Thermodynamic Analysis of Petrol and Diesel Engines
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Within the Industry
GROWING GALLONS WITHIN THE INDUSTRY Propane autogas is the leading alternative fuel in world — powering more than 25 million vehicles worldwide. The U.S. propane-autogas-powered vehicle market lags in acceptance with just over 200,000 vehicles. The propane industry fleet accounts for a small, but growing, percentage of the overall population. Thanks to recent improvements in propane autogas fuel system technology, a growing number of propane marketers are choosing propane autogas rather than diesel and gasoline powered engines when they specify and purchase vehicles. The original objective of this paper was to define the status of converting the propane industry’s fleet to our fuel and identify barriers that were obstructing growth in this industry and others. In this edition, we want to share an industry status update as well as recent successes in the expansion of propane autogas. Today, more marketers are choosing propane autogas for their fleets. As this report outlines, propane autogas is providing significant overall total cost-of-ownership (TCO) savings that translates into profits for all marketers regardless of fleet size. PROPANE AUTOGAS VEHICLES of the current propane vehicles requires an investment, but that Like other transportation markets, the propane industry follows investment is paying off in many ways. Pickup trucks, manager and standard practices when specifying and purchasing class 1-8 service vehicles, bobtails, and cylinder rack trucks all are available vehicles to safely transport payload, optimize vehicle performance, from multiple brands in both dedicated and bi-fuel models. These and provide the highest possible returns for their stakeholders. options provide comparable performance to conventional fuels with Propane autogas is becoming the choice for many marketer fleets a much lower TCO and much quicker ROI. -
ACEA – E10 Petrol Fuel: Vehicle Compatibility List
List of ACEA member company petrol vehicles compatible with using ‘E10’ petrol 1. Important notes applicable for the complete list hereunder The European Union Fuel Quality Directive (1) introduced a new market petrol specification from 1st January 2011 that may contain up to 10% ethanol by volume (10 %vol). Such petrol is commonly known as ‘E10’. It is up to the individual country of the European Union and fuel marketers to decide if and when to introduce E10 petrol to the market and so far E10 petrol has only been introduced in Finland, France, Germany and Belgium. For vehicles equipped with a spark-ignition (petrol) engine introduced into the EU market, this list indicates their compatibility (or otherwise) with the use of E10 petrol. 2. Note In countries that offer E10 petrol, before you fill your vehicle with petrol please check that your vehicle is compatible with the use of E10 petrol. If, by mistake, you put E10 petrol into a vehicle that is not declared compatible with the use of E10 petrol, it is recommended that you contact your local vehicle dealer, the vehicle manufacturer or roadside assistance provider who may advise that the fuel tank be drained. If it is necessary to drain the fuel from the tank then you should ensure it is done by a competent organisation and the tank is refilled with the correct grade of petrol for your vehicle. Owners experiencing any issues when using E10 petrol are advised to contact their local vehicle dealer or vehicle manufacturer and to use instead 95RON (or 98RON) petrol that might be identified by ‘E5’ (or have no specific additional marking) in those countries that offer E10 petrol. -
Internal and External Combustion Engine Classifications: Gasoline
Internal and External Combustion Engine Classifications: Gasoline and diesel engine classifications: A gasoline (Petrol) engine or spark ignition (SI) burns gasoline, and the fuel is metered into the intake manifold. Spark plug ignites the fuel. A diesel engine or (compression ignition Cl) bums diesel oil, and the fuel is injected right into the engine combustion chamber. When fuel is injected into the cylinder, it self ignites and bums. Preparation of fuel air mixture (gasoline engine): * High calorific value: (Benzene (Gasoline) 40000 kJ/kg, Diesel 45000 kJ/kg). * Air-fuel ratio: A chemically correct air-fuel ratio is called stoichiometric mixture. It is an ideal ratio of around 14.7:1 (14.7 parts of air to 1 part fuel by weight). Under steady-state engine condition, this ratio of air to fuel would assure that all of the fuel will blend with all of the air and be burned completely. A lean fuel mixture containing a lot of air compared to fuel, will give better fuel economy and fewer exhaust emissions (i.e. 17:1). A rich fuel mixture: with a larger percentage of fuel, improves engine power and cold engine starting (i.e. 8:1). However, it will increase emissions and fuel consumption. * Gasoline density = 737.22 kg/m3, air density (at 20o) = 1.2 kg/m3 The ratio 14.7 : 1 by weight equal to 14.7/1.2 : 1/737.22 = 12.25 : 0.0013564 The ratio is 9,030 : 1 by volume (one liter of gasoline needs 9.03 m3 of air to have complete burning). -
Technical Report: Engine and Emission System Technology
Technical Report: Engine and Emission System Technology Spark Ignition Petrol: Euro 5 & Beyond - Light Duty V ehicles © Copyright 2016 ABMARC Disclaimer By accepting this report from ABMARC you acknowledge and agree to the terms as set out below. This Disclaimer and denial of Liability will continue and shall apply to all dealings of whatsoever nature conducted between ABMARC and yourselves relevant to this report unless specifically varied in writing. ABMARC has no means of knowing how the report’s recommendations and or information provide d to you will be applied and or used and therefore denies any liability for any losses, damages or otherwise as may be suffered by you as a result of your use of same. Reports, recommendations made or information provided to you by ABMARC are based on ext ensive and careful research of information some of which may be provided by yourselves and or third parties to ABMARC. Information is constantly changing and therefore ABMARC accepts no responsibility to you for its continuing accuracy and or reliability. Our Reports are based on the best available information obtainable at the time but due to circumstances and factors out of our control could change significantly very quickly. Care should be taken by you in ensuring that the report is appropriate for your needs and purposes and ABMARC makes no warranty that it is. You acknowledge and agree that this Disclaimer and Denial of Liability extends to all Employees and or Contractors working for ABMARC. You agree that any rights or remedies available to you pursuant to relevant Legislation shall be limited to the Laws of the State of Victoria and to the extent permitted by law shall be limited to such monies as paid by you for the re levant report, recommendations and or information. -
A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines
energies Review A Review of Performance-Enhancing Innovative Modifications in Biodiesel Engines T. M. Yunus Khan 1,2 1 Research Center for Advanced Materials Science (RCAMS), King Khalid University, PO Box 9004, Abha 61413, Saudi Arabia; [email protected] 2 Department of Mechanical Engineering, College of Engineering, King Khalid University, Abha 61421, Saudi Arabia Received: 1 August 2020; Accepted: 24 August 2020; Published: 26 August 2020 Abstract: The ever-increasing demand for transport is sustained by internal combustion (IC) engines. The demand for transport energy is large and continuously increasing across the globe. Though there are few alternative options emerging that may eliminate the IC engine, they are in a developing stage, meaning the burden of transportation has to be borne by IC engines until at least the near future. Hence, IC engines continue to be the prime mechanism to sustain transportation in general. However, the scarcity of fossil fuels and its rising prices have forced nations to look for alternate fuels. Biodiesel has been emerged as the replacement of diesel as fuel for diesel engines. The use of biodiesel in the existing diesel engine is not that efficient when it is compared with diesel run engine. Therefore, the biodiesel engine must be suitably improved in its design and developments pertaining to the intake manifold, fuel injection system, combustion chamber and exhaust manifold to get the maximum power output, improved brake thermal efficiency with reduced fuel consumption and exhaust emissions that are compatible with international standards. This paper reviews the efforts put by different researchers in modifying the engine components and systems to develop a diesel engine run on biodiesel for better performance, progressive combustion and improved emissions. -
And Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2
DOT HS 812 194 February 2016 Commercial Medium- and Heavy-Duty Truck Fuel Efficiency Technology Study – Report #2 This publication is distributed by the U.S. Department of Transportation, National Highway Traffic Safety Administration, in the interest of information exchange. The opinions, findings and conclusions expressed in this publication are those of the author and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its content or use thereof. If trade or manufacturers’ names or products are mentioned, it is because they are considered essential to the object of the publication and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. Suggested APA Format Citation: Reinhart, T. E. (2016, February). Commercial medium- and heavy-duty truck fuel efficiency technology study – Report #2. (Report No. DOT HS 812 194). Washington, DC: National Highway Traffic Safety Administration. TECHNICAL REPORT DOCUMENTATION PAGE 1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. DOT HS 812 194 4. Title and Subtitle 5. Report Date Commercial Medium- and Heavy-Duty Truck Fuel Efficiency February 2016 Technology Study – Report #2 6. Performing Organization Code 7. Author(s) 8. Performing Organization Report No. Thomas E. Reinhart, Institute Engineer SwRI Project No. 03.17869 9. Performing Organization Name and Address 10. Work Unit No. (TRAIS) Southwest Research Institute 6220 Culebra Rd. 11. Contract or Grant No. San Antonio, TX 78238 GS-23F-0006M/DTNH22- 12-F-00428 12. Sponsoring Agency Name and Address 13. -
Shifting Gears: the Effect of a Future Decline in Diesel Market Share On
WHITE PAPER JULY 2017 SHIFTING GEARS: THE EFFECTS OF A FUTURE DECLINE IN DIESEL MARKET SHARE ON TAILPIPE CO2 AND NOX EMISSIONS IN EUROPE Sonsoles Díaz, Josh Miller, Peter Mock, Ray Minjares, Susan Anenberg, Dan Meszler www.theicct.org [email protected] BEIJING | BERLIN | BRUSSELS | SAN FRANCISCO | WASHINGTON ACKNOWLEDGMENTS The authors thank the reviewers of this report for their guidance and constructive comments, with special thanks to Anup Bandivadekar, John German, Uwe Tietge, Dan Rutherford and two anonymous reviewers. For additional information: International Council on Clean Transportation Europe Neue Promenade 6, 10178 Berlin +49 (30) 847129-102 [email protected] | www.theicct.org | @TheICCT © 2017 International Council on Clean Transportation Funding for this work was generously provided by the ClimateWorks Foundation and Stiftung Mercator. SHIFTING GEARS: THE EFFECTS OF A FUTURE DECLINE IN DIESEL MARKET SHARE EXECUTIVE SUMMARY Diesel vehicles currently account for more than half of new light-duty vehicle registrations in Europe. Previous ICCT analyses of the costs of attaining more stringent CO2 emission standards assumed a constant diesel market share in future years. However, the diesel market share in Europe could decrease in future years as a result of a combination of forces, including changing consumer choices in the wake of the defeat device scandal; vehicle manufacturers shifting away from diesel technology in response to tighter NOX emission standards and real-driving emissions testing; availability of cheaper and more powerful electric and hybrid cars; and government programs to discourage diesel vehicle use (e.g., by restricting their circulation, or increasing taxes on diesel fuel). A decreasing market share of diesel passenger cars could have broad implications for the cost of attaining CO2 emission targets and the magnitude of fleetwide NOX emissions. -
Bringing Biofuels on the Market
Bringing biofuels on the market Options to increase EU biofuels volumes beyond the current blending limits Report Delft, July 2013 Author(s): Bettina Kampman (CE Delft) Ruud Verbeek (TNO) Anouk van Grinsven (CE Delft) Pim van Mensch (TNO) Harry Croezen (CE Delft) Artur Patuleia (TNO) Publication Data Bibliographical data: Bettina Kampman (CE Delft), Ruud Verbeek (TNO), Anouk van Grinsven (CE Delft), Pim van Mensch (TNO), Harry Croezen (CE Delft), Artur Patuleia (TNO) Bringing biofuels on the market Options to increase EU biofuels volumes beyond the current blending limits Delft, CE Delft, July 2013 Fuels / Renewable / Blends / Increase / Market / Scenarios / Policy / Technical / Measures / Standards FT: Biofuels Publication code: 13.4567.46 CE Delft publications are available from www.cedelft.eu Commissioned by: The European Commission, DG Energy. Further information on this study can be obtained from the contact person, Bettina Kampman. Disclaimer: This study Bringing biofuels on the market. Options to increase EU biofuels volumes beyond the current blending limits was produced for the European Commission by the consortium of CE Delft and TNO. The views represented in the report are those of its authors and do not represent the views or official position of the European Commission. The European Commission does not guarantee the accuracy of the data included in this report, nor does it accept responsibility for any use made thereof. © copyright, CE Delft, Delft CE Delft Committed to the Environment CE Delft is an independent research and consultancy organisation specialised in developing structural and innovative solutions to environmental problems. CE Delft’s solutions are characterised in being politically feasible, technologically sound, economically prudent and socially equitable. -
A Review: Concept of Diesel Vapor Combustion System
ISSN(Online) : 2319-8753 ISSN (Print) : 2347-6710 International Journal of Innovative Research in Science, Engineering and Technology (An ISO 3297: 2007 Certified Organization) Vol. 5, Issue 4, April 2016 A Review: Concept of Diesel Vapor Combustion System Vijayeshwar.B.V P.G. Student, Department of Mechanical Engineering, Sri Venkateshwara College of Engineering, Bangalore, Karnataka, India ABSTRACT: This paper presents a concept of technique for delivery of heavy fuel oil (diesel fuel) in vapour form (gaseous state) to SI engine manifold and process of combustion of heavy fuel oil mixture (vapour and air) in light weight spark-ignition engines. If the diesel fuel is delivered to SI engine combustion chamber in vapour form (diesel fumes) through a technique of vaporization of diesel fuel and mixing of air-fuel, complete combustion of air-fuel mixture can be achieved, more improved mileage can be obtained with less emissions without compromising with engine performance aspects which is the must required criteria for any automobile. Here the principle used in vaporization of diesel is a hot air vaporization technique, where hot air is supplied at the bottom diesel sub tank/ vaporizing container as a result of which these air bubbles extract the diesel vapours forming diesel fumes from liquid diesel and these diesel vapours when delivered to engine with appropriate mixing with air and when undergoes combustion gives the above expected results. KEYWORDS: diesel fuel vapours, fuel vaporizer, air-fuel mixture, vapour combustion, reduced emission. I. INTRODUCTION The diesel engine (also known as a compression-ignition or CI engine) is an internal combustion engine in which ignition of the fuel that has been injected into the combustion chamber is initiated by the high temperature which a gas achieves when greatly compressed (adiabatic compression). -
Study of Modified Internal Combustion Engine to Run with Ethanol
International Journal of Engineering and Applied Sciences (IJEAS) ISSN: 2394-3661, Volume-4, Issue-8, August 2017 Study of Modified Internal Combustion Engine to Run with ‘Ethanol’ Sajag Poudel, Dipan Deb Abstract— Moving across the emerging trends of renewable A. Properties of Ethanol energy sources, ethanol has attracted more attention because it is considered as a renewable resource and is easily obtained Boiling Point: 70oC Melting Point: -114oC from sugar or starch. Moreover, ethanol fuel as an IC engine Density: 789kg/m3 Calorific Fuel Value: 29 MJ/kg fuel would be able to solve the issue of carbon emission and environmental pollution. Ethanol can replace conventional Table I. Properties of different fuels gasoline to be used as a fuel for automotive. This paper is about the results and analysis obtained during the test of an IC engine Fuel CV CV Octane with ethanol before and after modification. As we want to run an IC engine with ethanol, its physical and chemical properties (MJ/L) (MJ/kg) Number play crucial role. Due to different physical & chemical Ethanol (E100) 21.2 29.7 108.6 properties of ethanol than that of gasoline, proper engine Ethanol 85% blend 25.2 33.2 105 parameters should be maintained in gasoline engine to run it (E85) with ethanol i.e. the stoichiometric ratio needs to be maintained. Pure 34.8 44.4 91 An attempt to test gasoline based IC engine using ethanol initially didn’t give promising result in terms of efficiency and gasoline/petrol (E0) mileage. Carburetor of engine was modified so as to maintain proper stoichiometric ratio which improved the brake power of B. -
Biodiesel Fleet Durability Study
Draft Final Report Biodiesel Fleet Durability Study Prepared for: Mr. Bob Okamoto California Air Resources Board 1001 "I" Street P.O. Box 2815 Sacramento, CA 95812 July 2010 Submitted by: Dr. Thomas D. Durbin Dr. J. Wayne Miller Ms. S. Michelle Jiang University of California CE-CERT Riverside, CA 92521 951-781-5791 951-781-5790 (fax) Disclaimer This report was prepared as an account of work sponsored by the California Air Resource Board. The statements and conclusions in this report are those of the contractor and not necessarily those of California Air Resources Board. The mention of commercial products, their source, or their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products. Acknowledgments We acknowledge funding from the California Air Resources Board (CARB) under the grant No. G06-AF38. i Table of Contents Disclaimer i Acknowledgments i Table of Contents ii List of Tables iv Table of Figures v Abstract vi Acronyms and Abbreviations viii Executive Summary ix 1 Introduction 1 2 Biodiesel Use in Use in Compression Ignition Engines 3 2.1 Biodiesel Basics 3 2.1.1 What is Biodiesel? 3 2.1.2 Properties of Commercial #2 Diesel and Biodiesel Fuels 3 2.1.3 Biodiesel Fuel Standards 5 2.2 Engine and Fuel System with Biodiesel Use 7 2.2.1 Biodiesel Use in Compression Ignition Engines 7 2.2.2 Statement of the Diesel Fuel Injector Manufacturers 9 2.2.3 Warranties 9 2.2.4 Engine Performance 12 2.2.5 Biodiesel Solvency & Filter Plugging 12 2.2.6 Materials Compatibility 12 2.3 -
Comparison of Transport Fuels
COMPARISON OF TRANSPORT FUELS FINAL REPORT (EV45A/2/F3C) to the AUSTRALIAN GREENHOUSE OFFICE on the Stage 2 study of Life-cycle Emissions Analysis of Alternative Fuels for Heavy Vehicles By Tom Beer1,2, Tim Grant3, Geoff Morgan4, Jack Lapszewicz5, Peter Anyon6, Jim Edwards7, Peter Nelson7, Harry Watson8 & David Williams7 1 CSIRO Atmospheric Research, Aspendale, Vic. 2 CSIRO Environmental Risk Network, Aspendale, Vic. 3 RMIT Centre for Design, Melbourne, Vic. 4 Southern Cross Institute of Health Research, Lismore, NSW 5 CSIRO Energy Technology, Lucas Heights, NSW 6 Parsons Australia Pty Ltd 7 CSIRO Energy Technology, North Ryde, NSW 8 University of Melbourne, Department of Mechanical and Manufacturing Engineering, Parkville, Vic. in association with and Parsons Australia Pty Ltd Southern Cross Institute of Health Research Contact Dr Tom Beer Co-ordinator CSIRO Environmental Risk Network Private Bag 1 Aspendale, Vic. 3195 Australia Phone: (03) 9239 4400 Fax: (03) 9239 4444 International: + 613 9239 4400 Fax +613 9239 4444 e-mail: [email protected] EV45A_2P0_F3C_Part0 ii Table of Contents Acronyms..................................................................................................................................ix Glossary of Terms ....................................................................................................................xii Executive Summary..................................................................................................................xv Part 1 1. Background.....................................................................................................................1