on hardy ornamentals, has been moved to that dealing with grassland (Chapter 4); simi- larly, the topic of `bedding plants' is now included under protected flowering ornamentals (Chapter 10). Finally, to maintain emphasis on field, plantation and protected crops, chapters on `forestry pests and diseases' and `pests of stored cereals and oilseed rape' have been excluded. Chemical recommendations within the various crop-based chapters relate primarily to on-label approvals, in each case mention being made of the common name of the active ingredient. Occasionally (but more extensively in the case of horticultural crops), mention is also made of specific off-label approvals (SOLAs); these are distinguished from on-label approvals by the addition of `(off- label)', followed by the SOLA reference number, after each such entry. In some instances, authors also refer to uses under the provisions of the off-label exten- sion of use arrangements: Revised Long Term Arrangements for Extension of Use (2000). Although approved, off-label uses are not endorsed by manufacturers and such treatments are made entirely at the risk of the user. Unlike previous handbooks, dose rates for pesticides have been excluded. This is in line with the mandatory requirement for users to consult manufacturers' product labels before applying pesticides. Where a chemical pesticide is mentioned in the text of the handbook, this does not necessarily imply that all products containing the active ingredient have approval (on-label or off-label) for the use stated. Pesticide recommendations, and regulations governing their use, are under constant review, and for further information readers should consult an v vi Preface up-to-date copy of The UK Pesticide Guide, published annually by CAB Inter- national and BCPC. Readers are also reminded that, under the Control of Pest- icides Regulations 1986, it is illegal to use any pesticide except as officially approved, and approvals are constantly changing. Some pesticide manufacturers, for example, are not supporting data calls made by MAFF PSD as part of the current review of anticholinesterase compounds (mainly carbamate and organo- phosphorus pesticides). As a consequence, approvals for non-supported compounds have been revoked and the permitted usage (the use-up period) of some formulations will expire at the end of 2000 or some time in 2001. It is essential, therefore, to keep up to date with current recommendations and to consult the current manufacturer's label before applying any pesticide. Although inclusion of a classification scheme for pests (on a chapter by chapter basis) proved reasonably straightforward, that for pathogens introduced numerous difficulties as there appears to be no universally accepted system. The system finally adopted follows that recommended by Dr P. Kirk (CAB Inter- national), who kindly checked through the various lists. Guidance on nomen- clature was also provided by Dr R.T.A. Cook, Mr R.P. Hammon and Dr D.E. Stead (CSL). David V. Alford Editor Disclaimer While every effort has been made to ensure that the information in this handbook is accurate, no liability can be accepted for any error or omission in the content or for any loss, damage or other accident arising from the use of the pesticides (chemical or otherwise) cited.
Recommended publications
  • Ficus Whitefly Management in the Landscape
    Ficus Whitefly Management in the Landscape Introduction: In 2007, a whitefly [Singhiella simplex (Singh) (Hemiptera: Aleyrodidae)], new to this continent, was reported attacking ficus trees and hedges in Miami-Dade County. Currently, this pest can be found in 16 Florida counties (Brevard, Broward, Collier, Hillsborough, Indian River, Lee, Manatee, Martin, Miami- Dade, Monroe, Okeechobee, Orange, Palm Beach, Pinnellas, Sarasota, and St. Lucie). What are whiteflies? First, they are not flies or related to flies. They are small, winged insects that belong to the Order Hemiptera which also includes aphids, scales, and mealybugs. These insects typically feed on the underside of leaves with their “needle-like” mouthparts. Whiteflies can seriously injure host plants by sucking nutrients from the plant causing wilting, yellowing, stunting, leaf drop, or even death. There are more than 75 different whiteflies reported in Florida. Biology: The life cycle of the ficus whitefly is approximately one month. Eggs, which are usually laid on the underside of leaves, hatch into a crawler stage. The crawler which is very small wanders around the leaf until it begins to feed. From this point until it emerges as an adult, it remains in the same place on the plant. These Eggs feeding, non-mobile stages (nymphs) are usually oval, flat, and initially transparent. The early nymph stages can be very difficult to see. As the nymphs mature, they become more yellow in color, more convex, and their red eyes become more visible, Nymphs making them easier to see. Nymph and adult Plant Damage: The leaves of ficus trees infested with whiteflies begin to turn yellow before the leaves are dropped from the plant.
    [Show full text]
  • Correlation of Stylet Activities by the Glassy-Winged Sharpshooter, Homalodisca Coagulata (Say), with Electrical Penetration Graph (EPG) Waveforms
    ARTICLE IN PRESS Journal of Insect Physiology 52 (2006) 327–337 www.elsevier.com/locate/jinsphys Correlation of stylet activities by the glassy-winged sharpshooter, Homalodisca coagulata (Say), with electrical penetration graph (EPG) waveforms P. Houston Joosta, Elaine A. Backusb,Ã, David Morganc, Fengming Yand aDepartment of Entomology, University of Riverside, Riverside, CA 92521, USA bUSDA-ARS Crop Diseases, Pests and Genetics Research Unit, San Joaquin Valley Agricultural Sciences Center, 9611 South Riverbend Ave, Parlier, CA 93648, USA cCalifornia Department of Food and Agriculture, Mt. Rubidoux Field Station, 4500 Glenwood Dr., Bldg. E, Riverside, CA 92501, USA dCollege of Life Sciences, Peking Univerisity, Beijing, China Received 5 May 2005; received in revised form 29 November 2005; accepted 29 November 2005 Abstract Glassy-winged sharpshooter, Homalodisca coagulata (Say), is an efficient vector of Xylella fastidiosa (Xf), the causal bacterium of Pierce’s disease, and leaf scorch in almond and oleander. Acquisition and inoculation of Xf occur sometime during the process of stylet penetration into the plant. That process is most rigorously studied via electrical penetration graph (EPG) monitoring of insect feeding. This study provides part of the crucial biological meanings that define the waveforms of each new insect species recorded by EPG. By synchronizing AC EPG waveforms with high-magnification video of H. coagulata stylet penetration in artifical diet, we correlated stylet activities with three previously described EPG pathway waveforms, A1, B1 and B2, as well as one ingestion waveform, C. Waveform A1 occured at the beginning of stylet penetration. This waveform was correlated with salivary sheath trunk formation, repetitive stylet movements involving retraction of both maxillary stylets and one mandibular stylet, extension of the stylet fascicle, and the fluttering-like movements of the maxillary stylet tips.
    [Show full text]
  • Diversity and Resource Choice of Flower-Visiting Insects in Relation to Pollen Nutritional Quality and Land Use
    Diversity and resource choice of flower-visiting insects in relation to pollen nutritional quality and land use Diversität und Ressourcennutzung Blüten besuchender Insekten in Abhängigkeit von Pollenqualität und Landnutzung Vom Fachbereich Biologie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium genehmigte Dissertation von Dipl. Biologin Christiane Natalie Weiner aus Köln Berichterstatter (1. Referent): Prof. Dr. Nico Blüthgen Mitberichterstatter (2. Referent): Prof. Dr. Andreas Jürgens Tag der Einreichung: 26.02.2016 Tag der mündlichen Prüfung: 29.04.2016 Darmstadt 2016 D17 2 Ehrenwörtliche Erklärung Ich erkläre hiermit ehrenwörtlich, dass ich die vorliegende Arbeit entsprechend den Regeln guter wissenschaftlicher Praxis selbständig und ohne unzulässige Hilfe Dritter angefertigt habe. Sämtliche aus fremden Quellen direkt oder indirekt übernommene Gedanken sowie sämtliche von Anderen direkt oder indirekt übernommene Daten, Techniken und Materialien sind als solche kenntlich gemacht. Die Arbeit wurde bisher keiner anderen Hochschule zu Prüfungszwecken eingereicht. Osterholz-Scharmbeck, den 24.02.2016 3 4 My doctoral thesis is based on the following manuscripts: Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2011): Land-use intensity in grasslands: changes in biodiversity, species composition and specialization in flower-visitor networks. Basic and Applied Ecology 12 (4), 292-299. Weiner, C.N., Werner, M., Linsenmair, K.-E., Blüthgen, N. (2014): Land-use impacts on plant-pollinator networks: interaction strength and specialization predict pollinator declines. Ecology 95, 466–474. Weiner, C.N., Werner, M , Blüthgen, N. (in prep.): Land-use intensification triggers diversity loss in pollination networks: Regional distinctions between three different German bioregions Weiner, C.N., Hilpert, A., Werner, M., Linsenmair, K.-E., Blüthgen, N.
    [Show full text]
  • Managing Silverleaf Whiteflies in Cotton Phillip Roberts and Mike Toews University of Georgia
    Managing Silverleaf Whiteflies in Cotton Phillip Roberts and Mike Toews University of Georgia Following these guidelines, especially on a community Insecticide Use: basis, should result in better management of SLWF locally and areawide. The goal of SLWF management is to initiate control measures just prior to the period of most rapid SLWF • Destroy host crops immediately after harvest; this population development. It is critically important that includes vegetable and melon crops in the spring and initial insecticide applications are well timed. If you are cotton (timely defoliation and harvest) and other host late with the initial application control will be very crops in the fall. difficult and expensive in the long run. It is nearly impossible to regain control once the population reaches • Scout cotton on a regular basis for SLWF adults and outbreak proportions! immatures. • SLWF Threshold: Treat when 50 percent of sampled • The presence of SLWF should influence insecticide leaves (sample 5th expanded leaf below the terminal) selection and the decision to treat other pests. are infested with multiple immatures (≥5 per leaf). • Conserve beneficial insects; do not apply insecticides • Insect Growth Regulators (Knack and Courier): use of for ANY pests unless thresholds are exceeded. IGRs are the backbone of SLWF management • Avoid use of insecticides for other pests which are programs in cotton. Effects on SLWF populations are prone to flare SLWF. generally slow due to the life stages targeted by IGRs, however these products have long residual activity • Risk for SLWF problems: and perform very well when applied on a timely basis. • Hairy leaf > smooth leaf cotton.
    [Show full text]
  • Biodiversity of Insect Pests in Wheat Ecosystem in Mid Hills of Meghalaya
    Content list available at http://epubs.icar.org.in, www.kiran.nic.in; ISSN: 0970-6429 Indian Journal of Hill Farming December 2019, Volume 32, Issue 2, Page 350 -353 Biodiversity of Insect Pests in Wheat Ecosystem in Mid Hills of Meghalaya Nadon, W.F1* . Thakur, N.S.A1 1School of Crop Protection, College of Postgraduate Studies in Agricultural Sciences (CPGSAS), (CAU, Imphal), Umiam, Meghalaya - 793103 ARTICLE INFO ABSTRACT Article history: Studies on biodiversity of insect pests in wheat ecosystem in mid hills of Meghalaya was Received 27 June 2019 conducted in 2018-19 Rabi season at the experimental farm at College of Post Graduate Revision Received 3 October 2019 Accepted 30 October 2019 Studies in Agricultural Sciences (CPGSAS), CAU (I), Umiam, Meghalaya. Wheat crop was ----------------------------------------------- raised in 9 different plots with three sowing dates. Field surveys, observations, collection, Key words: Biodiversity, pests, major, minor, identification and preservation of insect species was done throughout the cropping season. A wheat total number of 32 species of insects were identified as pests, out of which two were identified ---------------------------------------------- as major pests (Rhopalosiphum padi (Linnaeus) and Sitobion avenae (Fabricius)) of wheat based on their infestation and damage on the crop. The remaining 30 insect species were minor pests comprising of 5 orders, viz. Hemiptera, Diptera, Coleoptera, Orthoptera and Lepidoptera; and belonged to 16 families. The collected insect species were categorized into major and minor pests based on their incidence on the wheat crop. 1. Introduction to be around 60-70%, whereby in India, agriculture is suffering around. 8.7 million rupees loss due to the attack of Wheat (Triticum aestivum, Linnaeus) is a main insect pests (Dhaliwal et al., 2010).
    [Show full text]
  • Whiteflies – Who Knew? by Carolyn Casey, Fairfax Master Gardener
    Whiteflies – Who Knew? By Carolyn Casey, Fairfax Master Gardener Have you noticed black sooty looking stuff on the leaves of your houseplants or the leaves in your vegetable garden and wondered what could be causing this unsightly mess? Or perhaps you have noticed very small bugs fly off your plant when watering or picking it up. The culprit may be whiteflies since they are easily disturbed. Whiteflies are easily recognized pests that are found on houseplants. They are not flies but resemble tiny moths that are 2 mm or 0.08 New of University Eaton, T. Alan inch long. They are in the Hemiptera order Hampshire which means they are related to aphids, photo: scale, mealybugs, hoppers and cicadas. When Whiteflies hiding on the underside of the leaf immature they may be mistaken for scale or mealybugs. It is easier to identify whitefly species when they are in their pupae stage since they have specific shapes, color patterns and wax filament arrangements. There are different species of whiteflies that vary in color from almost transparent yellow or whitish to black with a white fringe. Did you know that their name comes from the mealy white wax covering on the adult’s wings and body? Whiteflies in the Greenhouse Whitefly infestations are more serious in greenhouse environments. Most whitefly species in the garden are not major pests and are controlled by beneficial insects. Whiteflies that infest greenhouse plants may become pests in the landscape when infested greenhouse grown plants are planted outdoors. Check your plants for whiteflies before planting them in your yard and check your plants again before bringing them back indoors for winter.
    [Show full text]
  • Fruit, Vegetable, and Greenhouse Insects
    Fruit, Vegetable, and Greenhouse Insects This laboratory session covers just a few of the major insect pests of fruits, vegetables, and greenhouse crops. As is true for other topics, these are only representative species among many that are important in these crops. Fruit Key direct pests of apples and/or peaches: o plum curculio, Conotrachelus nenuphar (Herbst) (Coleoptera: Curculionidae) o codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae) o oriental fruit moth, Grapholitha molesta (Busck) (Lepidoptera: Tortricidae) o apple maggot, Rhagoletis pomonella (Walsh) (Diptera: Tephritidae) Important indirect pests of fruits o European red mite, Panonychus ulmi (Koch) (Acari: Tetranychidae) o San Jose scale, Quadraspidiotus perniciosus (Comstock) (Hemiptera: Diaspididae) Direct pest of many fruits and vegetables o lygus bugs, Lygus spp. (Hemiptera: Miridae) o spotted wing Drosophila, Drosophila suzukii (Diptera: Drosophilidae) Other often-important direct and indirect pests of fruits in the Midwest not covered in this lab include grape phylloxera, peachtree borers, Japanese beetle, potato leafhopper, aphids, spotted tentiform leafminer, white apple leafhopper, and various leafrollers. Vegetables Colorado potato beetle, Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae) Lepidoptera on plants in the cabbage family: o diamondback moth, Plutella xylostella (L.) (Lepidoptera: Plutellidae) o cabbage looper, Trichoplusia ni (Hubner) (Lepidoptera: Noctuidae) o imported cabbage worm, Pieris rapae (L.) (Lepidoptera: Pieridae)
    [Show full text]
  • Managing Uncropped Land in Order to Enhance Biodiversity Benefits of the Arable Farmed Landscape: the Farm4bio Project
    Project Report No. 508 February 2013 Managing uncropped land in order to enhance biodiversity benefits of the arable farmed landscape: The Farm4bio project February 2013 Project Report No. 508 Managing uncropped land in order to enhance biodiversity benefits of the arable farmed landscape: The Farm4bio project by J M Holland1, J Storkey2, P J W Lutman2, I Henderson3 and J Orson4 With invaluable contributions from: T Birkett1, J Simper1, BM Smith1, H Martin2, J Pell2, W Powell2, J Andrews3, D Chamberlain3, J Stenning3 and A Creasy4 1Game and Wildlife Conservation Trust, Fordingbridge, Hampshire SP6 1EF 2Rothamsted Research Harpenden, Hertfordshire AL5 2JQ 3British Trust for Ornithology, The Nunnery, Thetford, Norfolk IP24 2PU 4NIAB TAG, Morley Business Centre, Deopham Road, Morley, Wymondham, Norfolk NR18 9DF This is the final report of a 42 month project (RD-2004-3137) which started in August 2005 and was extended for one year. The work was funded by Defra, BASF, Bayer CropScience Ltd, Cotswold Seeds Ltd, Dow AgroSciences Ltd, DuPoint (UK) Ltd, Processors and Growers Research Organisation, Syngenta Ltd, The Arable Group acting on behalf of the Farmers and a contract for £198,870 from HGCA. While the Agriculture and Horticulture Development Board, operating through its HGCA division, seeks to ensure that the information contained within this document is accurate at the time of printing, no warranty is given in respect thereof and, to the maximum extent permitted by law, the Agriculture and Horticulture Development Board accepts no liability for loss, damage or injury howsoever caused (including that caused by negligence) or suffered directly or indirectly in relation to information and opinions contained in or omitted from this document.
    [Show full text]
  • Insect Control Update
    Insect Control Update Diane Alston Utah State University Extension 2006 Pesticide Recertification Workshops Topics ◘ Pest – Japanese Beetle ◘ Insect Diagnostics – Recognizing Common Insects & Plant Injury ◘ Examples of Insect Pests ◘ Woody Ornamentals ◘ Greenhouse ◘ Turf Japanese Beetle Popillia japonica Scarab Beetle First found in U.S. in 1916 Orem, Utah: July 2006 >600 adults Mating pair of adults Trap: Sex pheromone/ Floral lure Adult feeding injury to Virginia Creeper Japanese Beetle Primarily a turf pest – Larvae or grubs feed on grass roots Adults have a broad host range – Skeletonize leaves – rose, fruit trees, shade trees, grape, etc. Injury to rose Injury to crabapple Japanese Beetle Management ◘ Eradication is extremely difficult ◘ Don’t panic – it’s unlikely to have a large impact ◘ Keep plants healthy ◘ Plant non-attractive plants (lilac, forsythia, dogwood, magnolia, American Holly) ◘ If detected in turf, control larvae with insecticides (imidacloprid, carbaryl, permethrin) ◘ Traps can provide some adult suppression (75% catch; but can attract them into an area) ◘ Contact local Utah Dept. of Agriculture and Food Office Japanese Beetle Fact Sheet on USU Extension Web Site http://extension.usu.edu/files/publications/factsheet/ENT-100-06PR-A.pdf Insect Diagnosis Insect is present Injury is present What type of injury? Friend or Foe? What life stage is present? Insect Feeding Types Borers Chewing Piercing-Sucking Gall Formers Diagnosis Scouting for Pests ◘ Look at the big picture ◘ Pattern of plant decline/injury ◘ Pest injury
    [Show full text]
  • Aphid and Whitefly Management in Alfalfa in Imperial Valley, California
    APHID AND WHITEFLY MANAGEMENT IN ALFALFA IN IMPERIAL VALLEY, CALIFORNIA Eric T. Natwick and M. Lopez1 ABSTRACT In the low desert region of southern California and Arizona, spotted alfalfa aphid, Therioaphis maculata, pea aphid, Acyrthosiphon pisum, blue alfalfa aphid, Acyrthosiphon kondoi, and cowpea aphid, Aphis craccivora must be managed for successful alfalfa hay production. Considerable progress has been made toward the control of the aphid pests via host plant resistance, but insecticide applications are commonly needed to maintain population densities of aphids below damaging levels. Experiments were conducted at the University of California Desert Research and Extension Center in 1999, 2000 and 2004 to compare efficacy of registered and unregistered materials and combinations of materials for aphid control in alfalfa. The results of these three insecticide efficacy experiments indicate that cowpea aphid is susceptible to control by several different aphicides. Currently there are no cowpea aphid resistant alfalfa varieties. Therefore, cowpea aphid should be controlled using an insecticide registered for use on alfalfa when a damaging population builds up in an alfalfa stand. INTRODUCTION Although several resistant varieties have been developed and released, resistance levels have been low and variable (Lehman 1978). Insecticides still have a major role in the alfalfa insect pest management (Natwick 1987). The blue alfalfa aphid, cowpea aphid, pea aphid and spotted alfalfa aphid are commonly controlled in low desert alfalfa with chlorpyrifos or dimethoate when aphid populations reach damaging levels (Anonymous 2003, Anonymous 1985). Other insecticides used in alfalfa that provide aphid control include: carbofuran, several pyrethroid insecticides or malathion. Insecticides are applied to a large portion of the alfalfa acreage in the low desert region of the Southwestern United States each year for aphid control.
    [Show full text]
  • An Annotated Catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha)
    Zootaxa 3845 (1): 001–101 ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ Monograph ZOOTAXA Copyright © 2014 Magnolia Press ISSN 1175-5334 (online edition) http://dx.doi.org/10.11646/zootaxa.3845.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C77D93A3-6AB3-4887-8BBB-ADC9C584FFEC ZOOTAXA 3845 An annotated catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha) HASSAN GHAHARI1 & FRÉDÉRIC CHÉROT2 1Department of Plant Protection, Shahre Rey Branch, Islamic Azad University, Tehran, Iran. E-mail: [email protected] 2DEMNA, DGO3, Service Public de Wallonie, Gembloux, Belgium, U. E. E-mail: [email protected] Magnolia Press Auckland, New Zealand Accepted by M. Malipatil: 15 May 2014; published: 30 Jul. 2014 HASSAN GHAHARI & FRÉDÉRIC CHÉROT An annotated catalog of the Iranian Miridae (Hemiptera: Heteroptera: Cimicomorpha) (Zootaxa 3845) 101 pp.; 30 cm. 30 Jul. 2014 ISBN 978-1-77557-463-7 (paperback) ISBN 978-1-77557-464-4 (Online edition) FIRST PUBLISHED IN 2014 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/zootaxa/ © 2014 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing. This authorization does not extend to any other kind of copying, by any means, in any form, and for any purpose other than private research use. ISSN 1175-5326 (Print edition) ISSN 1175-5334 (Online edition) 2 · Zootaxa 3845 (1) © 2014 Magnolia Press GHAHARI & CHÉROT Table of contents Abstract .
    [Show full text]
  • Molecular Determination of the Predator Community of a Cassava Whitefly in Colombia: Pest-Specific Primer Development and field Validation
    J Pest Sci (2014) 87:125–131 DOI 10.1007/s10340-013-0509-7 ORIGINAL PAPER Molecular determination of the predator community of a cassava whitefly in Colombia: pest-specific primer development and field validation Jonathan G. Lundgren • Luis Augusto Becerra Lo´pez-Lavalle • Soroush Parsa • Kris A. G. Wyckhuys Received: 19 February 2013 / Accepted: 24 May 2013 / Published online: 8 June 2013 Ó Springer-Verlag Berlin Heidelberg (outside the USA) 2013 Abstract In South America, the whitefly Aleurotrachelus Condylostylus sp. (Diptera: Dolichopodidae), were both socialis is one of the principal pests of cassava (Manihot positive for whitefly DNA, but did not have the strongest esculenta Crantz), reaching high population levels trophic linkage to the pest relative to other predators. This throughout the Andean region. Management of this species study shows that a diverse predator community affects is primarily based upon the use of insecticides, while cassava whitefly in southern Colombia, and provides the biological control has received limited attention. Till groundwork for the design of cassava production systems present, knowledge of A. socialis natural enemies is with minimal pesticide inputs. restricted to occasional records of predators and parasit- oids. In this study, we developed PCR primer sets specific Keywords Aleurotrachelus socialis Á Biological control Á for the cassava whitefly, A. socialis, to identify their Harmonia axyridis Á Molecular gut analysis Á PCR Á predator community in Colombian cassava. Eleven percent Predator of 586 predator specimens (representing 131 taxa from 29 families) tested positive for cassava whitefly DNA. Of the 21 predator taxa that consumed cassava whiteflies, an Introduction unidentified netwing beetle (Lycidae), an unidentified spi- der species (Araneae), Harmonia axyridis (Coleoptera: Cassava is a nutritionally important crop plant for subsis- Coccinellidae), a Cereaochrysa sp.
    [Show full text]