From Collisions to Chosen-Prefix Collisions Application to Full SHA-1
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher
Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher Florian Mendel1, Thomas Peyrin2, Christian Rechberger1, and Martin Schl¨affer1 1 IAIK, Graz University of Technology, Austria 2 Ingenico, France [email protected],[email protected] Abstract. In this paper, we propose two new ways to mount attacks on the SHA-3 candidates Grøstl, and ECHO, and apply these attacks also to the AES. Our results improve upon and extend the rebound attack. Using the new techniques, we are able to extend the number of rounds in which available degrees of freedom can be used. As a result, we present the first attack on 7 rounds for the Grøstl-256 output transformation3 and improve the semi-free-start collision attack on 6 rounds. Further, we present an improved known-key distinguisher for 7 rounds of the AES block cipher and the internal permutation used in ECHO. Keywords: hash function, block cipher, cryptanalysis, semi-free-start collision, known-key distinguisher 1 Introduction Recently, a new wave of hash function proposals appeared, following a call for submissions to the SHA-3 contest organized by NIST [26]. In order to analyze these proposals, the toolbox which is at the cryptanalysts' disposal needs to be extended. Meet-in-the-middle and differential attacks are commonly used. A recent extension of differential cryptanalysis to hash functions is the rebound attack [22] originally applied to reduced (7.5 rounds) Whirlpool (standardized since 2000 by ISO/IEC 10118-3:2004) and a reduced version (6 rounds) of the SHA-3 candidate Grøstl-256 [14], which both have 10 rounds in total. -
Increasing Cryptography Security Using Hash-Based Message
ISSN (Print) : 2319-8613 ISSN (Online) : 0975-4024 Seyyed Mehdi Mousavi et al. / International Journal of Engineering and Technology (IJET) Increasing Cryptography Security using Hash-based Message Authentication Code Seyyed Mehdi Mousavi*1, Dr.Mohammad Hossein Shakour 2 1-Department of Computer Engineering, Shiraz Branch, Islamic AzadUniversity, Shiraz, Iran . Email : [email protected] 2-Assistant Professor, Department of Computer Engineering, Shiraz Branch, Islamic Azad University ,Shiraz ,Iran Abstract Nowadays, with the fast growth of information and communication technologies (ICTs) and the vulnerabilities threatening human societies, protecting and maintaining information is critical, and much attention should be paid to it. In the cryptography using hash-based message authentication code (HMAC), one can ensure the authenticity of a message. Using a cryptography key and a hash function, HMAC creates the message authentication code and adds it to the end of the message supposed to be sent to the recipient. If the recipient of the message code is the same as message authentication code, the packet will be confirmed. The study introduced a complementary function called X-HMAC by examining HMAC structure. This function uses two cryptography keys derived from the dedicated cryptography key of each packet and the dedicated cryptography key of each packet derived from the main X-HMAC cryptography key. In two phases, it hashes message bits and HMAC using bit Swapp and rotation to left. The results show that X-HMAC function can be a strong barrier against data identification and HMAC against the attacker, so that it cannot attack it easily by identifying the blocks and using HMAC weakness. -
Grøstl – a SHA-3 Candidate∗
Grøstl – a SHA-3 candidate∗ http://www.groestl.info Praveen Gauravaram1, Lars R. Knudsen1, Krystian Matusiewicz1, Florian Mendel2, Christian Rechberger2, Martin Schl¨affer2, and Søren S. Thomsen1 1Department of Mathematics, Technical University of Denmark, Matematiktorvet 303S, DK-2800 Kgs. Lyngby, Denmark 2Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria January 15, 2009 Summary Grøstl is a SHA-3 candidate proposal. Grøstl is an iterated hash function with a compression function built from two fixed, large, distinct permutations. The design of Grøstl is transparent and based on principles very different from those used in the SHA-family. The two permutations are constructed using the wide trail design strategy, which makes it possible to give strong statements about the resistance of Grøstl against large classes of cryptanalytic attacks. Moreover, if these permutations are assumed to be ideal, there is a proof for the security of the hash function. Grøstl is a byte-oriented SP-network which borrows components from the AES. The S-box used is identical to the one used in the block cipher AES and the diffusion layers are constructed in a similar manner to those of the AES. As a consequence there is a very strong confusion and diffusion in Grøstl. Grøstl is a so-called wide-pipe construction where the size of the internal state is signifi- cantly larger than the size of the output. This has the effect that all known, generic attacks on the hash function are made much more difficult. Grøstl has good performance on a wide range of platforms, and counter-measures against side-channel attacks are well-understood from similar work on the AES. -
A Full Key Recovery Attack on HMAC-AURORA-512
A Full Key Recovery Attack on HMAC-AURORA-512 Yu Sasaki NTT Information Sharing Platform Laboratories, NTT Corporation 3-9-11 Midori-cho, Musashino-shi, Tokyo, 180-8585 Japan [email protected] Abstract. In this note, we present a full key recovery attack on HMAC- AURORA-512 when 512-bit secret keys are used and the MAC length is 512-bit long. Our attack requires 2257 queries and the off-line com- plexity is 2259 AURORA-512 operations, which is significantly less than the complexity of the exhaustive search for a 512-bit key. The attack can be carried out with a negligible amount of memory. Our attack can also recover the inner-key of HMAC-AURORA-384 with almost the same complexity as in HMAC-AURORA-512. This attack does not recover the outer-key of HMAC-AURORA-384, but universal forgery is possible by combining the inner-key recovery and 2nd-preimage attacks. Our attack exploits some weaknesses in the mode of operation. keywords: AURORA, DMMD, HMAC, Key recovery attack 1 Description 1.1 Mode of operation for AURORA-512 We briefly describe the specification of AURORA-512. Please refer to Ref. [2] for details. An input message is padded to be a multiple of 512 bits by the standard MD message padding, then, the padded message is divided into 512-bit message blocks (M0;M1;:::;MN¡1). 256 512 256 In AURORA-512, compression functions Fk : f0; 1g £f0; 1g ! f0; 1g 256 512 256 512 and Gk : f0; 1g £ f0; 1g ! f0; 1g , two functions MF : f0; 1g ! f0; 1g512 and MFF : f0; 1g512 ! f0; 1g512, and two initial 256-bit chaining U D 1 values H0 and H0 are defined . -
Security Analysis for MQTT in Internet of Things
DEGREE PROJECT IN COMPUTER SCIENCE AND ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2018 Security analysis for MQTT in Internet of Things DIEGO SALAS UGALDE KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE Security analysis for MQTT in Internet of Things DIEGO SALAS UGALDE Master in Network Services and Systems Date: November 22, 2018 Supervisor: Johan Gustafsson (Zyax AB) Examiner: Panos Papadimitratos (KTH) Swedish title: Säkerhet analys för MQTT i IoT School of Electrical Engineering and Computer Science iii Abstract Internet of Things, i.e. IoT, has become a very trending topic in re- search and has been investigated in recent years. There can be several different scenarios and implementations where IoT is involved. Each of them has its requirements. In these type IoT networks new com- munication protocols which are meant to be lightweight are included such as MQTT. In this thesis there are two key aspects which are under study: secu- rity and achieving a lightweight communication. We want to propose a secure and lightweight solution in an IoT scenario using MQTT as the communication protocol. We perform different experiments with different implementations over MQTT which we evaluate, compare and analyze. The results obtained help to answer our research questions and show that the proposed solution fulfills the goals we proposed in the beginning of this work. iv Sammanfattning "Internet of Things", dvs IoT, har blivit ett mycket trenderande ämne inom forskning och har undersökts de senaste åren. Det kan finnas flera olika scenarier och implementeringar där IoT är involverad. Var och en av dem har sina krav. -
The First Collision for Full SHA-1
The first collision for full SHA-1 Marc Stevens1, Elie Bursztein2, Pierre Karpman1, Ange Albertini2, Yarik Markov2 1 CWI Amsterdam 2 Google Research [email protected] https://shattered.io Abstract. SHA-1 is a widely used 1995 NIST cryptographic hash function standard that was officially deprecated by NIST in 2011 due to fundamental security weaknesses demonstrated in various analyses and theoretical attacks. Despite its deprecation, SHA-1 remains widely used in 2017 for document and TLS certificate signatures, and also in many software such as the GIT versioning system for integrity and backup purposes. A key reason behind the reluctance of many industry players to replace SHA-1 with a safer alternative is the fact that finding an actual collision has seemed to be impractical for the past eleven years due to the high complexity and computational cost of the attack. In this paper, we demonstrate that SHA-1 collision attacks have finally become practical by providing the first known instance of a collision. Furthermore, the prefix of the colliding messages was carefully chosen so that they allow an attacker to forge two PDF documents with the same SHA-1 hash yet that display arbitrarily-chosen distinct visual contents. We were able to find this collision by combining many special cryptanalytic techniques in complex ways and improving upon previous work. In total the computational effort spent is equivalent to 263:1 SHA-1 compressions and took approximately 6 500 CPU years and 100 GPU years. As a result while the computational power spent on this collision is larger than other public cryptanalytic computations, it is still more than 100 000 times faster than a brute force search. -
Related-Key and Key-Collision Attacks Against RMAC
Related-Key and Key-Collision Attacks Against RMAC Tadayoshi Kohno CSE Department, UC San Diego 9500 Gilman Drive, MC-0114 La Jolla, California 92093-0114, USA IACR ePrint archive 2002/159, 21 October 2002, revised 2 December 2002. Abstract. In [JJV02] Jaulmes, Joux, and Valette propose a new ran- domized message authentication scheme, called RMAC, which NIST is currently in the process of standardizing [NIS02]. In this work we present several attacks against RMAC. The attacks are based on a new protocol- level related-key attack against RMAC and can be considered variants of Biham’s key-collision attack [Bih02]. These attacks provide insights into the RMAC design. We believe that the protocol-level related-key attack is of independent interest. Keywords: RMAC, key-collision attacks, related-key attacks. 1 Introduction Jaulmes, Joux, and Valette’s RMAC construction [JJV02] is a new ran- domized message authentication scheme. Similar to Petrank and Rackoff’s DMAC construction [PR97] and Black and Rogaway’s ECBC construc- tion [BR00], the RMAC construction is a CBC-MAC variant in which an input message is first MACed with standard CBC-MAC and then the resulting intermediate value is enciphered with one additional block ci- pher application. Rather than using a fixed key for the last block cipher application (as DMAC and ECBC do), RMAC enciphers the last block with a randomly chosen (but related) key. One immediate observation is that RMAC directly exposes the underlying block cipher to a weak form of related-key attacks [Bih93]. We are interested in attacks that do not exploit some related-key weakness of the underlying block cipher, but rather some property of the RMAC mode itself. -
A New Approach in Expanding the Hash Size of MD5
374 International Journal of Communication Networks and Information Security (IJCNIS) Vol. 10, No. 2, August 2018 A New Approach in Expanding the Hash Size of MD5 Esmael V. Maliberan, Ariel M. Sison, Ruji P. Medina Graduate Programs, Technological Institute of the Philippines, Quezon City, Philippines Abstract: The enhanced MD5 algorithm has been developed by variants and RIPEMD-160. These hash algorithms are used expanding its hash value up to 1280 bits from the original size of widely in cryptographic protocols and internet 128 bit using XOR and AND operators. Findings revealed that the communication in general. Among several hashing hash value of the modified algorithm was not cracked or hacked algorithms mentioned above, MD5 still surpasses the other during the experiment and testing using powerful bruteforce, since it is still widely used in the domain authentication dictionary, cracking tools and rainbow table such as security owing to its feature of irreversible [41]. This only CrackingStation, Hash Cracker, Cain and Abel and Rainbow Crack which are available online thus improved its security level means that the confirmation does not need to demand the compared to the original MD5. Furthermore, the proposed method original data but only need to have an effective digest to could output a hash value with 1280 bits with only 10.9 ms confirm the identity of the client. The MD5 message digest additional execution time from MD5. algorithm was developed by Ronald Rivest sometime in 1991 to change a previous hash function MD4, and it is commonly Keywords: MD5 algorithm, hashing, client-server used in securing data in various applications [27,23,22]. -
A (Second) Preimage Attack on the GOST Hash Function
A (Second) Preimage Attack on the GOST Hash Function Florian Mendel, Norbert Pramstaller, and Christian Rechberger Institute for Applied Information Processing and Communications (IAIK), Graz University of Technology, Inffeldgasse 16a, A-8010 Graz, Austria [email protected] Abstract. In this article, we analyze the security of the GOST hash function with respect to (second) preimage resistance. The GOST hash function, defined in the Russian standard GOST-R 34.11-94, is an iter- ated hash function producing a 256-bit hash value. As opposed to most commonly used hash functions such as MD5 and SHA-1, the GOST hash function defines, in addition to the common iterated structure, a check- sum computed over all input message blocks. This checksum is then part of the final hash value computation. For this hash function, we show how to construct second preimages and preimages with a complexity of about 2225 compression function evaluations and a memory requirement of about 238 bytes. First, we show how to construct a pseudo-preimage for the compression function of GOST based on its structural properties. Second, this pseudo- preimage attack on the compression function is extended to a (second) preimage attack on the GOST hash function. The extension is possible by combining a multicollision attack and a meet-in-the-middle attack on the checksum. Keywords: cryptanalysis, hash functions, preimage attack 1 Introduction A cryptographic hash function H maps a message M of arbitrary length to a fixed-length hash value h. A cryptographic hash function has to fulfill the following security requirements: – Collision resistance: it is practically infeasible to find two messages M and M ∗, with M ∗ 6= M, such that H(M) = H(M ∗). -
Hashes, Macs & Authenticated Encryption Today's Lecture Hashes
Today’s Lecture • Hashes and Message Authentication Codes Hashes, MACs & • Properties of Hashes and MACs Authenticated Encryption • CBC-MAC, MAC -> HASH (slow), • SHA1, SHA2, SHA3 Tom Chothia • HASH -> MAC, HMAC ICS Lecture 4 • Authenticated Encryption – CCM Hashes Signatures l A hash of any message is a short string • Using RSA Epub(Dpriv(M)) = M generated from that message. • This can be used to sign messages. l The hash of a message is always the same. l Any small change makes the hash totally • Sign a message with the private key and this can be different. verified with the public key. l It is very hard to go from the hash to the message. • Any real crypto suite will not use the same key for encryption and signing. l It is very unlikely that any two different messages have the same hash. – as this can be used to trick people into decrypting. Signatures Uses of Hashing Alice has a signing key Ks • Download/Message verification and wants to sign message M Plain Text • Tying parts of a message together (hash the whole message) Detached Signature: Dks(#(M)) RSA decrypt with key ks SHA hash • Hash message, then sign the hash. • Protect Passwords Signed: M,Dks(#(M)) – Store the hash, not the password 1 Attacks on hashes Birthday Paradox • Preimage Attack: Find a message for a • How many people do you need to ask given hash: very hard. before you find 2 that have the same birthday? • Prefix Collision Attack: a collision attack where the attacker can pick a prefix for • 23 people, gives (23*22)/2 = 253 pairs. -
MD5 Collision Attack
MD5 Considered Harmful Today Creating a rogue CA certificate Alexander Sotirov New York, USA Marc Stevens CWI, Netherlands Jacob Appelbaum Noisebridge/Tor, SF Arjen Lenstra EPFL, Switzerland David Molnar UC Berkeley, USA Dag Arne Osvik EPFL, Switzerland Benne de Weger TU/e, Netherlands Introduction • International team of researchers ○ working on chosen-prefix collisions for MD5 • MD5 is still used by real CAs to sign SSL certificates today ○ MD5 has been broken since 2004 ○ theoretical CA attack published in 2007 • We used a MD5 collision to create a rogue Certification Authority ○ trusted by all major browsers ○ allows man-in-the-middle attacks on SSL Overview of the talk • Public Key Infrastructure • MD5 chosen-prefix collisions • Generating colliding certificates ○ on a cluster of 200 PlayStation 3’s • Impact • Countermeasures • Conclusion Live demo 1. Set your system date to August 2004 ○ intentional crippling of our demo CA ○ not a technical limit of the method itself 2. Connect to our wireless network ○ ESSID “MD5 Collisions Inc” 3. Connect to any secure HTTPS website ○ MITM attack ○ check the SSL certificate! Part I Public Key Infrastructure Overview of SSL • Wide deployment ○ web servers ○ email servers (POP3, IMAP) ○ many other services (IRC, SSL VPN, etc) • Very good at preventing eavesdropping ○ asymmetric key exchange (RSA) ○ symmetric crypto for data encryption • Man-in-the-middle attacks ○ prevented by establishing a chain of trust from the website digital certificate to a trusted Certificate Authority Certification Authorities (CAs) • Website digital certificates must be signed by a trusted Certificate Authority • Browsers ship with a list of trusted CAs ○ Firefox 3 includes 135 trusted CA certs • CAs’ responsibilities: ○ verify the identity of the requestor ○ verify domain ownership for SSL certs ○ revoke bad certificates Certificate hierarchy Obtaining certificates 1. -
Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher
Improved Cryptanalysis of the Reduced Grøstl Compression Function, ECHO Permutation and AES Block Cipher Florian Mendel1,ThomasPeyrin2,ChristianRechberger1, and Martin Schl¨affer1 1 IAIK, Graz University of Technology, Austria 2 Ingenico, France [email protected], [email protected] Abstract. In this paper, we propose two new ways to mount attacks on the SHA-3 candidates Grøstl,andECHO, and apply these attacks also to the AES. Our results improve upon and extend the rebound attack. Using the new techniques, we are able to extend the number of rounds in which available degrees of freedom can be used. As a result, we present the first attack on 7 rounds for the Grøstl-256 output transformation1 and improve the semi-free-start collision attack on 6 rounds. Further, we present an improved known-key distinguisher for 7 rounds of the AES block cipher and the internal permutation used in ECHO. Keywords: hash function, block cipher, cryptanalysis, semi-free-start collision, known-key distinguisher. 1 Introduction Recently, a new wave of hash function proposals appeared, following a call for submissions to the SHA-3 contest organized by NIST [26]. In order to analyze these proposals, the toolbox which is at the cryptanalysts’ disposal needs to be extended. Meet-in-the-middle and differential attacks are commonly used. A recent extension of differential cryptanalysis to hash functions is the rebound attack [22] originally applied to reduced (7.5 rounds) Whirlpool (standardized since 2000 by ISO/IEC 10118-3:2004) and a reduced version (6 rounds) of the SHA-3 candidate Grøstl-256 [14], which both have 10 rounds in total.