Download Download

Total Page:16

File Type:pdf, Size:1020Kb

Download Download : 2003. Proceedings of the Indiana Academy of Science 1 12( 1):29—35 DISTRIBUTION OF FRESHWATER SPONGES AND BRYOZOANS IN NORTHWEST INDIANA David K. Barnes: Department of Biology, Purdue University North Central; Westville, Indiana 46391-9528 USA Thomas E. Lauer: Aquatic Biology and Fisheries Center, Department of Biology. Ball State University, Muncie, Indiana 47306-0440 USA ABSTRACT. Current biogeographical distributions of freshwater sponges (Porifera) and bryozoans (Ec- toprocta and Entoprocta) are poorly known in Indiana. Although seemingly ubiquitous in many aquatic communities, neither group has received much notoriety in this state, nor the midwestern United States. In an initial effort to begin the systematic taxonomic distribution of these groups in Indiana, this stud) identified 2 sponges and 13 bryozoans in northwest Indiana lakes. The recent appearance of the zebra mussel (Dreissena polymorpha) in the Great Lakes has focused new attention on the sessile benthic communities, as significant changes in benthic community structure are expected with the introduction of this exotic species. Without knowing the historical and current distribution of native invertebrates, such as the sponges and bryozoans, it is not possible to identify changes in community composition over time. Keywords: Porifera, Ectoprocta, Entoprocta, freshwater bryozoan, freshwater sponge The distribution and taxonomy of fresh- graphical status. There are 25 species known water sponges (Porifera: Spongillidae) in in North American freshwater (Wood 200 1 North America has not received widespread Smith 1992), and the distribution of many of attention, although some notable works exist these species is thought to be ubiquitous for the entire United States (Penney & Racek (Bushnell 1974). In the Great Lakes region, 1968), and regions surrounding the Great some taxonomic records exist (Brown 1933: Lakes (Potts 1887; Smith 1921; Old 1931; Rogick 1934; Bushnell 1965a. 1965b. 1965c; Jewell 1935; Neidhoefer 1940; Eshleman Maciorowski 1974; Ricciardi & Reiswig 1950; Ricciardi & Reiswig 1993). Ricciardi & 1994). However, no published documentation Reiswig (1993) found 15 different species and could be found for this taxonomic group in suggested that additional taxa could be iden- Indiana except for these recent studies in the tified in eastern Canada with further study. northern part of the state (Wood 1996: Lauer Sponges may be more ubiquitous than the et al. 1999; Last & Whitman 1999/2000). available scientific literature indicates; and the Without knowing the historical and current absence or limited ranges of some species distribution of native sponges and bryozoans, may not reflect their true zoogeographical dis- it is not possible to identity changes in com- tribution, but rather a lack of observation munity composition over time. Rapid modifi- (Frost 1991). We have only been able to find cation in the quantity and diversity of benthic six published records of sponge distributions species has been observed in the Great Lakes in Indiana (Evermann & Clark 1920; Kintner with the appearance of non-indigenous spe- 1938; Early et al. 1996; Lauer & Spacie 1996; cies, such as the zebra mussel (Dreissena po- Early & Glonek 1999; Lauer et al. 2001), and lymorpha). These invasions have threatened these are limited in scope. the biotic integrity of native organisms and Although bryozoans (Ectoprocta and Ento- negatively affected the ecosystem stability of procta) are widely distributed in epibenthic sessile benthic communities (Hebert et al. and littoral communities (Rogick 1934, 1957; 1991; Mills et al. 1004). Bushnell et al. 1987; Ricciardi & Lewis The objectives of this study were to deter- 1991), little is known about their zoogeo- mine the biogeographical distribution of fresh- 29 30 PROCEEDINGS OF THE INDIANA ACADEMY OF SCIENCE picking or scraping the organisms from the substrate, or removing the organism with the substrate still attached. Sponge identification is based largely on spicule morphology and care was taken to collect specimens bearing gemmules, as well as somatic tissue. Similar- ly, bryozoan identification typically requires the inspection of statoblasts in addition to the vegetative colony, and both were collected when possible. Most species are large enough to observe with the naked eye, but a hand lens was used to validate colonies that were small or non-descript. Samples were preserved im- mediately upon collection with 70% ethyl al- cohol, and returned to the laboratory for tax- 20 km onomic identification. Laboratory preparation of sponge spicules Figure 1. —Lakes studied in Lake, Porter and (megascleres, microscleres, and gemmoscler- LaPorte Counties, Indiana. Numbers indicate lake es) was performed using an acid digestion, location and correspond to the lake names: 1. Ce- followed by washings in water and ethyl al- dar; 2. Francher; 3. Holiday; 4. Lakeland; 5. Lem- cohol. The alcohol was evaporated, and the 6. Wolf; 7. 8. 10. 1 1. Big on; Clear; Pine; Saugany; spicules were mounted in Permount. This Bass; 12. Eliza; 13. Flint; 14. Long; 15. Loomis; technique creates a permanent mount and al- 16. Louise; 17. Minnehaha; 18. Round; 19. Spec- lows the microscopic examination of the spic- tacle; 20. Wahob. ules as described in Pennak (1989). Species were identified using the taxonomic keys of Pennak (1989), Frost (1991), and Ricciardi & water sponges and bryozoans in the lakes of Reiswig (1993). Lake, Porter and LaPorte counties, Indiana Bryozoan colonies and statoblasts were ex- (excluding Lake Michigan), and to identify amined using a binocular microscope at 10X the water quality habitats of both bryozoans magnification and identified using the taxo- and freshwater sponges where they are found. nomic keys of Pennak (1989), Wood (1989, METHODS 2001), Ricciardi & Reiswig (1994) and Wood (1996). Twenty lakes in three northwest Indiana Water quality measurements were taken at counties were sampled for freshwater sponges each location at the time of biological sam- and bryozoans during the summer of 1998 pling to characterize the habitat where bryo- (Fig. 1 ). The lakes sampled were public, fresh- zoans and sponges were found. Physical and water natural lakes remnant from the geolog- chemical parameters measured were: temper- ical activity that occurred during the Pleisto- ature, pH, Secchi, conductivity, hardness, cal- cene glaciation approximately 12,000 years cium, magnesium, total dissolved solids, and ago (reviewed by Hutchinson 1957). The size dissolved oxygen. Chemistry analysis was and maximum depths of the lakes varied (Ta- completed within 6 h of collection using Hach ble 1). In each lake, a single collection effort Company methodology (Hach Chemical occurred in June-July and typically included Company 1988, 1990) for oxygen (DO), hard- 2-4 man-hours of shallow water wading and ness, calcium, magnesium, and total dissolved snorkcling at each site. For small lakes, the solids (TDS). A digital Marine Systems meter collection effort encompassed the entire litto- was used for pH measurements, while con- ral area, while for larger lakes, the collection ductivity and temperature were taken on site sites included all available habitat types. No using a Hach Model 44600 conductivity me- sampling was performed at the lake outlets. ter. Scuba diving was used in deeper waters when warranted. Sticks, plants, rocks, and other RESULTS similar hard substrate were examined for the Thirteen bryozoans (3 classes, 7 families) sponges and bryozoans. Collections entailed were identified in the 20 study lakes (Table 2) 41 — < BARNES & LAUER—INDIANA SPONGES AND BRYOZOANS 31 — CO VO co CO sC ri r- — 00 OC sC b() in 0> IT) i -t r, it — cO 1 ) o> h st -t" ri CO — CI — £ ,— — Efl no -t sC o> co co no oo r- — — — c 1— oc O — i-H oc in On co i/-, CO VO lO CN nO c (-*-, J= ON m co O "st ri ri co cs co U p i o cd '_> O i— oo rt i oo c) in oo r- o o -to^ocooco-to-t bO • On oo m, r- o^' - — sd oc C O O 'st o d x -t' h e 5 y: \o N t \o >o o O nO oo nO t 1- X X ri C ri -t •/ O cd b0 ri 0\ ^ O On -" vD <st IT-, 00 — oo ^t Nod — d — sdc! u r. —' £ <N CO CO CN —' CN CN — CN CN CN CI — ri CO CO — cd a03 >, *>> •g - Tt 00 NO i On in o on r- — — r- r-> co m, oc — r--t Id 03 r- r- r- r- cn no NO CO 'st h O O n ir, h h -t ir, t 3 T £ cr •— u ^ £ 00 CN On oo in CO in co d bb o O o or-oocoom c x Q £ h 00 NO h NO 00 ON ON r^ oo ^ d c~- in m! i> oc sd in O O co O <N oo O O O O mi-iTjCir, -OC-1-C «-J r-5 — "t d Tt d —< ri in co d d —I —i d m] ci — co X P O no oo r-- co oo "st O m r^ oq -st l> oc -st -st nC it, ir, iy, oo oo r-» oo r- oo ON On 00 00 r^ aJ x ^ x x xV xV a co o co co no On 00 -st 'st <-h q 'st on — ci no — in oo S U .a i O 00 ON 00 00 od od On nO On oc ON On On oc QJ CN CN CN CN CN CN CN CN CN CN CI CI CI s i CN -q s "O N ° in — -st CN NO p ; 03s >, ^ iri r-' 03 in cn i O rj- cn CO NO O CO 'st O oc t> . cl Vh — CN — CN — ^ -a 55 c >> o3 " (50 T3 C C O O 00 On r- C sD "* r\ co CO 00 x x \C nc it, ri x c r- m 'st CN CN — CO CN CJ On CN in o II .5 O O C r*l CN 'st CO 8" H r-H NO 00 — — cn oj CM I s ^~ CO r- o r- r- r- r- sC NO r-- no .9 -o c^ 1) 03 *J £> CJ CD •3 ° cd o -a 03 03 c c 1 (U ."2 13 * 03 - S 03 a> = c o a £ £ -5 II 8 -^ IS o3 a c q o -^ Q c If J £ S U cu ir.
Recommended publications
  • World-Wide Distribution of the Bryozoan Pectinatella Magnifica (Leidy 1851)
    96 European Journal of Environmental Sciences WORLD-WIDE DISTRIBUTION OF THE BRYOZOAN PECTINATELLA MAGNIFICA (LEIDY 1851) ZUZANA BALOUNOVÁ1, EVA PECHOUŠKOVÁ1, JOSEF RAJCHARD1,*, VÍT JOZA1, and JAN ŠINKO2 1 Faculty of Agriculture, University of South Bohemia, CZ 370 05, České Budějovice, Czech Republic 2 Faculty of Fisheries and Protection of Waters, University of South Bohemia, CZ 389 01, Vodňany, Czech Republic * Corresponding author: [email protected] ABSTRACT Pectinatella magnifica (Leidy 1851) is an invasive freshwater colonial animal belonging to the phylum Bryozoa. It is native to the area east of the Mississippi River, from Ontario to Florida. Currently it occurs throughout North America and the first record for it outside that continent was for Bille near Hamburg in 1883. Later, it was found in the Elbe (Havel by Spandau), in Tegeler See, a pond in Wroclaw and in Silesia and Brandenburg. In addition, floatoblasts of P. magnifica were found in the upper Elbe in Germany in the 1950s. Then, P. magnifica spread to the area of Spandau in Berlin and the Oder, and Wroclaw. It is also recorded in Romania and Turkey. In France, it was recorded occurring in the area called Franche-Comté in 1994. Its occurrence in the Netherlands was first reported in 2003 and then each following year. The newest discoveries are for the Rhine basin in the area between Luxembourg and Germany. Recently, it was also recorded in the Czech Republic and Austria. Besides Europe and North America, it is also recorded in Japan and Korea. The statoblasts of P. magnifica are spread by flowing water, zoochory and probably also by anthropochory.
    [Show full text]
  • Studies on Fresh-Water Byrozoa. XVII, Michigan Bryozoa
    STUDIES ON FRESH-WATER BRYOZOA, XVII. MICHIGAN BRYOZOA MARY D. ROGICK, College of New Roche lie, New Rochelle, N. Y. AND HENRY VAN DER SCHALIE, University of Michigan, Ann Arbor, Mich. INTRODUCTION The purpose of the present study is to record the occurrence of several bryozoan species from localities new to Michigan and other regions; to compile a list of the bryozoa previously recorded from Michigan; and to correct or revise the identifica- tion of some of the species collected long ago. Records published by various writers from 1882 through 1949 have reported the following bryozoa from different Michigan localities, sometimes under synonyms or outmoded names: Class ECTOPROCTA Order GYMNOLAEMATA * Family Paludicellidae 1. Paludicella articulata (Ehrenberg) 1831 ORDER PHYLACTOLAEMATA Family Cristatellidae 2. Cristatella mucedo Cuvier 1798 Family Fredericellidae 3. Fredericella sultana (Blumenbach) 1779 Family Lophopodidae 4. Pectinatella magnifica Leidy 1851 Family PRimatellidae 5. Hyalinella punctata (Hancock) 1850 6. Plumatella casmiana Oka 1907 7. Plumatella or bis per ma Kellicott 1882 8. Plumatella repens (Linnaeus) 1758 9. Plumatella repens var. coralloides (Allman) 1850 10. Plumatella repens var. emarginata (Allman) 1844 11. Stolella indica Annandale 1909 The recorded localities for the above list of bryozoa are named in Table I. The sixteen references from which the Table was compiled are on file with both authors and are not here reproduced. To the above listed species the present study adds the following two new Michigan records: Class ECTOPROCTA Family Plumatellidae Plumatella repens var. jugalis (Allman) 1850 Class ENTOPROCTA Family Urnatellidae Urnatella gracilis Leidy 1851 In addition to the Urnatella gracilis and the Plumatella repens jugalis three other bryozoa (Paludicella articulata, Plumatella casmiana and Plumatella repens var.
    [Show full text]
  • A Multigene Phylogenetic Analysis of Terebelliform Annelids
    Zhong et al. BMC Evolutionary Biology 2011, 11:369 http://www.biomedcentral.com/1471-2148/11/369 RESEARCH ARTICLE Open Access Detecting the symplesiomorphy trap: a multigene phylogenetic analysis of terebelliform annelids Min Zhong1, Benjamin Hansen2, Maximilian Nesnidal2, Anja Golombek2, Kenneth M Halanych1 and Torsten H Struck2* Abstract Background: For phylogenetic reconstructions, conflict in signal is a potential problem for tree reconstruction. For instance, molecular data from different cellular components, such as the mitochondrion and nucleus, may be inconsistent with each other. Mammalian studies provide one such case of conflict where mitochondrial data, which display compositional biases, support the Marsupionta hypothesis, but nuclear data confirm the Theria hypothesis. Most observations of compositional biases in tree reconstruction have focused on lineages with different composition than the majority of the lineages under analysis. However in some situations, the position of taxa that lack compositional bias may be influenced rather than the position of taxa that possess compositional bias. This situation is due to apparent symplesiomorphic characters and known as “the symplesiomorphy trap”. Results: Herein, we report an example of the sympleisomorphy trap and how to detect it. Worms within Terebelliformia (sensu Rouse & Pleijel 2001) are mainly tube-dwelling annelids comprising five ‘families’: Alvinellidae, Ampharetidae, Terebellidae, Trichobranchidae and Pectinariidae. Using mitochondrial genomic data, as well as data from the nuclear 18S, 28S rDNA and elongation factor-1a genes, we revealed incongruence between mitochondrial and nuclear data regarding the placement of Trichobranchidae. Mitochondrial data favored a sister relationship between Terebellidae and Trichobranchidae, but nuclear data placed Trichobranchidae as sister to an Ampharetidae/Alvinellidae clade.
    [Show full text]
  • Nitrogen-Fixing, Photosynthetic, Anaerobic Bacteria Associated with Pelagic Copepods
    - AQUATIC MICROBIAL ECOLOGY Vol. 12: 105-113. 1997 Published April 10 , Aquat Microb Ecol Nitrogen-fixing, photosynthetic, anaerobic bacteria associated with pelagic copepods Lita M. Proctor Department of Oceanography, Florida State University, Tallahassee, Florida 32306-3048, USA ABSTRACT: Purple sulfur bacteria are photosynthetic, anaerobic microorganisms that fix carbon di- oxide using hydrogen sulfide as an electron donor; many are also nitrogen fixers. Because of the~r requirements for sulfide or orgamc carbon as electron donors in anoxygenic photosynthesis, these bac- teria are generally thought to be lim~tedto shallow, organic-nch, anoxic environments such as subtidal marine sediments. We report here the discovery of nitrogen-fixing, purple sulfur bactena associated with pelagic copepods from the Caribbean Sea. Anaerobic incubations of bacteria associated with fuU- gut and voided-gut copepods resulted in enrichments of purple/red-pigmented purple sulfur bacteria while anaerobic incubations of bacteria associated with fecal pellets did not yield any purple sulfur bacteria, suggesting that the photosynthetic anaerobes were specifically associated with copepods. Pigment analysis of the Caribbean Sea copepod-associated bacterial enrichments demonstrated that these bactena possess bacter~ochlorophylla and carotenoids in the okenone series, confirming that these bacteria are purple sulfur bacteria. Increases in acetylene reduction paralleled the growth of pur- ple sulfur bactena in the copepod ennchments, suggesting that the purple sulfur bacteria are active nitrogen fixers. The association of these bacteria with planktonic copepods suggests a previously unrecognized role for photosynthetic anaerobes in the marine S, N and C cycles, even in the aerobic water column of the open ocean. KEY WORDS: Manne purple sulfur bacterla .
    [Show full text]
  • The Anti-Viral Applications of Marine Resources for COVID-19 Treatment: an Overview
    marine drugs Review The Anti-Viral Applications of Marine Resources for COVID-19 Treatment: An Overview Sarah Geahchan 1,2, Hermann Ehrlich 1,3,4,5 and M. Azizur Rahman 1,3,* 1 Centre for Climate Change Research, Toronto, ON M4P 1J4, Canada; [email protected] (S.G.); [email protected] (H.E.) 2 Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 2E8, Canada 3 A.R. Environmental Solutions, University of Toronto, ICUBE-UTM, Mississauga, ON L5L 1C6, Canada 4 Institute of Electronic and Sensor Materials, TU Bergakademie Freiberg, 09599 Freiberg, Germany 5 Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland * Correspondence: [email protected] Abstract: The ongoing pandemic has led to an urgent need for novel drug discovery and potential therapeutics for Sars-CoV-2 infected patients. Although Remdesivir and the anti-inflammatory agent dexamethasone are currently on the market for treatment, Remdesivir lacks full efficacy and thus, more drugs are needed. This review was conducted through literature search of PubMed, MDPI, Google Scholar and Scopus. Upon review of existing literature, it is evident that marine organisms harbor numerous active metabolites with anti-viral properties that serve as potential leads for COVID- 19 therapy. Inorganic polyphosphates (polyP) naturally found in marine bacteria and sponges have been shown to prevent viral entry, induce the innate immune response, and downregulate human ACE-2. Furthermore, several marine metabolites isolated from diverse sponges and algae have been shown to inhibit main protease (Mpro), a crucial protein required for the viral life cycle. Sulfated polysaccharides have also been shown to have potent anti-viral effects due to their anionic properties and high molecular weight.
    [Show full text]
  • Examples of Sea Sponges
    Examples Of Sea Sponges Startling Amadeus burlesques her snobbishness so fully that Vaughan structured very cognisably. Freddy is ectypal and stenciling unsocially while epithelial Zippy forces and inflict. Monopolistic Porter sailplanes her honeymooners so incorruptibly that Sutton recirculates very thereon. True only on water leaves, sea of these are animals Yellow like Sponge Oceana. Deeper dives into different aspects of these glassy skeletons are ongoing according to. Sponges theoutershores. Cell types epidermal cells form outer covering amoeboid cells wander around make spicules. Check how These Beautiful Pictures of Different Types of. To be optimal for bathing, increasing with examples of brooding forms tan ct et al ratios derived from other microscopic plants from synthetic sponges belong to the university. What is those natural marine sponge? Different types of sponges come under different price points and loss different uses in. Global Diversity of Sponges Porifera NCBI NIH. Sponges EnchantedLearningcom. They publish the outer shape of rubber sponge 1 Some examples of sponges are Sea SpongeTube SpongeVase Sponge or Sponge Painted. Learn facts about the Porifera or Sea Sponges with our this Easy mountain for Kids. What claim a course Sponge Acme Sponge Company. BG Silicon isotopes of this sea sponges new insights into. Sponges come across an incredible summary of colors and an amazing array of shapes. 5 Fascinating Types of what Sponge Leisure Pro. Sea sponges often a tube-like bodies with his tiny pores. Sponges The World's Simplest Multi-Cellular Creatures. Sponges are food of various nudbranchs sea stars and fish. Examples of sponges Answers Answerscom. Sponges info and games Sheppard Software.
    [Show full text]
  • Solitary Entoprocts Living on Bryozoans - Commensals, Mutualists Or Parasites?
    Journal of Experimental Marine Biology and Ecology 440 (2013) 15–21 Contents lists available at SciVerse ScienceDirect Journal of Experimental Marine Biology and Ecology journal homepage: www.elsevier.com/locate/jembe Solitary entoprocts living on bryozoans - Commensals, mutualists or parasites? Yuta Tamberg ⁎, Natalia Shunatova, Eugeniy Yakovis Department of Invertebrate Zoology, St. Petersburg State University, Universitetskaja nab. 7/9, St. Petersburg, 199034, Russian Federation article info abstract Article history: To assess the effects of interspecific interactions on community structure it is necessary to identify their sign. Received 24 December 2011 Interference in sessile benthic suspension-feeders is mediated by space and food. In the White Sea solitary Received in revised form 3 November 2012 entoproct Loxosomella nordgaardi almost restrictively inhabits the colonies of several bryozoans, including Accepted 7 November 2012 Tegella armifera. Since both entoprocts and their hosts are suspension-feeders, this strong spatial association Available online xxxx suggests feeding interference of an unknown sign. We mapped the colonies of T. armifera inhabited by entoprocts and examined stomachs of both species for Keywords: Bryozoa diatom shells. Distribution of L. nordgaardi was positively correlated with distribution of fully developed Commensalism and actively feeding polypides of T. armifera, i.e. areas of strong colony-wide currents. We compared diatom Entoprocta shells found in their stomachs and observed a diet overlap, especially in the size classes b15 μm. Size spectra Epibiosis of the diatom shells consumed by T. armifera and average number of diatom shells per gut were not affected Interactions by the presence of L. nordgaardi. According to these results, L. nordgaardi is a commensal of T.
    [Show full text]
  • Freshwater Sponge Hosts and Their Green Algae Symbionts
    bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.247908; this version posted August 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 1 Freshwater sponge hosts and their green algae 2 symbionts: a tractable model to understand intracellular 3 symbiosis 4 5 Chelsea Hall2,3, Sara Camilli3,4, Henry Dwaah2, Benjamin Kornegay2, Christine A. Lacy2, 6 Malcolm S. Hill1,2§, April L. Hill1,2§ 7 8 1Department of Biology, Bates College, Lewiston ME, USA 9 2Department of Biology, University of Richmond, Richmond VA, USA 10 3University of Virginia, Charlottesville, VA, USA 11 4Princeton University, Princeton, NJ, USA 12 13 §Present address: Department of Biology, Bates College, Lewiston ME USA 14 Corresponding author: 15 April L. Hill 16 44 Campus Ave, Lewiston, ME 04240, USA 17 Email address: [email protected] 18 19 20 21 22 23 24 25 26 bioRxiv preprint doi: https://doi.org/10.1101/2020.08.12.247908; this version posted August 13, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 27 Abstract 28 In many freshwater habitats, green algae form intracellular symbioses with a variety of 29 heterotrophic host taxa including several species of freshwater sponge. These sponges perform 30 important ecological roles in their habitats, and the poriferan:green algae partnerships offers 31 unique opportunities to study the evolutionary origins and ecological persistence of 32 endosymbioses.
    [Show full text]
  • Dynamics of Microbial Community in the Marine Sponge Holichondria Sp
    July 30, 2003 Dynamics of microbial community in the marine sponge Holichondria sp. Microbial Diversity Course, Marine Biological Laboratory, Woods Hole, MA Gil Zeidner, Faculty of Biology, Technion, Haifa, Israel. 1 Abstract Marine sponges often harbor communities of symbiotic microorganisms that fulfill necessary functions for the well being of their hosts. Microbial communities are susceptible to environmental pollution and have previously been used as sensitive markers for anthropogenic stress in aquatic ecosystems. Previous work done on dynamics of the microbial community in sponges exposed to different copper concentrations have shown a significant reduction in the total density of bacteria and diversity. A combined strategy incorporating quantitative and qualitative techniques was used to monitor changes in the microbial diversity in sponge during transition into polluted environment. Introduction Sponges are known to be associated with large amounts of bacteria that can amount to 40% of the biomass of the sponge. Various microorganisms have evolved to reside in sponges, including cyanobacteria, diverse heterotrophic bacteria, unicellular algae and zoochlorellae(Webster et al., 2001b). Since sponges are filter feeders, a certain amount of transient bacteria are trapped within the vascular system or attached to the sponge surface. Microbial communities are susceptible to different environmentral pollution agents and have previously been used as sensitive markers for anthropogenic stress in aquatic ecosystems(Webster et al., 2001a). It is possible that shifts in symbiont community composition may result from pollution stress, and these shifts may, in turn, have detrimental effects on the host sponge. The breakdown of symbiotic relationships is a common indicator of sublethal stress in marine organisms.
    [Show full text]
  • Bryozoa of the Caspian Sea
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/339363855 Bryozoa of the Caspian Sea Article in Inland Water Biology · January 2020 DOI: 10.1134/S199508292001006X CITATIONS READS 0 90 1 author: Valentina Ivanovna Gontar Russian Academy of Sciences 58 PUBLICATIONS 101 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Freshwater Bryozoa View project Evolution of spreading of marine invertebrates in the Northern Hemisphere View project All content following this page was uploaded by Valentina Ivanovna Gontar on 19 February 2020. The user has requested enhancement of the downloaded file. ISSN 1995-0829, Inland Water Biology, 2020, Vol. 13, No. 1, pp. 1–13. © Pleiades Publishing, Ltd., 2020. Russian Text © The Author(s), 2020, published in Biologiya Vnutrennykh Vod, 2020, No. 1, pp. 3–16. AQUATIC FLORA AND FAUNA Bryozoa of the Caspian Sea V. I. Gontar* Institute of Zoology, Russian Academy of Sciences, St. Petersburg, Russia *e-mail: [email protected] Received April 24, 2017; revised September 18, 2018; accepted November 27, 2018 Abstract—Five bryozoan species of the class Gymnolaemata and a single Plumatella emarginata species of the class Phylactolaemata are found in the Caspian Sea. The class Gymnolaemata is represented by bryozoans of the orders Ctenostomatida (Amathia caspia, Paludicella articulata, and Victorella pavida) and Cheilostoma- tida (Conopeum grimmi and Lapidosella ostroumovi). Two species (Conopeum grimmi and Amatia caspia) are Caspian endemics. Lapidosella ostroumovi was identified in the Caspian Sea for the first time. The systematic position, illustrated morphological descriptions, and features of ecology of the species identified are pre- sented.
    [Show full text]
  • A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments Haydn Rubelmann III University of South Florida, [email protected]
    University of South Florida Scholar Commons Graduate Theses and Dissertations Graduate School 11-12-2014 A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments Haydn Rubelmann III University of South Florida, [email protected] Follow this and additional works at: https://scholarcommons.usf.edu/etd Part of the Marine Biology Commons, and the Microbiology Commons Scholar Commons Citation Rubelmann, Haydn III, "A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments" (2014). Graduate Theses and Dissertations. https://scholarcommons.usf.edu/etd/5432 This Dissertation is brought to you for free and open access by the Graduate School at Scholar Commons. It has been accepted for inclusion in Graduate Theses and Dissertations by an authorized administrator of Scholar Commons. For more information, please contact [email protected]. A Functional Approach to Resolving the Biogeocomplexity of Two Extreme Environments by Haydn Rubelmann III A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy Department of Cell Biology, Microbiology and Molecular Biology College of Arts and Sciences University of South Florida Major Professor: James R. Garey, Ph.D. Randy Larsen, Ph.D. Kathleen Scott, Ph.D. David Merkler, Ph.D. Date of Approval: November 12, 2014 Keywords: environmental microbiology, extremophiles, shallow-water hydrothermal vents, anoxic marine pits Copyright © 2014, Haydn Rubelmann III DEDICATION I would like to dedicate this dissertation to three of my personal champions: my grandfather, Haydn Rubelmann Sr. (1929 - 2004), who encouraged me to pursue an academic career; my stepfather, Dale Jones (1954 - 2008), who was the best father anyone could ever hope for, and my husband, Eduardo Godoy, who suffered through not only 8 years of my doctoral tenure, but a grueling civil liberty injustice that almost wedged the Caribbean Sea between us.
    [Show full text]
  • Recolonization of Freshwater Ecosystems Inferred from Phylogenetic Relationships Nikola KoletiC1, Maja Novosel2, Nives RajeviC2 & Damjan FranjeviC2
    Bryozoans are returning home: recolonization of freshwater ecosystems inferred from phylogenetic relationships Nikola Koletic1, Maja Novosel2, Nives Rajevic2 & Damjan Franjevic2 1Institute for Research and Development of Sustainable Ecosystems, Jagodno 100a, 10410 Velika Gorica, Croatia 2Department of Biology, Faculty of Science, University of Zagreb, Rooseveltov trg 6, 10000 Zagreb, Croatia Keywords Abstract COI, Gymnolaemata, ITS2, Phylactolaemata, rRNA genes. Bryozoans are aquatic invertebrates that inhabit all types of aquatic ecosystems. They are small animals that form large colonies by asexual budding. Colonies Correspondence can reach the size of several tens of centimeters, while individual units within a Damjan Franjevic, Department of Biology, colony are the size of a few millimeters. Each individual within a colony works Faculty of Science, University of Zagreb, as a separate zooid and is genetically identical to each other individual within Rooseveltov trg 6, 10000 Zagreb, Croatia. the same colony. Most freshwater species of bryozoans belong to the Phylacto- Tel: +385 1 48 77 757; Fax: +385 1 48 26 260; laemata class, while several species that tolerate brackish water belong to the E-mail: [email protected] Gymnolaemata class. Tissue samples for this study were collected in the rivers of Adriatic and Danube basin and in the wetland areas in the continental part Funding Information of Croatia (Europe). Freshwater and brackish taxons of bryozoans were geneti- This research was supported by Adris cally analyzed for the purpose of creating phylogenetic relationships between foundation project: “The genetic freshwater and brackish taxons of the Phylactolaemata and Gymnolaemata clas- identification of Croatian autochthonous ses and determining the role of brackish species in colonizing freshwater and species”.
    [Show full text]