Equivariant K-Theory
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
De Rham Cohomology
De Rham Cohomology 1. Definition of De Rham Cohomology Let X be an open subset of the plane. If we denote by C0(X) the set of smooth (i. e. infinitely differentiable functions) on X and C1(X), the smooth 1-forms on X (i. e. expressions of the form fdx + gdy where f; g 2 C0(X)), we have natural differntiation map d : C0(X) !C1(X) given by @f @f f 7! dx + dy; @x @y usually denoted by df. The kernel for this map (i. e. set of f with df = 0) is called the zeroth De Rham Cohomology of X and denoted by H0(X). It is clear that these are precisely the set of locally constant functions on X and it is a vector space over R, whose dimension is precisley the number of connected components of X. The image of d is called the set of exact forms on X. The set of pdx + qdy 2 C1(X) @p @q such that @y = @x are called closed forms. It is clear that exact forms and closed forms are vector spaces and any exact form is a closed form. The quotient vector space of closed forms modulo exact forms is called the first De Rham Cohomology and denoted by H1(X). A path for this discussion would mean piecewise smooth. That is, if γ : I ! X is a path (a continuous map), there exists a subdivision, 0 = t0 < t1 < ··· < tn = 1 and γ(t) is continuously differentiable in the open intervals (ti; ti+1) for all i. -
K-THEORY of FUNCTION RINGS Theorem 7.3. If X Is A
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of Pure and Applied Algebra 69 (1990) 33-50 33 North-Holland K-THEORY OF FUNCTION RINGS Thomas FISCHER Johannes Gutenberg-Universitit Mainz, Saarstrage 21, D-6500 Mainz, FRG Communicated by C.A. Weibel Received 15 December 1987 Revised 9 November 1989 The ring R of continuous functions on a compact topological space X with values in IR or 0Z is considered. It is shown that the algebraic K-theory of such rings with coefficients in iZ/kH, k any positive integer, agrees with the topological K-theory of the underlying space X with the same coefficient rings. The proof is based on the result that the map from R6 (R with discrete topology) to R (R with compact-open topology) induces a natural isomorphism between the homologies with coefficients in Z/kh of the classifying spaces of the respective infinite general linear groups. Some remarks on the situation with X not compact are added. 0. Introduction For a topological space X, let C(X, C) be the ring of continuous complex valued functions on X, C(X, IR) the ring of continuous real valued functions on X. KU*(X) is the topological complex K-theory of X, KO*(X) the topological real K-theory of X. The main goal of this paper is the following result: Theorem 7.3. If X is a compact space, k any positive integer, then there are natural isomorphisms: K,(C(X, C), Z/kZ) = KU-‘(X, Z’/kZ), K;(C(X, lR), Z/kZ) = KO -‘(X, UkZ) for all i 2 0. -
Math 601 Algebraic Topology Hw 4 Selected Solutions Sketch/Hint
MATH 601 ALGEBRAIC TOPOLOGY HW 4 SELECTED SOLUTIONS SKETCH/HINT QINGYUN ZENG 1. The Seifert-van Kampen theorem 1.1. A refinement of the Seifert-van Kampen theorem. We are going to make a refinement of the theorem so that we don't have to worry about that openness problem. We first start with a definition. Definition 1.1 (Neighbourhood deformation retract). A subset A ⊆ X is a neighbourhood defor- mation retract if there is an open set A ⊂ U ⊂ X such that A is a strong deformation retract of U, i.e. there exists a retraction r : U ! A and r ' IdU relA. This is something that is true most of the time, in sufficiently sane spaces. Example 1.2. If Y is a subcomplex of a cell complex, then Y is a neighbourhood deformation retract. Theorem 1.3. Let X be a space, A; B ⊆ X closed subspaces. Suppose that A, B and A \ B are path connected, and A \ B is a neighbourhood deformation retract of A and B. Then for any x0 2 A \ B. π1(X; x0) = π1(A; x0) ∗ π1(B; x0): π1(A\B;x0) This is just like Seifert-van Kampen theorem, but usually easier to apply, since we no longer have to \fatten up" our A and B to make them open. If you know some sheaf theory, then what Seifert-van Kampen theorem really says is that the fundamental groupoid Π1(X) is a cosheaf on X. Here Π1(X) is a category with object pints in X and morphisms as homotopy classes of path in X, which can be regard as a global version of π1(X). -
Open Sets in Topological Spaces
International Mathematical Forum, Vol. 14, 2019, no. 1, 41 - 48 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/imf.2019.913 ii – Open Sets in Topological Spaces Amir A. Mohammed and Beyda S. Abdullah Department of Mathematics College of Education University of Mosul, Mosul, Iraq Copyright © 2019 Amir A. Mohammed and Beyda S. Abdullah. This article is distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this paper, we introduce a new class of open sets in a topological space called 푖푖 − open sets. We study some properties and several characterizations of this class, also we explain the relation of 푖푖 − open sets with many other classes of open sets. Furthermore, we define 푖푤 − closed sets and 푖푖푤 − closed sets and we give some fundamental properties and relations between these classes and other classes such as 푤 − closed and 훼푤 − closed sets. Keywords: 훼 − open set, 푤 − closed set, 푖 − open set 1. Introduction Throughout this paper we introduce and study the concept of 푖푖 − open sets in topological space (푋, 휏). The 푖푖 − open set is defined as follows: A subset 퐴 of a topological space (푋, 휏) is said to be 푖푖 − open if there exist an open set 퐺 in the topology 휏 of X, such that i. 퐺 ≠ ∅,푋 ii. A is contained in the closure of (A∩ 퐺) iii. interior points of A equal G. One of the classes of open sets that produce a topological space is 훼 − open. -
MTH 304: General Topology Semester 2, 2017-2018
MTH 304: General Topology Semester 2, 2017-2018 Dr. Prahlad Vaidyanathan Contents I. Continuous Functions3 1. First Definitions................................3 2. Open Sets...................................4 3. Continuity by Open Sets...........................6 II. Topological Spaces8 1. Definition and Examples...........................8 2. Metric Spaces................................. 11 3. Basis for a topology.............................. 16 4. The Product Topology on X × Y ...................... 18 Q 5. The Product Topology on Xα ....................... 20 6. Closed Sets.................................. 22 7. Continuous Functions............................. 27 8. The Quotient Topology............................ 30 III.Properties of Topological Spaces 36 1. The Hausdorff property............................ 36 2. Connectedness................................. 37 3. Path Connectedness............................. 41 4. Local Connectedness............................. 44 5. Compactness................................. 46 6. Compact Subsets of Rn ............................ 50 7. Continuous Functions on Compact Sets................... 52 8. Compactness in Metric Spaces........................ 56 9. Local Compactness.............................. 59 IV.Separation Axioms 62 1. Regular Spaces................................ 62 2. Normal Spaces................................ 64 3. Tietze's extension Theorem......................... 67 4. Urysohn Metrization Theorem........................ 71 5. Imbedding of Manifolds.......................... -
Compact Non-Hausdorff Manifolds
A.G.M. Hommelberg Compact non-Hausdorff Manifolds Bachelor Thesis Supervisor: dr. D. Holmes Date Bachelor Exam: June 5th, 2014 Mathematisch Instituut, Universiteit Leiden 1 Contents 1 Introduction 3 2 The First Question: \Can every compact manifold be obtained by glueing together a finite number of compact Hausdorff manifolds?" 4 2.1 Construction of (Z; TZ ).................................5 2.2 The space (Z; TZ ) is a Compact Manifold . .6 2.3 A Negative Answer to our Question . .8 3 The Second Question: \If (R; TR) is a compact manifold, is there always a surjective ´etale map from a compact Hausdorff manifold to R?" 10 3.1 Construction of (R; TR)................................. 10 3.2 Etale´ maps and Covering Spaces . 12 3.3 A Negative Answer to our Question . 14 4 The Fundamental Groups of (R; TR) and (Z; TZ ) 16 4.1 Seifert - Van Kampen's Theorem for Fundamental Groupoids . 16 4.2 The Fundamental Group of (R; TR)........................... 19 4.3 The Fundamental Group of (Z; TZ )........................... 23 2 Chapter 1 Introduction One of the simplest examples of a compact manifold (definitions 2.0.1 and 2.0.2) that is not Hausdorff (definition 2.0.3), is the space X obtained by glueing two circles together in all but one point. Since the circle is a compact Hausdorff manifold, it is easy to prove that X is indeed a compact manifold. It is also easy to show X is not Hausdorff. Many other examples of compact manifolds that are not Hausdorff can also be created by glueing together compact Hausdorff manifolds. -
General Topology
General Topology Tom Leinster 2014{15 Contents A Topological spaces2 A1 Review of metric spaces.......................2 A2 The definition of topological space.................8 A3 Metrics versus topologies....................... 13 A4 Continuous maps........................... 17 A5 When are two spaces homeomorphic?................ 22 A6 Topological properties........................ 26 A7 Bases................................. 28 A8 Closure and interior......................... 31 A9 Subspaces (new spaces from old, 1)................. 35 A10 Products (new spaces from old, 2)................. 39 A11 Quotients (new spaces from old, 3)................. 43 A12 Review of ChapterA......................... 48 B Compactness 51 B1 The definition of compactness.................... 51 B2 Closed bounded intervals are compact............... 55 B3 Compactness and subspaces..................... 56 B4 Compactness and products..................... 58 B5 The compact subsets of Rn ..................... 59 B6 Compactness and quotients (and images)............. 61 B7 Compact metric spaces........................ 64 C Connectedness 68 C1 The definition of connectedness................... 68 C2 Connected subsets of the real line.................. 72 C3 Path-connectedness.......................... 76 C4 Connected-components and path-components........... 80 1 Chapter A Topological spaces A1 Review of metric spaces For the lecture of Thursday, 18 September 2014 Almost everything in this section should have been covered in Honours Analysis, with the possible exception of some of the examples. For that reason, this lecture is longer than usual. Definition A1.1 Let X be a set. A metric on X is a function d: X × X ! [0; 1) with the following three properties: • d(x; y) = 0 () x = y, for x; y 2 X; • d(x; y) + d(y; z) ≥ d(x; z) for all x; y; z 2 X (triangle inequality); • d(x; y) = d(y; x) for all x; y 2 X (symmetry). -
The Seifert-Van Kampen Theorem Via Covering Spaces
Treball final de grau GRAU DE MATEMÀTIQUES Facultat de Matemàtiques i Informàtica Universitat de Barcelona The Seifert-Van Kampen theorem via covering spaces Autor: Roberto Lara Martín Director: Dr. Javier José Gutiérrez Marín Realitzat a: Departament de Matemàtiques i Informàtica Barcelona, 29 de juny de 2017 Contents Introduction ii 1 Category theory 1 1.1 Basic terminology . .1 1.2 Coproducts . .6 1.3 Pushouts . .7 1.4 Pullbacks . .9 1.5 Strict comma category . 10 1.6 Initial objects . 12 2 Groups actions 13 2.1 Groups acting on sets . 13 2.2 The category of G-sets . 13 3 Homotopy theory 15 3.1 Homotopy of spaces . 15 3.2 The fundamental group . 15 4 Covering spaces 17 4.1 Definition and basic properties . 17 4.2 The category of covering spaces . 20 4.3 Universal covering spaces . 20 4.4 Galois covering spaces . 25 4.5 A relation between covering spaces and the fundamental group . 26 5 The Seifert–van Kampen theorem 29 Bibliography 33 i Introduction The Seifert-Van Kampen theorem describes a way of computing the fundamen- tal group of a space X from the fundamental groups of two open subspaces that cover X, and the fundamental group of their intersection. The classical proof of this result is done by analyzing the loops in the space X and deforming them into loops in the subspaces. For all the details of such proof see [1, Chapter I]. The aim of this work is to provide an alternative proof of this theorem using covering spaces, sets with actions of groups and category theory. -
DEFINITIONS and THEOREMS in GENERAL TOPOLOGY 1. Basic
DEFINITIONS AND THEOREMS IN GENERAL TOPOLOGY 1. Basic definitions. A topology on a set X is defined by a family O of subsets of X, the open sets of the topology, satisfying the axioms: (i) ; and X are in O; (ii) the intersection of finitely many sets in O is in O; (iii) arbitrary unions of sets in O are in O. Alternatively, a topology may be defined by the neighborhoods U(p) of an arbitrary point p 2 X, where p 2 U(p) and, in addition: (i) If U1;U2 are neighborhoods of p, there exists U3 neighborhood of p, such that U3 ⊂ U1 \ U2; (ii) If U is a neighborhood of p and q 2 U, there exists a neighborhood V of q so that V ⊂ U. A topology is Hausdorff if any distinct points p 6= q admit disjoint neigh- borhoods. This is almost always assumed. A set C ⊂ X is closed if its complement is open. The closure A¯ of a set A ⊂ X is the intersection of all closed sets containing X. A subset A ⊂ X is dense in X if A¯ = X. A point x 2 X is a cluster point of a subset A ⊂ X if any neighborhood of x contains a point of A distinct from x. If A0 denotes the set of cluster points, then A¯ = A [ A0: A map f : X ! Y of topological spaces is continuous at p 2 X if for any open neighborhood V ⊂ Y of f(p), there exists an open neighborhood U ⊂ X of p so that f(U) ⊂ V . -
Classification of Compact 2-Manifolds
Virginia Commonwealth University VCU Scholars Compass Theses and Dissertations Graduate School 2016 Classification of Compact 2-manifolds George H. Winslow Virginia Commonwealth University Follow this and additional works at: https://scholarscompass.vcu.edu/etd Part of the Geometry and Topology Commons © The Author Downloaded from https://scholarscompass.vcu.edu/etd/4291 This Thesis is brought to you for free and open access by the Graduate School at VCU Scholars Compass. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of VCU Scholars Compass. For more information, please contact [email protected]. Abstract Classification of Compact 2-manifolds George Winslow It is said that a topologist is a mathematician who can not tell the difference between a doughnut and a coffee cup. The surfaces of the two objects, viewed as topological spaces, are homeomorphic to each other, which is to say that they are topologically equivalent. In this thesis, we acknowledge some of the most well-known examples of surfaces: the sphere, the torus, and the projective plane. We then ob- serve that all surfaces are, in fact, homeomorphic to either the sphere, the torus, a connected sum of tori, a projective plane, or a connected sum of projective planes. Finally, we delve into algebraic topology to determine that the aforementioned sur- faces are not homeomorphic to one another, and thus we can place each surface into exactly one of these equivalence classes. Thesis Director: Dr. Marco Aldi Classification of Compact 2-manifolds by George Winslow Bachelor of Science University of Mary Washington Submitted in Partial Fulfillment of the Requirements for the Degree of Master of Science in the Department of Mathematics Virginia Commonwealth University 2016 Dedication For Lily ii Abstract It is said that a topologist is a mathematician who can not tell the difference between a doughnut and a coffee cup. -
Compact and Totally Bounded Metric Spaces
Appendix A Compact and Totally Bounded Metric Spaces Definition A.0.1 (Diameter of a set) The diameter of a subset E in a metric space (X, d) is the quantity diam(E) = sup d(x, y). x,y∈E ♦ Definition A.0.2 (Bounded and totally bounded sets)A subset E in a metric space (X, d) is said to be 1. bounded, if there exists a number M such that E ⊆ B(x, M) for every x ∈ E, where B(x, M) is the ball centred at x of radius M. Equivalently, d(x1, x2) ≤ M for every x1, x2 ∈ E and some M ∈ R; > { ,..., } 2. totally bounded, if for any 0 there exists a finite subset x1 xn of X ( , ) = ,..., = such that the (open or closed) balls B xi , i 1 n cover E, i.e. E n ( , ) i=1 B xi . ♦ Clearly a set is bounded if its diameter is finite. We will see later that a bounded set may not be totally bounded. Now we prove the converse is always true. Proposition A.0.1 (Total boundedness implies boundedness) In a metric space (X, d) any totally bounded set E is bounded. Proof Total boundedness means we may choose = 1 and find A ={x1,...,xn} in X such that for every x ∈ E © The Editor(s) (if applicable) and The Author(s), under exclusive 429 license to Springer Nature Switzerland AG 2020 S. Gentili, Measure, Integration and a Primer on Probability Theory, UNITEXT 125, https://doi.org/10.1007/978-3-030-54940-4 430 Appendix A: Compact and Totally Bounded Metric Spaces inf d(xi , x) ≤ 1. -
16. Compactness
16. Compactness 1 Motivation While metrizability is the analyst's favourite topological property, compactness is surely the topologist's favourite topological property. Metric spaces have many nice properties, like being first countable, very separative, and so on, but compact spaces facilitate easy proofs. They allow you to do all the proofs you wished you could do, but never could. The definition of compactness, which we will see shortly, is quite innocuous looking. What compactness does for us is allow us to turn infinite collections of open sets into finite collections of open sets that do essentially the same thing. Compact spaces can be very large, as we will see in the next section, but in a strong sense every compact space acts like a finite space. This behaviour allows us to do a lot of hands-on, constructive proofs in compact spaces. For example, we can often take maxima and minima where in a non-compact space we would have to take suprema and infima. We will be able to intersect \all the open sets" in certain situations and end up with an open set, because finitely many open sets capture all the information in the whole collection. We will specifically prove an important result from analysis called the Heine-Borel theorem n that characterizes the compact subsets of R . This result is so fundamental to early analysis courses that it is often given as the definition of compactness in that context. 2 Basic definitions and examples Compactness is defined in terms of open covers, which we have talked about before in the context of bases but which we formally define here.