Introduction to GIS and GPS for Engineers and Surveyors

Total Page:16

File Type:pdf, Size:1020Kb

Introduction to GIS and GPS for Engineers and Surveyors 130.pdf A SunCam online continuing education course Introduction to GIS and GPS for Engineers and Surveyors by Julie Coco, P. E. www.SunCam.com Copyright 2011 - 2015 Julie Coco Page 1 of 43 130.pdf Introduction to GIS and GPS for Engineers and Surveyors A SunCam online continuing education course PURPOSE The purpose of this course is to provide a basic understanding of the term “GIS”, and how this science is applied in engineering. It is meant to familiarize engineers and surveyors with the terminology and industry lingo used by GIS Professionals, such that those composing or submitting responses to Requests for Qualifications or Proposals can better understand the scope of GIS or GPS services they need, or be asked to provide, and whether they have the in-house talent to perform such services. Essential concepts are initially discussed in order to understand the formats of geographical information and how it is used. Some of the more abstract scientific concepts and theories, while important, will not be covered. The course contains a short overview of the more popular GIS and GPS software and hardware. Engineers should be able to recognize topographic and other GIS file types presented to them by clients for use on their projects. Surveyors should understand the differences between traditional electro-optical and GPS survey techniques. Lastly, it is meant to be an informative, practical and entertaining “quick study” for those deciding whether to integrate some of these skills into their career, or to possess a basic conversational language and understanding of the world of GIS and GPS. COURSE OBJECTIVES o Introduce engineers and surveyors to GIS and GPS concepts and terminology o Explain the role of GIS in engineering applications o Familiarize readers with GIS file formats o Discuss current GIS and GPS products, along with their uses Note: Sidebars and links to web sites are for your interest only. No test questions will arise from this material. The same cannot be said for the glossary provided at the end of the course! DEFINITION AND A BRIEF HISTORY OF GIS The acronym “GIS” can stand for Geographical Information Science or Systems. The science deals with the study of spatial and earth-referenced data, and how they relate in terms of proximity to surrounding data or objects. A system is designed to capture, query, analyze, manipulate, store and present all types of geographically referenced data. Any variable that can be located spatially, and increasingly temporally, can be referenced using a geographical information system. In the simplest of terms, GIS is the merging of cartography, statistical analysis, and database technology. www.SunCam.com Copyright 2011 - 2015 Julie Coco Page 2 of 43 130.pdf Introduction to GIS and GPS for Engineers and Surveyors A SunCam online continuing education course Credit for initiating the first operational geographical information system is given to the Canadians. The Canada Geographic Information System, or CGIS, was developed during the mid-1960’s by their federal government to identify and inventory the nation’s extensive land resources for existing and potential uses. This system was used to measure land areas and tabulate data, more than as a mapping tool. It became one of the first automated cartography efforts. In 1967, the U. S. Census Bureau created the DIME program (Dual Independent Map Encoding) in preparation for the 1970 census. It created digital records of all U. S. streets to support automatic referencing of census records. It was during this time period that cartographers and mapping agencies across North America, Europe, and Australia began to inquire about using computers that could be adapted to their needs in automating the creation and editing of maps. The redrafting of paper or other hardcopy medium maps by hand was a tedious and expensive process. In 1973, the world’s first computer-made map was published in production series and according to established cartographic standards by the British Geological Survey and Ordnance Survey. However, due to the magnitude of the task, it was not until 1995 that Great Britain became the first to achieve complete digital map coverage (initially 230,000 maps) in a database. Real growth in geographic information science and systems occurred in the 1980’s when sufficiently powerful computer hardware was available and prices had fallen enough to sustain a software industry. The first customers were forestry companies and natural resource agencies, driven by the need to inventory vast resources and regulate their use effectively. Just as new engineering curriculums have evolved over the years from more traditional programs, geographic information science curriculums have evolved from more traditional degree programs such as geography, forestry, photogrammetry and cartography. Users of GIS today are coming from increasingly different fields of study such as business, marketing, mathematics, healthcare, and now engineering. Another evolution in the communications world was occurring during the same time period. The United States Department of Defense began a communications project in 1972 which later became known to the civilian world as “The Internet”, or “World Wide Web” (WWW). By 1980, a European researcher had developed hypertext capability, allowing the use of the internet for anyone with access to a personal computer and the telecommunications network. Geographers were quick to see the value of the internet, and both GIS and the WWW have benefitted from each other. Geographic information systems benefit greatly in using the internet as a platform in which to disseminate information. www.SunCam.com Copyright 2011 - 2015 Julie Coco Page 3 of 43 130.pdf Introduction to GIS and GPS for Engineers and Surveyors A SunCam online continuing education course During the 1990’s, web-based servers allowed the publication of dynamic maps and GIS data to be shared by businesses, local governments and other organizations, both locally and to the public over the internet. The internet has also allowed GIS users to cost-effectively link off-site users together (e. g. customers and suppliers, telecommuters and office workers, students and teachers). Likewise, geographical information science has turned out to be such an intriguing, as well as beneficial field, that it has encouraged many people to take advantage of the internet. GIS internet mapping services allow users without GIS software or experience to address basic inquiries, and to create and print simple maps. Today, the trend is towards “Cloud Computing”. Although many definitions exist, Cloud Computing is defined here as internet based computing, whereby shared resources of data, software, media, etc. are accessed on demand through a network of off-site servers, as opposed to the current method of computing with software installed on individual computers. Service vendors provide storage of personal and business data, as well as access, on a pay-per-use basis. An internet mapping service (IMS) as viewed from within Internet Explorer www.SunCam.com Copyright 2011 - 2015 Julie Coco Page 4 of 43 130.pdf Introduction to GIS and GPS for Engineers and Surveyors A SunCam online continuing education course Throughout this course, we will introduce the functions of a GIS, explain the components of vector geographic or spatial data, discuss real-world engineering applications of GIS, and discuss the importance of referencing data to a coordinate system so that it can be analyzed and modeled with meaning. Multiple GIS software will be discussed, followed by the file and database formats available for manipulation and storage. Methods of capturing data, including the use of GPS and its products, for use in a GIS will also be introduced. A glossary is provided to summarize key terms as well as the many acronyms used in these fields. FUNCTIONS OF A GIS A Geographical Information System is powerful in that it provides many functions for finding real-world solutions to problems using provided data. Below are six functions of most systems: 1) Capturing Data - The ability to capture geographic (coordinate) and tabular (attribute) data using various means is what makes the System versatile. We will cover some of these means towards the end of the text. 2) Storing Data - There are two basic formats for representing and storing data: vector and raster. Vector files represent cartographic features much the same as maps or scaled drawings do – with points, lines, and areas. Each type of geometry represents a separate feature class. Vector files provide discrete representations of reality with known coordinates tied to their features. Raster files represent a grid of rows and columns, with each grid cell possessing some value. These grids may provide discrete or continuous representations of reality, and may or may not be referenced to known coordinates at the time of creation. Many raster formats exist. Imagery in a GIS is only available in raster format. Cell values contain color band data. As digital photographs contain more detail with an increased pixel count per 4 inch x 6 inch image, raster images can contain more detail with an increased cell count per unit area. The level of detail is more accurately termed the spatial resolution of the raster, and depends upon the device used to capture the image. Rasters will be discussed further within the text. www.SunCam.com Copyright 2011 - 2015 Julie Coco Page 5 of 43 130.pdf Introduction to GIS and GPS for Engineers and Surveyors A SunCam online continuing education course Raster layer of terrain relief Vector layer representing all feature classes Both vector and raster formatted files are presented as layers in a GIS. These layers contain both the geographic and attribute data. Attribute data is stored in tabular form within a database. Data layers are stored in several different formats, which will be discussed later within the text. Layers can be overlaid and spatially aligned for performing queries, analyzing to produce new data, and simply showing relationships that may otherwise be overlooked with separate paper maps, tables, or other more traditional sources of information.
Recommended publications
  • Current Trends in Vector-Based Internet Mapping: a Technical Review
    Chapter 3 Current Trends in Vector-Based Internet Mapping: A Technical Review Christophe Lienert, Bernhard Jenny, Olaf Schnabel, and Lorenz Hurni Abstract Possibilities and limitations of Internet cartography software largely depend on the pace set by the software industry. The variety of commercial and non-commercial software caters for the needs of a continuously growing mapping community, including both professional and amateur cartographers. This chapter provides an overview of state-of-the-art technologies for vector-based Web- mapping as of the beginning of 2011. Both proprietary and open format technologies are discussed for vector data rendering in browsers, highlighting their advantages and disadvantages. The discussed technologies are Adobe Flash, Microsoft Silverlight, Scalable Vector Graphics (SVG), JavaFX, Canvas, and WebGL. The chapter also discusses client and server side frameworks which provide Application Programming Interfaces (APIs) for creating custom interactive maps, mainly by overlaying raster images with vector data. 3.1 Introduction Internet maps are the major form of spatial information delivery, as the Internet is today the primary medium for the transmission and dissemination of maps (Peterson 2008). For map authors, the maze of available techniques for creating and distributing Web maps is overwhelming, while authoring tools for Web-maps meeting the demands of high-quality cartography are difficult to find. Map authors may choose between GIS and graphics software products to create maps for the Internet, but these off-the-shelve maps oftentimes fall short of effectively convey- ing information. There are three main reasons for this shortcoming: (a) the design of these maps sometimes does not take into account the specific limitations of digital displays (Jenny et al., 2008); (b) the maps are often restricted in using standard C.
    [Show full text]
  • Roman Large-Scale Mapping in the Early Empire
    13 · Roman Large-Scale Mapping in the Early Empire o. A. w. DILKE We have already emphasized that in the period of the A further stimulus to large-scale surveying and map­ early empire1 the Greek contribution to the theory and ping practice in the early empire was given by the land practice of small-scale mapping, culminating in the work reforms undertaken by the Flavians. In particular, a new of Ptolemy, largely overshadowed that of Rome. A dif­ outlook both on administration and on cartography ferent view must be taken of the history of large-scale came with the accession of Vespasian (T. Flavius Ves­ mapping. Here we can trace an analogous culmination pasianus, emperor A.D. 69-79). Born in the hilly country of the Roman bent for practical cartography. The foun­ north of Reate (Rieti), a man of varied and successful dations for a land surveying profession, as already noted, military experience, including the conquest of southern had been laid in the reign of Augustus. Its expansion Britain, he overcame his rivals in the fierce civil wars of had been occasioned by the vast program of colonization A.D. 69. The treasury had been depleted under Nero, carried out by the triumvirs and then by Augustus him­ and Vespasian was anxious to build up its assets. Fron­ self after the civil wars. Hyginus Gromaticus, author of tinus, who was a prominent senator throughout the Fla­ a surveying treatise in the Corpus Agrimensorum, tells vian period (A.D. 69-96), stresses the enrichment of the us that Augustus ordered that the coordinates of surveys treasury by selling to colonies lands known as subseciva.
    [Show full text]
  • Geodetic Position Computations
    GEODETIC POSITION COMPUTATIONS E. J. KRAKIWSKY D. B. THOMSON February 1974 TECHNICALLECTURE NOTES REPORT NO.NO. 21739 PREFACE In order to make our extensive series of lecture notes more readily available, we have scanned the old master copies and produced electronic versions in Portable Document Format. The quality of the images varies depending on the quality of the originals. The images have not been converted to searchable text. GEODETIC POSITION COMPUTATIONS E.J. Krakiwsky D.B. Thomson Department of Geodesy and Geomatics Engineering University of New Brunswick P.O. Box 4400 Fredericton. N .B. Canada E3B5A3 February 197 4 Latest Reprinting December 1995 PREFACE The purpose of these notes is to give the theory and use of some methods of computing the geodetic positions of points on a reference ellipsoid and on the terrain. Justification for the first three sections o{ these lecture notes, which are concerned with the classical problem of "cCDputation of geodetic positions on the surface of an ellipsoid" is not easy to come by. It can onl.y be stated that the attempt has been to produce a self contained package , cont8.i.ning the complete development of same representative methods that exist in the literature. The last section is an introduction to three dimensional computation methods , and is offered as an alternative to the classical approach. Several problems, and their respective solutions, are presented. The approach t~en herein is to perform complete derivations, thus stqing awrq f'rcm the practice of giving a list of for11111lae to use in the solution of' a problem.
    [Show full text]
  • Download the Surveying and Mapping Minor Form
    The Ohio State University College of Engineering Department of Civil, Environmental and Geodetic Engineering Surveying and Mapping Minor (SURVMAP-MN) Department of Civil, Environmental and Geodetic Engineering Details for the required minor courses are listed below. Many 470 Hitchcock Hall, 2070 Neil Avenue Columbus, OH 43210 of the courses are only offered once per year. http://ceg.ohio-state.edu Surveying and Mapping Minor Program Guidelines Surveying is a crucial part of land development. Professional Surveyors must have a Bachelor of Science in Civil Required for graduation: No Engineering or Surveying and Mapping, and often work Credit hours required: A minimum of 19 credit hours is closely with architects and builders to produce precise required to complete the Surveying and Mapping minor. surveys and maps of surface features of the earth. Surveyors Transfer and EM credit hours allowed: No more than 6 (six) of can choose from many specialties and get involved at many the credit hours required for the minor can come from stages of a project. Students who pursue a Surveying and transfer or EM credit. Mapping minor will gain an understanding of global Overlap with the major: positioning; analyzing spatial data; digital map production • The minor must be in a different subject that the major and electronic data collection; survey software applications, • The minor must contain a minimum of 12 hours boundary surveying and construction layout techniques. distinct from the major and/or additional Students interested in pursuing a career in professional land minor(s). surveying should consider completing the Surveying and Civil Engineering Majors: The following courses will count as Mapping minor.
    [Show full text]
  • The History of Cartography, Volume Six: Cartography in the Twentieth Century
    The AAG Review of Books ISSN: (Print) 2325-548X (Online) Journal homepage: http://www.tandfonline.com/loi/rrob20 The History of Cartography, Volume Six: Cartography in the Twentieth Century Jörn Seemann To cite this article: Jörn Seemann (2016) The History of Cartography, Volume Six: Cartography in the Twentieth Century, The AAG Review of Books, 4:3, 159-161, DOI: 10.1080/2325548X.2016.1187504 To link to this article: https://doi.org/10.1080/2325548X.2016.1187504 Published online: 07 Jul 2016. Submit your article to this journal Article views: 312 View related articles View Crossmark data Full Terms & Conditions of access and use can be found at http://www.tandfonline.com/action/journalInformation?journalCode=rrob20 The AAG Review OF BOOKS The History of Cartography, Volume Six: Cartography in the Twentieth Century Mark Monmonier, ed. Chicago, document how all cultures of all his- IL: University of Chicago Press, torical periods represented the world 2015. 1,960 pp., set of 2 using maps” (Woodward 2001, 28). volumes, 805 color plates, What started as a chat on a relaxed 119 halftones, 242 line drawings, walk by these two authors in Devon, England, in May 1977 developed into 61 tables. $500.00 cloth (ISBN a monumental historia cartographica, 978-0-226-53469-5). a cartographic counterpart of Hum- boldt’s Kosmos. The project has not Reviewed by Jörn Seemann, been finished yet, as the volumes on Department of Geography, Ball the eighteenth and nineteenth cen- State University, Muncie, IN. tury are still in preparation, and will probably need a few more years to be published.
    [Show full text]
  • Ordnance Survey and the Depiction of Antiquities on Maps: Past, Present and Future
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Publikationsserver der Universität Tübingen Ordnance Survey and the Depiction of Antiquities on Maps: Past, Present and Future. The Current and Future Role of the Royal Commissions as CAA97 Suppliers of Heritage Data to the Ordnance Survey Diana Murray Abstract The background and history of the mapping of archaeological sites is described, followed by an account of the method used to transfer information on 'antiquities' to the Ordnance Survey today. The impact of digitisation on the appearance of archaeology on OS maps has been of concern but the use of digital technology by the Royal Commissions, in particular GIS, opens up many opportunities for future mapping of the archaeological landscape. 1 Background Society, having had its attenticxi recently directed to the fact that many of the primitive moiuments of our natiaial history, partly From the earliest stages of the develcpment of modem mapping, from the progress of agricultural improvements, and in part 'antiquities' have been depicted as integral and important visual from neglect and spoilation, were in the course of being elements of the landscape. Antiquities appear on maps as early removed, was of the opini<xi, that it would be of great as the 17th century but it was oily when, in the mid-18th consequence to have all such historical monuments laid down century the systematic mapping of Scotland was undertaken for cm the Ordnance Survey of Scotland in the course of military purposes in response to the 1745 rebelliai, that preparation'.
    [Show full text]
  • Designing and Implementing a Geographical Information System
    DESIGNING AND IMPLEMENTING A GEOGRAPHICAL INFORMATION SYSTEM A Guide for Managers of Area-wide Pest Management Programmes DESIGNING AND IMPLEMENTING A GEOGRAPHICAL INFORMATION SYSTEM A Guide for Managers of Area-wide Pest Management Programmes IAEA, VIENNA, 2006 IAEA/FAO-GIS © IAEA, 2006 Printed by the IAEA in Austria April 2006 FOREWORD Over the past two decades, the use of computer software and mapping methods known as geographical information systems (GIS) has been adopted by an ever growing variety of professionals. Every activity that deals with location dependent information can use GIS, and agriculture is no exception. The potential of GIS and remote sensing (RS) to facilitate the planning and implementation of area- wide integrated pest management (AW-IPM) programmes is enormous but unfortunately, these methods are still much underused. AW-IPM programmes, especially those that integrate the sterile insect technique (SIT) with other surveillance and control methods, would benefit considerably by drawing on GIS/RS. These programmes are often implemented over large areas of even tens of thousands of square kilometres, where surveillance methods are deployed and large data sets are systematically generated on a daily basis. The acquisition of geo-referenced data sets on pest presence/absence, relative abundance, disease prevalence, crop damage, etc., that will allow accurate spatial and temporal analysis is important for proper and timely decision making to efficiently plan and implement any operational pest management programme. Animal health and plant protection officials and pest control programme managers might be intuitively aware of the importance of employing GIS as an analytical tool. However, they often lack a deeper understanding of its capabilities.
    [Show full text]
  • Importing and Exporting Data
    Chapter II-9 II-9Importing and Exporting Data Importing Data................................................................................................................................................ 117 Load Waves Submenu ............................................................................................................................ 119 Line Terminators...................................................................................................................................... 120 LoadWave Text Encodings..................................................................................................................... 120 Loading Delimited Text Files ........................................................................................................................ 120 Determining Column Formats............................................................................................................... 120 Date/Time Formats .................................................................................................................................. 121 Custom Date Formats ...................................................................................................................... 122 Column Labels ......................................................................................................................................... 122 Examples of Delimited Text ................................................................................................................... 123 The Load
    [Show full text]
  • From GIS Data Sets to Cartographic Presentation
    Geographic Information Technology Training Alliance (GITTA) presents: From GIS data sets to Cartographic Presentation Responsible persons: Boris Stern, Helmut Flitter, Lorenz Hurni, Samuel Wiesmann From GIS data sets to Cartographic Presentation Table Of Content 1. From GIS data sets to Cartographic Presentation ................................................................................... 2 1.1. Map Presentation of GIS datasets .................................................................................................... 3 1.1.1. Map Creation from GIS datasets within GIS ............................................................................ 3 1.1.2. Map Layout settings with GIS datasets within GIS .................................................................. 4 1.1.3. Map Output with GIS datasets within GIS ............................................................................... 5 1.1.4. Map Creation with GIS datasets within CAC software ............................................................ 6 1.1.5. Map Presentation with GIS datasets within CAC software ....................................................... 7 1.1.6. Map Layout settings with GIS datasets within CAC software .................................................. 8 1.1.7. Summary .................................................................................................................................... 8 1.2. Solutions for Digital Mapping .........................................................................................................
    [Show full text]
  • The Economic Contribution of Ordnance Survey Gb
    Final report ORDNANCE SURVEY THE ECONOMIC CONTRIBUTION OF ORDNANCE SURVEY GB Public version SEPTEMBER 24th 1999 Original report published May 14th 1999 OXERA Oxford Economic Research Associates Ltd is registered in England, no. 1613053. Registered office: Blue Boar Court, Alfred Street, Oxford OX1 4EH, UK. Although every effort has been made to ensure the accuracy of the material and the integrity of the analysis presented herein, Oxford Economic Research Associates Ltd accepts no liability for any actions taken on the basis of its contents. Oxford Economic Research Associates Ltd is not licensed in the conduct of investment business as defined in the Financial Services Act 1986. Anyone considering a specific investment should consult their own broker or other investment adviser. Oxford Economic Research Associates Ltd accepts no liability for any specific investment decision which must be at the investor’s own risk. |O|X|E|R|A| Final report Executive Summary Ordnance Survey(OS) has been mapping Great Britain since 1791. In its role as the national mapping agency, OS produces a range of products and services, including a base dataset, which are driven by the needs of the national interest and the demands of customers. As a primary producer, OS makes a significant contribution to the national economy. This economic contribution is assessed in this report by examining the impact of OS as a purchaser of raw materials from suppliers, as a producer of final goods and services, and as a producer of intermediate goods and services which are used in a variety of sectors. The contribution of OS to distributors and to competitors is also considered.
    [Show full text]
  • The History of Geodesy Told Through Maps
    The History of Geodesy Told through Maps Prof. Dr. Rahmi Nurhan Çelik & Prof. Dr. Erol KÖKTÜRK 16 th May 2015 Sofia Missionaries in 5000 years With all due respect... 3rd FIG Young Surveyors European Meeting 1 SUMMARIZED CHRONOLOGY 3000 BC : While settling, people were needed who understand geometries for building villages and dividing lands into parts. It is known that Egyptian, Assyrian, Babylonian were realized such surveying techniques. 1700 BC : After floating of Nile river, land surveying were realized to set back to lost fields’ boundaries. (32 cm wide and 5.36 m long first text book “Papyrus Rhind” explain the geometric shapes like circle, triangle, trapezoids, etc. 550+ BC : Thereafter Greeks took important role in surveying. Names in that period are well known by almost everybody in the world. Pythagoras (570–495 BC), Plato (428– 348 BC), Aristotle (384-322 BC), Eratosthenes (275–194 BC), Ptolemy (83–161 BC) 500 BC : Pythagoras thought and proposed that earth is not like a disk, it is round as a sphere 450 BC : Herodotus (484-425 BC), make a World map 350 BC : Aristotle prove Pythagoras’s thesis. 230 BC : Eratosthenes, made a survey in Egypt using sun’s angle of elevation in Alexandria and Syene (now Aswan) in order to calculate Earth circumferences. As a result of that survey he calculated the Earth circumferences about 46.000 km Moreover he also make the map of known World, c. 194 BC. 3rd FIG Young Surveyors European Meeting 2 150 : Ptolemy (AD 90-168) argued that the earth was the center of the universe.
    [Show full text]
  • Bce 206 Engineering Surveying
    LECTURE NOTE COURSE CODE- BCE 206 ENGINEERING SURVEYING Under revision BCE206-ENGG. SURVEYING (3-1-0) CR-04 Module –I (10 Hrs) 1. Concept of Surveying- Definition of surveying, Classification, Principle, Accuracy 2. Linear Measurement- Different methods of direct measurement instrument for chaining, Ranging, Chaining on uneven slopping ground, Errors in Chaining, Corrections. 3. Chain Surveying – Chain triangulation, Survey stn., lines, locating ground features, field work, instruments for setting out basic problems in chaining, obstacles in chaining Module –II (10 Hrs) 4. Compass Surveying – Principles use of Prismatic Compass, Measurement of bearings, Conversion of bearings, Local attraction, Correction of compass traverse. 5. Plane Table Survey- Principles, Advantages and disadvantages, Equipment, Accessories and their uses. Methods of plane table survey. Two point and three point problems. Module –III (10 Hrs) 6. Levelling- Types of levelling and their uses, Permanent adjustment, Curvature and refraction effects. 7. Contouring-Characteristics and uses of contours. Methods of contouring. Module –IV (10 Hrs) 8. Theodolite Survey – Application in Height and distance measurements. Permanent adjustment of transit theodolite, methods of repetitions and reiterations. 9. Curve Setting – Simple circular curve setting by chain, tape & theodolite 10. Minor Survey Instruments – Box-sextant, Planimeter, Pantagraph, their working principles and uses. Reference Books: 1. Surveying & Levelling – Kanetkar & Kulkarni, Vol.-I, Pune Vidyarthi Griha Prakashan. 2. Surveying – Punmia, Vol. – I, Laxmi Publication. 3. Surveying – S.K. Duggal, Tata McGraw Hill Under revision Disclaimer This document does not claim any originality and cannot be used as a substitute for prescribed textbooks. The information presented here is merely a collection by the committee members for their respective teaching assignments.
    [Show full text]