Science Journals

Total Page:16

File Type:pdf, Size:1020Kb

Science Journals RESEARCH ◥ potential to unravel the molecular programs that RESEARCH ARTICLE SUMMARY underlie cell specification in the human cerebral cortex and, by temporally mapping disease risk NEUROGENETICS onto these changes, to identify cell types and Chromatin accessibility dynamics in a model periods of increased disease susceptibility. RESULTS: We used three-dimensional (3D) di- of human forebrain development rected differentiation of human pluripotent stem cells into dorsal and ventral forebrain do- Alexandro E. Trevino*, Nasa Sinnott-Armstrong*, Jimena Andersen*, Se-Jin Yoon, Nina Huber, mains and applied the assay for transposase- Jonathan K. Pritchard, Howard Y. Chang, William J. Greenleaf†, Sergiu P. Pașca† accessible chromatin with high-throughput sequencing (ATAC-seq) in combination with RNA-sequencing (RNA-seq) to map the epige- INTRODUCTION: The cerebral cortex is respon- neurodevelopmental disease, including autism netic and gene expression signatures of neu- sible for higher-order functions in the nervous spectrum disorders and intellectual disability. ronal and glial cell lineages over 20 months system and has undergone substantial expan- in vitro. We show, through direct comparison sion in size in primates. The development of RATIONALE: Human forebrain development is, with primary brain tissue from our study and theforebrain,includingtheassemblyofthe to a large extent, inaccessible for cellular-level ◥ several epigenetic data- expanded human cerebral cortex, is a lengthy study, direct functional investigation, or manip- ON OUR WEBSITE sets, that human stem – Downloaded from process that involves the diversification and ulation. The lack of availability of primary brain Read the full article cell derived 3D forebrain expansion of neural progenitors, the generation tissue samples—in particular, at later stages— at http://dx.doi. organoids recapitulated and positioning of layer-specific glutamatergic as well as the limitations of conventional in org/10.1126/ in vivo chromatin acces- neurons, the cellular migration of g-amino- vitro cellular models have precluded a detailed science.aay1645 sibility patterns over time. .................................................. butyric acid (GABA)–ergic neurons, and the mechanistic understanding of corticogenesis We then integrated these formation and maturation of glial cells. Dis- in healthy and disease states. Therefore, track- data to discover putative enhancer-gene link- ruption of these cellular events by either ge- ing epigenetic changes in specific forebrain ages and lineage-specific transcription factor http://science.sciencemag.org/ netic or environmental factors can lead to cell lineages over long time periods, has the regulators, including a diverse repertoire of factors that may control cortical specifica- Human cellular model of forebrain development Developmental mapping tion. We validated protein expression of some Cortical spheroids (hCS) Cell isolation of these transcription factors using immuno- fluorescence, confirming cellular and temporal dynamics in both primary tissue and fore- stage brain organoids. Next, we used this resource Subpallial spheroids (hSS) to map genes and genetic variants associated Glial In vivo hiPS cells with schizophrenia and autism spectrum dis- orders to distinct accessibility patterns to Neuronal reveal cell types and periods of susceptibility. on January 24, 2020 25 days 595 days In vitro stage Last, we identified a wave of chromatin re- Cell type–specific chromatin accessibility Enhancer–gene correlations modeling during cortical neurogenesis, during which a quarter of regulatory regions are active, and then highlighted transcription factors that may drive these developmental changes. ATAC–seq CONCLUSION: Using long-term 3D neural dif- ferentiation of stem cells as well as primary Open braintissuesamples,wefoundthatorganoids chromatin intrinsically undergo chromatin state transi- regions tions in vitro that are closely related to human forebrain development in vivo. Leveraging this Chromatin dynamics in human corticogenesis Disease enrichment platform, we identified epigenetic alterations GWAS putatively driven by specific transcription factors Neurogenesis SFARI genes’ binding sites . anddiscoveredadynamicperiodofchromatin NEUROD2 . remodeling during human cortical neurogen- . POU3F2 (BRN2) . esis. Finally, we nominated several key transcrip- . tion factors that may coordinate over time to . drive these changes and mapped cell type– TBR1 . specific disease-associated variation over time MEF2C . Chromatin accessibility and in specific cell types.▪ 0 79 262 Motif activity Stage (days) SCZ ASD ALZ The list of author affiliations is available in the full article online. Developing a human cellular model of forebrain development to study chromatin dynamics. ATAC-seq *These authors contributed equally to this work. and RNA-seq studies over long-term differentiation of human pluripotent stem cells into forebrain †Corresponding author. Email: [email protected] (W.J.G.); [email protected] (S.P.P.) organoids and in primary brain tissue samples reveal dynamic changes during human corticogenesis, Cite this article as: A. E. Trevino et al., Science 367, including a wave associated with neurogenesis, and identify disease-susceptible cell types and stages. eaay1645 (2020). Trevino et al., Science 367, 404 (2020) 24 January 2020 1of1 RESEARCH ◥ emergence of radial glial progenitors (Fig. 1B RESEARCH ARTICLE andfig.S1A),followedbytheprogressivegen- eration of deep and superficial glutamatergic NEUROGENETICS neurons (Fig. 1C and fig. S1B), and last, the generation and maturation of astrocytes (Fig. Chromatin accessibility dynamics in a model 1D and fig. S1, C and D). Ventral forebrain hSSs generate glutamic acid decarboxylase of human forebrain development 67+ (GAD67+)andGABA+ interneurons (Fig. 1E and fig. S1E) (25). Alexandro E. Trevino1,2*, Nasa Sinnott-Armstrong3*, Jimena Andersen2,4*, Se-Jin Yoon2,4, Nina Huber4, We collected 117 ATAC-seq (assay for Jonathan K. Pritchard3,5,6, Howard Y. Chang3,6,7,8, William J. Greenleaf3,9,10†, Sergiu P. Pașca4† transposase-accessible chromatin with high- throughput sequencing) samples and 54 RNA- Forebrain development is characterized by highly synchronized cellular processes, which, if perturbed, sequencing (RNA-seq) samples from hCSs and can cause disease. To chart the regulatory activity underlying these events, we generated a hSSs derived from 7 hiPS cell lines (tables S1 and map of accessible chromatin in human three-dimensional forebrain organoids. To capture corticogenesis, S2). At early stages, we isolated purified nuclei we sampled glial and neuronal lineages from dorsal or ventral forebrain organoids over 20 months from whole, undissociated spheroids (28). Af- in vitro. Active chromatin regions identified in human primary brain tissue were observed in organoids at ter day 79, we purified glial and neuronal cell different developmental stages. We used this resource to map genetic risk for disease and to explore lineages by either surface marker immuno- evolutionary conservation. Moreover, we integrated chromatin accessibility with transcriptomics to panning or fluorescence-activated cell sorting identify putative enhancer-gene linkages and transcription factors that regulate human corticogenesis. (FACS). For immunopanning, glial lineage Downloaded from Overall, this platform brings insights into gene-regulatory dynamics at previously inaccessible stages of cells were isolated by using an antibody against human forebrain development, including signatures of neuropsychiatric disorders. HepaCAM, and neuronal lineage cells were iso- lated by using an antibody against Thy1 (CD90) (24, 29). For FACS, cells were labeled with he assembly of the human cerebral cor- proxy for regulatory potential (10). Therefore, viral reporters driven by the human glial fi- tex is a dynamic and lengthy process that defining accessibility across human brain cell brillary acidic protein (GFAP) promoter or http://science.sciencemag.org/ begins during early gestation and con- lineages and time could provide understand- the synapsin 1 (SYN1) promoter [pLV-GFAP:: T tinues postnatally (1). It is characterized ing of gene-regulatory principles and disease enhanced green fluorescent protein (eGFP) by the inside-out generation of neurons signatures in the human forebrain. andadeno-associatedvirus(AAV)–SYN1:: in the pallium from progenitors, followed by the Previous studies have begun to define the mCherry, respectively] (Fig. 1A) (30). We generation and maturation of astrocytes and transcriptome and epigenome of the develop- confirmed the specificity of these markers other glial cells. g-aminobutyric acid (GABA)– ing human forebrain, including characteriza- using a single-cell RNA-seq dataset (fig. S2). ergic interneurons, born in the subpallium, tion of spatiotemporal gene expression in the We refer to GFAP+ or HepaCAM+ cells as glial migrate into the cerebral cortex, where they cortex (11–14), the molecular signature of cor- lineagecells,whichmayencompassradialglia, integrate to form circuits (2, 3). Although tical progenitors (15, 16), epigenetics of early outer radial glia, and mature astrocytes, de- genetic and environmental perturbations of brain development (17), and the impact of re- pending on the differentiation stage. We refer + + corticogenesis can cause severe neurodevel- cently evolved enhancers on gene expression to SYN1 and Thy1 cells as neuronal lineage on January 24, 2020 opmental disease (4), a detailed understand-
Recommended publications
  • KLF2 Induced
    UvA-DARE (Digital Academic Repository) The transcription factor KLF2 in vascular biology Boon, R.A. Publication date 2008 Link to publication Citation for published version (APA): Boon, R. A. (2008). The transcription factor KLF2 in vascular biology. General rights It is not permitted to download or to forward/distribute the text or part of it without the consent of the author(s) and/or copyright holder(s), other than for strictly personal, individual use, unless the work is under an open content license (like Creative Commons). Disclaimer/Complaints regulations If you believe that digital publication of certain material infringes any of your rights or (privacy) interests, please let the Library know, stating your reasons. In case of a legitimate complaint, the Library will make the material inaccessible and/or remove it from the website. Please Ask the Library: https://uba.uva.nl/en/contact, or a letter to: Library of the University of Amsterdam, Secretariat, Singel 425, 1012 WP Amsterdam, The Netherlands. You will be contacted as soon as possible. UvA-DARE is a service provided by the library of the University of Amsterdam (https://dare.uva.nl) Download date:23 Sep 2021 Supplementary data: Genes induced by KLF2 Dekker et al. LocusLink Accession Gene Sequence Description Fold p-value ID number symbol change (FDR) 6654 AK022099 SOS1 cDNA FLJ12037 fis, clone HEMBB1001921. 100.00 5.9E-09 56999 AF086069 ADAMTS9 full length insert cDNA clone YZ35C05. 100.00 1.2E-09 6672 AF085934 SP100 full length insert cDNA clone YR57D07. 100.00 6.7E-13 9031 AF132602 BAZ1B Williams Syndrome critical region WS25 mRNA, partial sequence.
    [Show full text]
  • Beth Stevens: Casting Immune Cells As Brain Sculptors
    Spectrum | Autism Research News https://www.spectrumnews.org PROFILES Beth Stevens: Casting immune cells as brain sculptors BY NICHOLETTE ZELIADT 24 SEPTEMBER 2015 Shortly after Beth Stevens launched her lab at Boston Children’s Hospital in 2008, she invited students from the Newton Montessori School, in a nearby suburb, to come for a visit. The children peered at mouse and rat brains bobbing in fluid-filled jars. They also learned how to position delicate slices of brain tissue on glass slides and inspect them with a microscope. This visit sparked a running relationship with the school, with a steady stream of students visiting the growing lab each year. Soon it became too complicated to bring so many children to the lab, so Stevens decided to take her neuroscience lessons on the road, visiting a number of local elementary schools each year. Last year, she dropped in on the classrooms of her 5- and 8-year- old daughters, Zoe and Riley. “The kids got really excited,” Stevens says. “It’s become such a thing that the principal wants me to come back for the whole school.” Stevens’ enthusiasm for science has left a lasting impression on researchers, too. Her pioneering work points to a surprise role in brain development for microglia, a type of cell once considered to simply be the brain’s immune defense system, cleaning up cellular debris, damaged tissue and pathogens. But thanks to Stevens, researchers now appreciate that these non-neuronal cells also play a critical role in shaping brain circuits. In a 2012 discovery that created a buzz among autism researchers, Stevens and her colleagues discovered that microglia prune neuronal connections, called synapses, in the developing mouse brain.
    [Show full text]
  • October 2004
    Myelin Repair Foundation Research Progress Summary October 2004 This summary outlines progress made by the Myelin Repair Foundation research team since June 2004 and includes findings from on-going research funded by other sources that members of the team found relevant to MRF research plan. Since the success of MRF is dependent on collaboration, rather than reporting on the progress of individual projects, this report describes progress towards MRF’s overall research goals and the contributions of various team members towards completing our understanding of critical aspects of myelination and how it is affected by the multiple sclerosis (MS) disease process. 1. Fundamental control of myelination: There are several MRF investigations focused on understanding the processes that control both myelination in development and remyelination after myelin loss due to inflammation and cell death: • Dr. Ben Barres’ lab has screened thousands of genes and identified 46 genes, specific to the myelination process, that show significantly higher or lower activity levels during developmental myelination than before or after the myelination process. In addition, Dr. Barres’ lab has demonstrated the timing of these changes during the developmental myelination process. The next step is to analyze the function of each of these 46 genes by artificially controlling its level of activity (expression) and observing the effect it has on myelin formation. Finding ways to artificially manipulate the expression of each gene is a formidable task. Although the functional analysis of each gene in this group is a significant project that may take several years to complete because of the large number of genes to be analyzed, the initial identification of these active genes is providing clues to other MRF researchers that will help prioritize which genes to evaluate first and which to ignore.
    [Show full text]
  • NEUROBIOLOGY and Historical Perspective
    sensation and central pattern generators. Relevant genetic techniques NEUROBIOLOGY and historical perspective. Student presentation. 4 units, Aut (Clandinin, Goodman) alternate years, not given 2004-05 Chair: Eric I. Knudsen Professors: Ben Barres, Eric I. Knudsen, Uel J. McMahan, William T. NBIO 218. Neural Basis of Behavior—Advanced seminar. The princi- Newsome, Eric M. Shooter, Howard Schulman, Lubert Stryer ples of information processing in the vertebrate central nervous system, Assistant Professor: Thomas Clandinin, Tirin Moore, Jennifer Raymond and the relationship of functional properties of neural systems with perception and behavior. Emphasis is on the visual and auditory systems. Department Offices: Fairchild Building, Second Floor Original papers, directed discussions, and student presentations. Mail Code: 94305-5125 Prerequisite: 200 or consent of instructor. Courses given in Neurobiology have the subject code NBIO. For a 4 units (Knudsen, Raymond) alternate years, given 2004-05 complete list of subject codes, see Appendix B. NBIO 220. Central Mechanisms in Visual Perception—Contempo- GRADUATE PROGRAM rary visual neuroscience, emphasizing the neural mechanisms underly- ing primate vision and visually guided behavior. Seven foundational Graduate students in the Department of Neurobiology obtain the Ph.D. topics in visual neuroscience; current papers concerning each topic. degree through the interdepartmental Neurosciences Ph.D. program. Student presentations. Computer-based demonstration exercises. Accepted students receive funding for tuition and a living stipend. Ap- 2-4 units, Spr (Newsome) alternate years, not given 2004-05 plicants should familiarize themselves with the research interests of the faculty and, if possible, indicate their preference on the application form NBIO 221. Frontiers in Translational Medicine—Pathways for com- which is submitted directly to the Neurosciences Program.
    [Show full text]
  • Transcriptional Regulatory Networks in Neocortical Development
    Review From trans to cis: transcriptional regulatory networks in neocortical development 1 1 1,2 Mikihito Shibata , Forrest O. Gulden , and Nenad Sestan 1 Department of Neurobiology and Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510, USA 2 Department of Psychiatry and Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA Transcriptional mechanisms mediated by the binding of tions among TFs and CREs form the central core of tran- transcription factors (TFs) to cis-acting regulatory ele- scriptional regulatory networks (TRNs) (Box 1) [1]. ments (CREs) in DNA play crucial roles in directing gene Interactions between TFs and CREs are complex, dynam- expression. While TFs have been extensively studied, ic,andmodulatedbyvariousepigeneticprocesses[12].While less effort has gone towards the identification and func- individual CREs may be regulated by the competitive or tional characterization of CREs and associated epigenet- cooperative binding of many TFs, multiple CREs may also ic modulation. However, owing to methodological and confer transcriptional control over the expression of any analytical advances, more comprehensive studies of single gene [12]. Furthermore, TFs and CREs regulate regulatory elements and mechanisms are now possible. transcription together with their cognate transcriptional We summarize recent progress in integrative analyses of cofactors, chromatin regulators, epigenetic modifications, these regulatory components in the development of the RNA-binding proteins, and non-coding RNAs [2,13]. This cerebral neocortex, the part of the brain involved in combinatorial and multi-level transcriptional regulation cognition and complex behavior. These studies are greatly increases the complexity of gene expression regula- uncovering not only the underlying transcriptional reg- tion, facilitating the unique spatio-temporal patterns nec- ulatory networks, but also how these networks are essary for tissue development and function [3].
    [Show full text]
  • Consideration of Layer-Specific Marker Expression
    Cerebral Cortex March 2011;21:588--596 doi:10.1093/cercor/bhq125 Advance Access publication July 12, 2010 Neocortical Layer Formation of Human Developing Brains and Lissencephalies: Consideration of Layer-Specific Marker Expression Takashi Saito1,2, Sae Hanai1,2, Sachio Takashima3, Eiji Nakagawa2, Shin Okazaki4, Takeshi Inoue5, Rie Miyata6, Kyoko Hoshino7, Takumi Akashi8, Masayuki Sasaki2, Yu-ichi Goto1, Masaharu Hayashi6 and Masayuki Itoh1 1Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, Kodaira, 187-8502, Japan, 2Department of Child Neurology, The Hospital of National Center of Neurology and Psychiatry, Kodaira, 187-8551, Japan, 3Yanagawa Institute of Handicapped Children, International University of Health and Welfare, Fukuoka, 832-0058, Japan, 4Department of Pediatrics, Osaka City General Hospital, Osaka, 534-0021, Japan, 5Department of Pathology and Laboratory Medicine, Osaka City General Hospital, Osaka, 534-0021, Japan, 6Department of Clinical Neuropathology, Tokyo Metropolitan Institute of Neuroscience, Fuchu, 183-8526, Japan, 7Department of Pediatrics, Saitama Medical Center, Kawagoe, 350-8550, Japan and 8Department of Pathology and Laboratory Medicine, Tokyo Medical and Dental University, Tokyo, 113-8510, Japan Takashi Saito and Masayuki Itoh have contributed equally to this work. Downloaded from Address correspondence to M Itoh, Department of Mental Retardation and Birth Defect Research, National Center of Neurology and Psychiatry, 4-1-1 Ogawahigashi, Kodaira, Tokyo 187-8502, Japan. Email: [email protected]. To investigate layer-specific molecule expression in human de- each layer has a specific function with a synaptic connection. veloping neocortices, we performed immunohistochemistry of the In each step, specific genes have important roles, and the http://cercor.oxfordjournals.org/ layer-specific markers (TBR1, FOXP1, SATB2, OTX1, CUTL1, and molecular mechanism is well known in rodent brains (Arlotta CTIP2), using frontal neocortices of the dorsolateral precentral gyri et al.
    [Show full text]
  • Integrative Bulk and Single-Cell Profiling of Premanufacture T-Cell Populations Reveals Factors Mediating Long-Term Persistence of CAR T-Cell Therapy
    Published OnlineFirst April 5, 2021; DOI: 10.1158/2159-8290.CD-20-1677 RESEARCH ARTICLE Integrative Bulk and Single-Cell Profiling of Premanufacture T-cell Populations Reveals Factors Mediating Long-Term Persistence of CAR T-cell Therapy Gregory M. Chen1, Changya Chen2,3, Rajat K. Das2, Peng Gao2, Chia-Hui Chen2, Shovik Bandyopadhyay4, Yang-Yang Ding2,5, Yasin Uzun2,3, Wenbao Yu2, Qin Zhu1, Regina M. Myers2, Stephan A. Grupp2,5, David M. Barrett2,5, and Kai Tan2,3,5 Downloaded from cancerdiscovery.aacrjournals.org on October 1, 2021. © 2021 American Association for Cancer Research. Published OnlineFirst April 5, 2021; DOI: 10.1158/2159-8290.CD-20-1677 ABSTRACT The adoptive transfer of chimeric antigen receptor (CAR) T cells represents a breakthrough in clinical oncology, yet both between- and within-patient differences in autologously derived T cells are a major contributor to therapy failure. To interrogate the molecular determinants of clinical CAR T-cell persistence, we extensively characterized the premanufacture T cells of 71 patients with B-cell malignancies on trial to receive anti-CD19 CAR T-cell therapy. We performed RNA-sequencing analysis on sorted T-cell subsets from all 71 patients, followed by paired Cellular Indexing of Transcriptomes and Epitopes (CITE) sequencing and single-cell assay for transposase-accessible chromatin sequencing (scATAC-seq) on T cells from six of these patients. We found that chronic IFN signaling regulated by IRF7 was associated with poor CAR T-cell persistence across T-cell subsets, and that the TCF7 regulon not only associates with the favorable naïve T-cell state, but is maintained in effector T cells among patients with long-term CAR T-cell persistence.
    [Show full text]
  • Free Fatty Acids Rewire Cancer Metabolism in Obesity-Associated
    Published OnlineFirst March 12, 2019; DOI: 10.1158/0008-5472.CAN-18-2849 Cancer Metabolism and Chemical Biology Research Free Fatty Acids Rewire Cancer Metabolism in Obesity-Associated Breast Cancer via Estrogen Receptor and mTOR Signaling Zeynep Madak-Erdogan1,2,3,4,5,6, Shoham Band1,YiruC.Zhao1, Brandi P. Smith1, Eylem Kulkoyluoglu-Cotul1, Qianying Zuo1, Ashlie Santaliz Casiano2, Kinga Wrobel1, Gianluigi Rossi7, Rebecca L. Smith7, Sung Hoon Kim8, John A. Katzenellenbogen8, Mariah L. Johnson9, Meera Patel9, Natascia Marino9,10, Anna Maria V. Storniolo9,10, and Jodi A. Flaws11 Abstract Obesity is a risk factor for postmenopausal estrogen recep- naling, was able to block changes induced by FFA and was þ tor alpha (ERa)-positive (ER ) breast cancer. Molecular more effective in the presence of FFA. Collectively, these data mechanisms underlying factors from plasma that contribute suggest a role for obesity-associated gene and metabolic rewir- þ to this risk and how these mechanisms affect ERa signaling ing in providing new targetable vulnerabilities for ER breast have yet to be elucidated. To identify such mechanisms, we cancer in postmenopausal women. Furthermore, they provide performed whole metabolite and protein profiling in plasma a basis for preclinical and clinical trials where the impact of samples from women at high risk for breast cancer, which led agents that target ERa and mTOR signaling cross-talk would be þ us to focus on factors that were differentially present in plasma tested to prevent ER breast cancers in obese postmenopausal of obese versus nonobese postmenopausal women. These women. studies, combined with in vitro assays, identified free fatty acids (FFA) as circulating plasma factors that correlated with Significance: These findings show that obesity-associated þ increased proliferation and aggressiveness in ER breast cancer changes in certain blood metabolites rewire metabolic pro- cells.
    [Show full text]
  • Lesson Plan Ben Barres: Neurobiology Pioneer and Champion for Equity in STEM
    Lesson Plan Ben Barres: Neurobiology Pioneer and Champion for Equity in STEM By: Hannah Pell, Research Assistant November 2019 Neurobiologist Ben Barres, before his death in 2017. Photo credit to Timothy Archibald, from the journal Nature. Grade Level(s): 11-12, General College Subject(s): History, Social Activism, Equity in STEM In-Class Time: 50 min – 1 hour Prep Time: 15 min – 20 min Materials • Lesson Plan • Copies of: (See Supplemental Materials) o “Ben Barres (1954 – 2017)” o “Ben Barres - gender champion” o “Does gender matter?” and Discussion Worksheet • Classroom internet access Objective This two-part lesson is about introducing students to Ben Barres (1954 – 2017), a successful neurobiologist and gender equity activist. Students will learn about his life and experiences as a female- to-male transgender scientist through excerpts and a review of his posthumously published book, The Autobiography of a Transgender Scientist (2017). Additionally, students will read his famous Prepared by the Center for the History of Physics at AIP 1 commentary in Nature, titled “Does gender matter?,” and discuss Barres’ arguments for why women are not advancing in science as quickly as men. Students can also explore the Queer in Stem online research project to collect information about LGBTQ+ scientists’ career experiences. The teacher should be prepared to discuss the importance of diverse representation in academic leadership and role models in science, issues such as subtle discrimination1, as well as how students can be allies in cultivating an equitable learning community. The guide is divided into two parts, which can be used together or as independent lessons: (1) an introduction to Ben Barres’ life as a scientist and activist, and (2) resources for understanding LGBTQ+ experiences in STEM and increasing their visibility in the scientific community.
    [Show full text]
  • Symposium 2017
    UCSF WEILL INSTITUTE FOR NEUROSCIENCES SYMPOSIUM 2017 MAY.25.2017 UCSF MISSION BAY Sanford I. "Sandy" and Joan Weill Welcome to the inaugural symposium! It is with great pleasure that we invite you to the inaugural UCSF Weill Institute for Neurosciences Symposium. Bringing together leaders in science and medicine, this event will showcase innovative research, inspiring ideas, and new paths towards discovery. Each symposium will highlight a different theme, offering a fresh perspective on key issues and disease areas across the neurosciences. Featuring a truly exciting panel of speakers, this inaugural event will focus on neurodegenerative diseases including Alzheimer's, Parkinson's and ALS. Schedule of Events 8:00AM Registration (coffee/tea available) 9:00AM Welcome & Opening Remarks Stephen Hauser; Sandy and Joan Weill 9:15AM Don W. Cleveland, Ph.D. Gene Silencing Therapy for Human Neurodegenerative Disease 10:00AM M. Elizabeth Ross, M.D., Ph.D. Fetal Development Genes Repurposed in Brain Plasticity and Aging 10:45AM Break 11:00AM Thomas C. Südhof, M.D. Synaptic and Non-Synaptic Signaling by ApoE: Implications for Alzheimer's Disease 11:45AM Beth Stevens, Ph.D. Immune Mechanisms of Synapse Loss in Health & Disease 12:30PM Lunch break (box lunch provided) 1:30PM Kristine Yaffe, M.D. Neurodegeneration: A Population Health Perspective 2:00PM Bruce L. Miller, M.D. The Landscape of Neurodegenerative Diseases 2:30PM Lennart Mucke, M.D. Addressing the Multifactoriality of Neurodegenerative Diseases in Research and Therapeutic Development 3:00PM Stanley B. Prusiner, M.D. Therapeutic Challenges and Opportunities 3:30PM Roundtable Discussion 4:15PM Reception Don W. Cleveland, Ph.D.
    [Show full text]
  • An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity
    International Journal of Molecular Sciences Review An Overview of the Main Genetic, Epigenetic and Environmental Factors Involved in Autism Spectrum Disorder Focusing on Synaptic Activity 1, 1, 1 2 Elena Masini y, Eleonora Loi y, Ana Florencia Vega-Benedetti , Marinella Carta , Giuseppe Doneddu 3, Roberta Fadda 4 and Patrizia Zavattari 1,* 1 Department of Biomedical Sciences, Unit of Biology and Genetics, University of Cagliari, 09042 Cagliari, Italy; [email protected] (E.M.); [email protected] (E.L.); [email protected] (A.F.V.-B.) 2 Center for Pervasive Developmental Disorders, Azienda Ospedaliera Brotzu, 09121 Cagliari, Italy; [email protected] 3 Centro per l’Autismo e Disturbi correlati (CADc), Nuovo Centro Fisioterapico Sardo, 09131 Cagliari, Italy; [email protected] 4 Department of Pedagogy, Psychology, Philosophy, University of Cagliari, 09123 Cagliari, Italy; [email protected] * Correspondence: [email protected] The authors contributed equally to this work. y Received: 30 September 2020; Accepted: 30 October 2020; Published: 5 November 2020 Abstract: Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects social interaction and communication, with restricted interests, activity and behaviors. ASD is highly familial, indicating that genetic background strongly contributes to the development of this condition. However, only a fraction of the total number of genes thought to be associated with the condition have been discovered. Moreover, other factors may play an important role in ASD onset. In fact, it has been shown that parental conditions and in utero and perinatal factors may contribute to ASD etiology. More recently, epigenetic changes, including DNA methylation and micro RNA alterations, have been associated with ASD and proposed as potential biomarkers.
    [Show full text]
  • Haploinsufficiency of Autism Causative Gene Tbr1 Impairs Olfactory
    Huang et al. Molecular Autism (2019) 10:5 https://doi.org/10.1186/s13229-019-0257-5 RESEARCH Open Access Haploinsufficiency of autism causative gene Tbr1 impairs olfactory discrimination and neuronal activation of the olfactory system in mice Tzyy-Nan Huang1†, Tzu-Li Yen1†, Lily R. Qiu2, Hsiu-Chun Chuang1,4, Jason P. Lerch2,3 and Yi-Ping Hsueh1* Abstract Background: Autism spectrum disorders (ASD) exhibit two clusters of core symptoms, i.e., social and communication impairment, and repetitive behaviors and sensory abnormalities. Our previous study demonstrated that TBR1, a causative gene of ASD, controls axonal projection and neuronal activation of amygdala and regulates social interaction and vocal communication in a mouse model. Behavioral defects caused by Tbr1 haploinsufficiency can be ameliorated by increasing neural activity via D-cycloserine treatment, an N-methyl-D-aspartate receptor (NMDAR) coagonist. In this report,weinvestigatetheroleofTBR1inregulatingolfaction and test whether D-cycloserine can also improve olfactory defects in Tbr1 mutant mice. Methods: We used Tbr1+/− mice as a model to investigate the function of TBR1 in olfactory sensation and discrimination of non-social odors. We employed a behavioral assay to characterize the olfactory defects of Tbr1+/− mice. Magnetic resonance imaging (MRI) and histological analysis were applied to characterize anatomical features. Immunostaining was performed to further analyze differences in expression of TBR1 subfamily members (namely TBR1, TBR2, and TBX21), interneuron populations, and dendritic abnormalities in olfactory bulbs. Finally, C-FOS staining was used to monitor neuronal activation of the olfactory system upon odor stimulation. Results: Tbr1+/− mice exhibited smaller olfactory bulbs and anterior commissures, reduced interneuron populations, and an abnormal dendritic morphology of mitral cells in the olfactory bulbs.
    [Show full text]