Habitat Use by the Persian Onager, Equus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Three-Toed Browsing Horse Anchitherium (Equidae) from the Miocene of Panama
J. Paleonl., 83(3), 2009, pp. 489-492 Copyright © 2009, The Paleontological Society 0022-3360/09/0083-489S03.00 THREE-TOED BROWSING HORSE ANCHITHERIUM (EQUIDAE) FROM THE MIOCENE OF PANAMA BRUCE J. MACFADDEN Florida Museum of Natural History, University of Florida, Gainesville FL 32611, <[email protected]> INTRODUCTION (CRNHT/APL); L, left; M, upper molar; R upper premolar; R, DURING THE Cenozoic, the New World tropics supported a rich right; TRN, greatest transverse width. biodiversity of mammals. However, because of the dense SYSTEMATIC PALEONTOLOGY vegetative ground cover, today relatively little is known about extinct mammals from this region (MacFadden, 2006a). In an Class MAMMALIA Linnaeus, 1758 exception to this generalization, fossil vertebrates have been col- Order PERISSODACTYLA Owen, 1848 lected since the second half of the twentieth century from Neo- Family EQUIDAE Gray, 1821 gene exposures along the Panama Canal. Whitmore and Stewart Genus ANCHITHERIUM Meyer, 1844 (1965) briefly reported on the extinct land mammals collected ANCHITHERIUM CLARENCI Simpson, 1932 from the Miocene Cucaracha Formation that crops out in the Gail- Figures 1, 2, Table 1 lard Cut along the southern reaches of the Canal. MacFadden Referred specimen.—UF 236937, partial palate (maxilla) with (2006b) formally described this assemblage, referred to as the L P1-M3, R P1-P3, and small fragment of anterointernal part of Gaillard Cut Local Fauna (L.E, e.g., Tedford et al., 2004), which P4 (Fig. 1). Collected by Aldo Rincon of the Smithsonian Tropical consists of at least 10 species of carnivores, artiodactyls (also see Research Institute, Republic of Panama, on 15 May 2008. -
The Last Populations of the Critically Endangered Onager Equus Hemionus Onager in Iran: Urgent Requirements for Protection and Study
Oryx Vol 37 No 4 October 2003 Short Communication The last populations of the Critically Endangered onager Equus hemionus onager in Iran: urgent requirements for protection and study Laurent Tatin, Bijan F. Darreh-Shoori, Christophe Tourenq, David Tatin and Bijan Azmayesh Abstract The onager Equus hemionus onager, a wild ass for domestic use, and land conversion have been identi- endemic to Iran, is categorized as Critically Endangered fied as the main threats to the two remaining onager on the IUCN Red List. Its biology and conservation populations. In addition, geographical isolation could requirements are poorly documented. We report our cause the loss of genetic variability in these two relatively observations, made in 1997 and 2000, on the behaviour small populations, and also makes them more susceptible and ecology of the two remaining populations, located to the potential eCects of stochastic events such as drought in the Touran Protected Area and the Bahram-e-Goor or disease. Public awareness, appropriate protection, and Reserve. Recent population counts by the Department of scientific studies must be urgently supported by both Environment of Iran (471 in the Protected Area and 96 national and international organizations in order to pre- in the Reserve) are markedly lower than the estimate of vent the extinction of these two apparently dwindling 600–770 made in the 1970s in the Touran Protected Area. populations of onager. We observed social interactions between stallions and mares outside the breeding season that contrasts with Keywords Ass, behaviour, conservation status, Equus the known social structure of this subspecies. Poaching, hemionus, Iran, onager. competition with domestic animals, removal of shrubs The Asiatic wild ass Equus hemionus is one of seven ass Equus h. -
Genomics and the Evolutionary History of Equids Pablo Librado, Ludovic Orlando
Genomics and the Evolutionary History of Equids Pablo Librado, Ludovic Orlando To cite this version: Pablo Librado, Ludovic Orlando. Genomics and the Evolutionary History of Equids. Annual Review of Animal Biosciences, Annual Reviews, 2021, 9 (1), 10.1146/annurev-animal-061220-023118. hal- 03030307 HAL Id: hal-03030307 https://hal.archives-ouvertes.fr/hal-03030307 Submitted on 30 Nov 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Annu. Rev. Anim. Biosci. 2021. 9:X–X https://doi.org/10.1146/annurev-animal-061220-023118 Copyright © 2021 by Annual Reviews. All rights reserved Librado Orlando www.annualreviews.org Equid Genomics and Evolution Genomics and the Evolutionary History of Equids Pablo Librado and Ludovic Orlando Laboratoire d’Anthropobiologie Moléculaire et d’Imagerie de Synthèse, CNRS UMR 5288, Université Paul Sabatier, Toulouse 31000, France; email: [email protected] Keywords equid, horse, evolution, donkey, ancient DNA, population genomics Abstract The equid family contains only one single extant genus, Equus, including seven living species grouped into horses on the one hand and zebras and asses on the other. In contrast, the equine fossil record shows that an extraordinarily richer diversity existed in the past and provides multiple examples of a highly dynamic evolution punctuated by several waves of explosive radiations and extinctions, cross-continental migrations, and local adaptations. -
Framing Contemporary U.S. Wild Horse and Burro Management Processes in a Dynamic Ecological, Sociological, and Political Environment
Human–Wildlife Interactions 12(1):31–45, Spring 2018 Synthesis Framing contemporary U.S. wild horse and burro management processes in a dynamic ecological, sociological, and political environment J. Dˎ˛ˎ˔ Sˌˊ˜˝ˊ, Department of Ecosystem Science and Management, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA [email protected] Jˊˌ˘ˋ D. Hˎ˗˗˒ː, Department of Ecosystem Science and Management, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA Jˎˏˏ˛ˎˢ L. Bˎˌ˔, Department of Ecosystem Science and Management, University of Wyoming, 1000 E. University Ave., Laramie, WY 82071, USA Abstract: The Wild Free-Roaming Horses and Burros Act (WFRHBA) of 1971 established all “unbranded or unclaimed” equids on U.S. public lands as “living symbols of the historic and pioneer spirit of the West.” Today, >72,000 feral horses (Equus ferus caballus) and burros (E. asinus; WHB) live on western U.S. public rangelands. The number of WHBs exceeds the Bureau of Land Management’s maximum Appropriate Management Level (AML) of 26,715 by a factor of approximately 2.7 and has nearly doubled from 2007–2015. The AML was set to balance WHB numbers with rangeland health and support other uses such as wildlife habitat and livestock grazing. Thus, public land management agencies must manage WHB under the multiple-use context. This becomes more problematic when WHB populations go largely unmanaged and excessive equid grazing negatively impacts rangeland vegetation, native wildlife, and livestock forage. In addition, approximately 46,000 WHBs exist in off -range holding facilities, further straining federal budgets. Contemporary management actions are being constrained by: (1) litigation that has stymied federal government WFRHBA enforcement eff orts, (2) public emotional concerns that lack reconciliation with the current situation, and (3) increasing complexity in the laws and subsequent amendments shaping WHB management policy. -
Detomidine and Butorphanol for Standing Sedation in a Range of Zoo-Kept Ungulate Species
View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Ghent University Academic Bibliography Journal of Zoo and Wildlife Medicine 48(3): 616–626, 2017 Copyright 2017 by American Association of Zoo Veterinarians DETOMIDINE AND BUTORPHANOL FOR STANDING SEDATION IN A RANGE OF ZOO-KEPT UNGULATE SPECIES Tim Bouts, D.V.M., M.Sc., Dip. E.C.Z.M., Joanne Dodds, V.N., Karla Berry, V.N., Abdi Arif, M.V.Sc., Polly Taylor, Vet. M. B., Ph. D., Dip. E.C.V.A.A., Andrew Routh, B. V. Sc., Cert. Zoo. Med., and Frank Gasthuys, D.V.M., Ph. D., Dip. E.C.V.A.A. Abstract: General anesthesia poses risks for larger zoo species, like cardiorespiratory depression, myopathy, and hyperthermia. In ruminants, ruminal bloat and regurgitation of rumen contents with potential aspiration pneumonia are added risks. Thus, the use of sedation to perform minor procedures is justified in zoo animals. A combination of detomidine and butorphanol has been routinely used in domestic animals. This drug combination, administered by remote intramuscular injection, can also be applied for standing sedation in a range of zoo animals, allowing a number of minor procedures. The combination was successfully administered in five species of nondomesticated equids (Przewalski horse [Equus ferus przewalskii; n ¼ 1], onager [Equus hemionus onager; n ¼ 4], kiang [Equus kiang; n ¼ 3], Grevy’s zebra [Equus grevyi; n ¼ 4], and Somali wild ass [Equus africanus somaliensis; n ¼ 7]), with a mean dose range of 0.10–0.17 mg/kg detomidine and 0.07–0.13 mg/kg butorphanol; the white (Ceratotherium simum simum; n ¼ 12) and greater one-horned rhinoceros (Rhinoceros unicornis; n ¼ 4), with a mean dose of 0.015 mg/kg of both detomidine and butorphanol; and Asiatic elephant bulls (Elephas maximus; n ¼ 2), with a mean dose of 0.018 mg/kg of both detomidine and butorphanol. -
Reintroduction of Przewalski’S Horse (Equus Ferus Przewalskii)
Biological Conservation 177 (2014) 142–147 Contents lists available at ScienceDirect Biological Conservation journal homepage: www.elsevier.com/locate/biocon Short communication Reintroduction of Przewalski’s horse (Equus ferus przewalskii) in Xinjiang, China: The status and experience ⇑ Canjun Xia a, Jie Cao b, Hefan Zhang b, Xingyi Gao a, Weikang Yang a, , David Blank a a Key Laboratory of Biogeography and Bioresources in Arid Land, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, South Beijing Road 818, Urumqi 830011, Xinjiang, China b Wild Horse Breeding Centre, Jimsar 831700, Xinjiang, China article info abstract Article history: Przewalski’s horse reintroductions to Xinjiang, China were initiated in 1985. Here, we present the first Received 13 January 2014 data on population development and current problems of the Przewalski’s horse in both captive and Received in revised form 20 June 2014 released populations in Xinjiang. From 1985 to 2005, a total of 24 captive Przewalski’s horses (14 males Accepted 23 June 2014 and 10 females) were brought from western zoos to the Jimsar Wild Horse Breeding Center (WHBC) in Xinjiang. In 1988, the first foal was born. Since then, a total of 285 foals have been born and the number of animals in the captive population continues to increase. In August 2001, the first group of horses was Keywords: released into semi-wild conditions in the Kalamaili Nature Reserve (KNR). Released horses were allowed Asian wild horse to range freely from spring to fall, but were driven into a winter coral to allow for supplemental feeding Reintroduction Equus ferus przewalskii and to increase winter survival, and to reduce competition with domestic horses from local herdsmen China who use the KNR as winter pasture. -
Late-Pleistocene Horse (Equus Sp.) from the Wilson-Leonard Archaeological Site, Central Texas
CURRENT RESEARCH IN THE PLEISTOCENE Vol. 19, 2002 Paleoenvironmental: Vertebrates Late-Pleistocene Horse (Equus sp.) from the Wilson-Leonard Archaeological Site, Central Texas Barry W. Baker, Michael B. Collins and C. Britt Bousman The Wilson-Leonard site (41WM235) near Austin represents one of the best preserved and dated, long-term archaeological sequences in the Southern Plains. Occupations are pre-Clovis through late-Prehistoric in age (Collins 1998; Collins et al. 1993). The site is located on Brushy Creek in Williamson County, on the eastern edge of the Edwards Plateau along an ecotone with the Black Prairie. The Wilson-Leonard site has received wide attention for the recovery a late-Paleoindian human female skeleton (Wilson Component), as well as for the generalized human diet inferred for the late-Pleistocene / early-Holocene transition (Bousman 1998). Extensive subsistence and environmental data have been reported, including a well preserved vertebrate faunal assemblage (Baker 1994, 1998a, 1998b, 1998c; Balinsky 1997, 1998; Decker 1998, and Winkler 1990). Within the faunal assemblage is a single horse bone (Equus sp.). Following the nomenclature of Driesch (1976:91) and Peters (1987), the bone is a complete left central tarsal (os tarsi centrale [navicular]. Archaeological provenience is as follows: Excavation square E28/S78; Level 39A&B; Stratigraphic Unit Isi/Icl. The central tarsal is not burned, and no cut marks or other forms of potential cultural modification were observed. This bone was recovered from an area of the site referred to as the Bone Bed Component. The Texas Department of Transportation (TxDOT) recovered the bone during 1982-1984 excavations at the site. -
The Perdum-Mule, a Mount for Distinguished Persons in Mesopotamia During the fi Rst Half of the Second Millennium BC By
190 The perdum-mule, a mount for distinguished persons in Mesopotamia during the fi rst half of the second millennium BC by Cécile Michel Fig. 7. Map of the area. [First. Unnumbered note: (*) Bibliography and sigla of Traditionally Mesopotamia defi nes the region bounded the Old Assyrian texts cited in this article are detailed by the Tigris and Euphrates rivers, but in a more conven- in C. Michel, Old Assyrian Bibliography, Old Assyrian tional way, it covers the whole area where people used Archives. Studies 1, Leiden, 2003.] cuneiform script on clay tablets, from Iran to Anatolia, from the Zagros mountains to the Persian Gulf. The area Abstract: concerned by this study is limited mainly to Anatolia Among the many equids used at the beginning of the second millen- nium B. C. in Northern Mesopotamia, the perdum, an hybrid, is at- and Syria. tested only in few corpuses: the Old Assyrian merchant archives found Equids in the Ancient Near East are divided into in Central Anatolia in the ancient town Kaniš and dated to the 19th and three different groups: asses (equus asinus), half-asses 18th centuries B. C., the royal archives of Mari, Northern Syria, from (equus hemionus) and horses (equus caballus), and their the 18th century B. C., the tablets from Ugarit, half a millennium later, or even in the Bible. The aim of this article is to analyse the use and hybrids. The studies on this subject are already numer- the value of the perdum, compared to the picture given by the other ous, especially for the written documentation of the third equids documented in texts, iconography and by the archaeozoology. -
US EPA, Pesticide Product Label, ONAGER EW MITICIDE,08/30/2019
UNITED STATES ENVIRONMENTAL PROTECTION AGENCY WASHINGTON, DC 20460 OFFICE OF CHEMICAL SAFETY AND POLLUTION PREVENTION August 30, 2019 Ms. Kyla S. Smith Registration Specialist Gowan Company P.O. Box 5569 Yuma, AZ 85366-5569 Subject: PRIA Label Amendment – Addition of Low Growing Berry Subgroup 13-07G Product Name: ONAGER EW MITICIDE EPA Registration Number: 10163-337 Application Date: March 15, 2018 Decision Number: 539557 Dear Ms. Smith: The application referred to above, submitted under the Federal Insecticide, Fungicide and Rodenticide Act, as amended is acceptable under FIFRA sec 3 (c)(5). You must submit and/or cite all data required for registration/reregistration/registration review of your product when the Agency requires all registrants of similar products to submit such data. A stamped copy of your labeling is attached for your records. This labeling supersedes all previously accepted labeling. You must submit one (1) copy of the final printed labeling before you release the product for shipment with the new labeling. In accordance with 40 CFR 152.130(c), you may distribute or sell this product under the previously approved labeling for 18 months from the date of this letter. After 18 months, you may only distribute or sell this product if it bears this new revised labeling or subsequently approved labeling. “To distribute or sell” is defined under FIFRA section 2(gg) and its implementing regulation at 40 CFR 152.3. Should you wish to add/retain a reference to the company’s website on your label, then please be aware that the website becomes labeling under the Federal Insecticide Fungicide and Rodenticide Act and is subject to review by the Agency. -
Speciation with Gene Flow in Equids Despite Extensive Chromosomal Plasticity
Speciation with gene flow in equids despite extensive chromosomal plasticity Hákon Jónssona,1, Mikkel Schuberta,1, Andaine Seguin-Orlandoa,b,1, Aurélien Ginolhaca, Lillian Petersenb, Matteo Fumagallic,d, Anders Albrechtsene, Bent Petersenf, Thorfinn S. Korneliussena, Julia T. Vilstrupa, Teri Learg, Jennifer Leigh Mykag, Judith Lundquistg, Donald C. Millerh, Ahmed H. Alfarhani, Saleh A. Alquraishii, Khaled A. S. Al-Rasheidi, Julia Stagegaardj, Günter Straussk, Mads Frost Bertelsenl, Thomas Sicheritz-Pontenf, Douglas F. Antczakh, Ernest Baileyg, Rasmus Nielsenc, Eske Willersleva, and Ludovic Orlandoa,2 aCentre for GeoGenetics, Natural History Museum of Denmark, University of Copenhagen, DK-1350 Copenhagen K, Denmark; bNational High-Throughput DNA Sequencing Center, DK-1353 Copenhagen K, Denmark; cDepartment of Integrative Biology, University of California, Berkeley, CA 94720; dUCL Genetics Institute, Department of Genetics, Evolution, and Environment, University College London, London WC1E 6BT, United Kingdom; eThe Bioinformatics Centre, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark; fCentre for Biological Sequence Analysis, Department of Systems Biology, Technical University of Denmark, DK-2800 Lyngby, Denmark; gMaxwell H. Gluck Equine Research Center, Veterinary Science Department, University of Kentucky, Lexington, KY 40546; hBaker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853; iZoology Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; jRee Park, Ebeltoft Safari, DK-8400 Ebeltoft, Denmark; kTierpark Berlin-Friedrichsfelde, 10319 Berlin, Germany; and lCentre for Zoo and Wild Animal Health, Copenhagen Zoo, DK-2000 Frederiksberg, Denmark Edited by Andrew G. Clark, Cornell University, Ithaca, NY, and approved October 27, 2014 (received for review July 3, 2014) Horses, asses, and zebras belong to a single genus, Equus,which Conservation of Nature. -
Khulan Or Asiatic Wild Ass Equus Hemionus to the Appendix II of the Convention on the Conservation of Migratory Species of Wild Animals
1 of 6 Proposal II / 12 PROPOSAL FOR INCLUSION OF SPECIES ON THE APPENDICES OF THE CONVENTION ON THE CONSERVATION OF MIGRATORY SPECIES OF WILD ANIMALS A. PROPOSAL: Inclusion of all subspecies of Khulan or Asiatic wild ass Equus hemionus to the Appendix II of the Convention on the Conservation of Migratory Species of Wild Animals: B. PROPONENT: Mongolia C. SUPPORTING STATEMENT 1. Taxon 1.1. Classis: Mammalia 1.2. Ordo: Perrissodactyla 1.3. Familia: Equidae 1.4. Genus: Equus 1.5. Species: Equus hemionus Pallas, 1775 1.6. Common names: English: Asiatic wild ass or Khulan French: Ane sauvage de l’Asie, hemione German: Asiatisher Wild esel, Halbesel Spanish: Asno salvaje asiatico Italian: Asino selvatico asiatico Russian: Kulan Chinese: 2. Biological data 2.1 Distribution: During the late Pleistocene, 40.000 years ago, Asian wild asses are known to have roamed as far as West Germany (Kurten 1968, cited in Feh et al. 2001). The Asiatic wild ass Equus hemionus, or khulan, once ranged across much of Central Asia, but is now globally threatened. The largest free-ranging populations are now restricted to a 250-km wide area (range 100-400km) across the Gobi Desert region of southern Mongolia. Over the last 23 years the population has moved further north and east into its former range (Reading et al. 2001). Mongolia represents one of the last strongholds for Asian wild asses, a wide ranging species that inhabits the Middle East (E.h.onager), Central Asia (E.h.kulan), parts of India (E.h.khur), and the Gobi desert of China and Mongolia (Reading et al. -
African Wild Ass the African Wild Ass Is Endangered
tion. Equus africanus is not listed on the CITES appendices, according to the Secretariat, simply African because nobody ever proposed it—even though it is classified as endangered in the IUCN's Red Data Book where the first proposed conservation measure listed is inclusion in Appendix I of the wild ass Convention on International Trade in Wild Bill Clark Species (sic) of Fauna and Flora. This proposal was published in 1976. While conservationists have been slow to propose protective measures for this rare equine, the international animal exploiters have also been stalled for the time being. The African wild ass The African wild ass is endangered. Its lives in an extremely remote and hostile habitat, habitat is a drought-stricken war zone; its in countries where the political situation is, at best, flesh is eaten and is believed to cure unstable. hepatitis; it is eagerly sought by dealers Two subspecies now exist, africanus, the Nubian and collectors. The author, Chief Curator wild ass, numbering perhaps 1500 animals in at Israel's Hai-Bar reserve, examines the southern Sudan, near the Red Sea coast (Watson problems hindering the conservation of et al, 1977), and somalicus, the Somali wild ass, of about 2000 animals living in the Ethiopian this animal and explains why it is urgently Danakil Desert and the Las 'Anod region of necessary to list it on Appendix I of the Somalia (Simonetta, 1982; Stephenson, 1976). Convention on International Trade in Formerly, the African wild ass inhabited most of Endangered Species of Wild Fauna and North Africa, from the Atlas Mountains in the west Flora at its meeting in April 1983.