Surface-Wave Tomography of the Emeishan Large

Total Page:16

File Type:pdf, Size:1020Kb

Surface-Wave Tomography of the Emeishan Large https://doi .org/10.1130/G49055.1 Manuscript received 21 December 2020 Revised manuscript received 15 March 2021 Manuscript accepted 15 March 2021 © 2021 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 17 May 2021 Surface-wave tomography of the Emeishan large igneous province (China): Magma storage system, hidden hotspot track, and its impact on the Capitanian mass extinction Yiduo Liu1*, Lun Li2,3*†, Jolante van Wijk4§, Aibing Li1 and Yuanyuan V. Fu5 1 Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77204, USA 2 Guangdong Provincial Key Lab of Geodynamics and Geohazards, School of Earth Sciences and Engineering, Sun Yat-sen University, Guangzhou, Guangdong 510275, China 3 Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, Guangdong 510999, China 4 Department of Earth and Environmental Science, New Mexico Institute of Mining and Technology, Socorro, New Mexico 87801, USA 5 Key Laboratory of Earthquake Prediction, Institute of Earthquake Forecasting, China Earthquake Administration, Beijing 100036, China ABSTRACT candidate for having caused the global biota cri- Large igneous provinces (LIPs) are commonly associated with mass extinctions. However, sis in the mid-Capitanian (ca. 262 Ma) (Wignall the precise relations between LIPs and their impacts on biodiversity is enigmatic, given that et al., 2009; Bond et al., 2020), which preceded they can be asynchronous. It has been proposed that the environmental impacts are primar- the major volcanic activity of the ELIP (260– ily related to sill emplacement. Therefore, the structure of LIPs’ magma storage system is 257 Ma) (Shellnutt et al., 2012). We attempt to critical because it dictates the occurrence and timing of mass extinction. We use surface-wave characterize the ELIP’s magma storage system tomography to image the lithosphere under the Permian Emeishan large igneous province and explain the unusual asynchrony. (ELIP) in southwestern China. We find a northeast-trending zone of high shear-wave veloc- ity (Vs) and negative radial anisotropy (Vsv > Vsh; v and h are vertically and horizontally GEOLOGICAL BACKGROUND polarized S waves, respectively) in the crust and lithosphere. We rule out the possibilities of The ELIP is located in the western Yangtze rifting or orogenesis to explain these seismic characteristics and interpret the seismic anomaly craton of the South China block (Figs. 1A and as a mafic-ultramafic, dike-dominated magma storage system of the ELIP. We further pro- 1B). It comprises mainly tholeiitic continental pose that the anomaly represents a hidden hotspot track that was emplaced before the ELIP flood basalts with a lesser amount of picrites, eruption. A zone of higher velocity but less-negative radial anisotropy, on the hotspot track lamproites, gabbros, pyroxenites, and other but to the northeast of the eruption center in the Panxi region, reflects an elevated propor- lithologies (e.g., Chung and Jahn, 1995; Xu tion of sills emplaced at the incipient stage of the ELIP. Liberation of poisonous gases by the et al., 2004). These rocks were mainly derived early sill intrusions explains why the mid-Capitanian global biota crisis preceded the peak from the sublithospheric mantle (Chung and ELIP eruption by 2–3 m.y. Jahn, 1995; Xu et al., 2004; Zhou et al., 2005). The southwestern corner of the ELIP is offset INTRODUCTION the major phase, leaving the exact relationship left-laterally by the Cenozoic Ailao Shan–Red Large igneous provinces (LIPs) are charac- between LIPs and mass extinctions enigmatic. River shear zone and is poorly exposed. The terized by rapid emplacement of primarily mafic It has been proposed that the structure of larger, better-preserved northeastern part, cover- magma in the lithosphere and volcanic eruptions magma storage systems of LIPs, particularly sill ing at least ∼3 × 105 km2, is divided into three forming plateau basalts in an area >105 km2 intrusions, is a key to understanding this relation concentric zones (inner, intermediate, and outer) (Bryan and Ernst, 2008). Many LIPs have been (Svensen et al., 2009). Modern hotspots, such that represent a decrease in flood basalt thick- associated with abrupt environmental catastro- as Yellowstone (northwestern United States), ness outward (He et al., 2003; Xu et al., 2004). phes and mass-extinction events (Sobolev et al., display the magma storage system of active LIPs Before the ELIP eruption, the Maokou Forma- 2011; Ernst, 2014). While LIP-related extinc- (Jiang et al., 2018). However, they do not pro- tion that was deposited on the Yangtze carbonate tions generally occurred during or shortly after vide a direct constraint on the timing of mass platform underwent denudation and karstifica- the major volcanic phase of the corresponding extinction. Ancient LIPs, by contrast, potentially tion (He et al., 2003; Xiao et al., 2016). The LIPs (Bond and Wignall, 2014), some preceded preserve a complete record and thus offer an denudation began in the northeastern Sichuan opportunity for studying their structures and Basin and propagated southwestward in the mid- *These authors contributed equally to this work. assessing the environmental impacts. to late Guadalupian (Hu et al., 2012). A map of †E-mail: [email protected] We studied the seismic structure of the the remnant thickness of the Maokou Formation §Current address: Los Alamos National Labora- Emeishan large igneous province (ELIP) in shows a northeast-trending zone of anomalously tory, Earth and Environmental Sciences Division, Los southwestern China using a new surface-wave thin strata extending from the Sichuan Basin to Alamos, New Mexico 87545, USA tomography model. The ELIP is, so far, the only the ELIP center (Fig. 1C). CITATION: Liu, Y., et al., 2021, Surface-wave tomography of the Emeishan large igneous province (China): Magma storage system, hidden hotspot track, and its impact on the Capitanian mass extinction: Geology, v. 49, p. 1032–1037, https://doi.org/10.1130/G49055.1 1032 www.gsapubs.org | Volume 49 | Number 9 | GEOLOGY | Geological Society of America Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/49/9/1032/5387131/g49055.1.pdf by guest on 30 September 2021 AB C Figure 1. Geologic map of the Emeishan large igneous province (ELIP) region in southwestern China. (A) Index map. IC—Indochina; IN—India plate; NC—North China block; SC—South China block; TP—Tibetan Plateau. (B) Map of the ELIP, showing eruption center, uplift center, flood basalts exposed on the surface and drilled in wells, buried volcanic craters, basaltic dikes, and borders of the inner (I), intermediate (II), and outer (III) zones. ASRRSZ—Ailao Shan–Red River shear zone; LMST—Longmen Shan thrust belt; XXF—Xianshuihe-Xiaojiang fault. (C) Map of remnant thickness of the Maokou Formation that was deposited on the Yangtze carbonate platform before the ELIP. 160 and 250 m contours are dashed. See Table S1 for data sources (see footnote 1). Paleomagnetic studies show an equatorial ing hexagonal anisotropy with a vertical sym- low shear-wave velocities. We explain this as a paleolatitude for the ELIP at the peak eruption metry axis (Babuska and Cara, 1991). Radial result of subhorizontal ductile deformation in time and an overall clockwise rotation of ∼27° anisotropy may be induced by lattice preferred the middle and lower crust due to the lateral of the South China block since 260 Ma (Huang orientation of minerals such as mica, olivine, expansion of the Tibetan Plateau. In the litho- et al., 2018). Magmatic underplating occurred at and pyroxene (Silver and Chan, 1991; Shapiro spheric mantle below 80 km, positive radial the Moho depth in the inner zone of the ELIP, as et al., 2004) or by shape preferred orientation anisotropy exists ubiquitously. Similar positive evidenced by high density, high seismic veloc- of structures such as fractures, foliation, and radial anisotropy is present in other cratons (Net- ity, high ratios of compressional to shear-wave magma (Silver and Chan, 1988; Emmermann tles and Dziewoński, 2008). This largely results velocity (Vp/Vs), and thickened crust (Chen and Lauterjung, 1997). from the lattice preferred orientation of olivine et al., 2015). A pronounced northeast-trending Our shear-wave velocity model (Figs. 2 and in horizontal planes. positive residual gravity anomaly extends from 3; Figs. S12–S14 in the Supplemental Mate- The most intriguing phenomenon is a north- the ELIP center to the Sichuan Basin and has rial) shows high velocity at 15–220 km depths east-trending coherent zone of negative radial been attributed to ELIP intrusions (Deng et al., beneath the Yangtze craton east of the Xians- anisotropy (Vsv > Vsh) paired with high shear- 2014). huihe-Xiaojiang fault and a low-velocity zone wave velocity under the inner and intermediate in the crust of the southeastern Tibetan Plateau. zones of the ELIP (Figs. 2 and 3). It appears as METHOD AND RESULTS These results agree with those of previous stud- a broad zone in the shallow crust (0–15 km) and We developed a radially anisotropic shear- ies: high-velocity anomaly dominates the Yang- can be traced down to ∼80 km depth. Such a wave velocity model of the lithosphere under tze craton due to the cold and thick cratonic zone of reduced radial anisotropy is still detect- the ELIP region from Rayleigh wave and Love lithosphere, and the low-velocity zone is related able down to 120 km depth (Fig. 2; Fig. S15). wave phase velocity at periods of 8–167 s (see to the thickened, partially molten Tibetan crust The amplitude of the negative radial anisotropy the Supplemental Material1). Rayleigh and (Huang et al., 2010). is mostly ∼−2%, but is as strong as −4% in the Love waves are primarily sensitive to vertically Radial anisotropy results show lateral and lower crust under the Sichuan Basin. A similar (Vsv) and horizontally (Vsh) polarized shear- vertical variations in the crust and mantle body of negative radial anisotropy was imaged, wave velocities, respectively.
Recommended publications
  • Kinematic Reconstruction of the Caribbean Region Since the Early Jurassic
    Earth-Science Reviews 138 (2014) 102–136 Contents lists available at ScienceDirect Earth-Science Reviews journal homepage: www.elsevier.com/locate/earscirev Kinematic reconstruction of the Caribbean region since the Early Jurassic Lydian M. Boschman a,⁎, Douwe J.J. van Hinsbergen a, Trond H. Torsvik b,c,d, Wim Spakman a,b, James L. Pindell e,f a Department of Earth Sciences, Utrecht University, Budapestlaan 4, 3584 CD Utrecht, The Netherlands b Center for Earth Evolution and Dynamics (CEED), University of Oslo, Sem Sælands vei 24, NO-0316 Oslo, Norway c Center for Geodynamics, Geological Survey of Norway (NGU), Leiv Eirikssons vei 39, 7491 Trondheim, Norway d School of Geosciences, University of the Witwatersrand, WITS 2050 Johannesburg, South Africa e Tectonic Analysis Ltd., Chestnut House, Duncton, West Sussex, GU28 OLH, England, UK f School of Earth and Ocean Sciences, Cardiff University, Park Place, Cardiff CF10 3YE, UK article info abstract Article history: The Caribbean oceanic crust was formed west of the North and South American continents, probably from Late Received 4 December 2013 Jurassic through Early Cretaceous time. Its subsequent evolution has resulted from a complex tectonic history Accepted 9 August 2014 governed by the interplay of the North American, South American and (Paleo-)Pacific plates. During its entire Available online 23 August 2014 tectonic evolution, the Caribbean plate was largely surrounded by subduction and transform boundaries, and the oceanic crust has been overlain by the Caribbean Large Igneous Province (CLIP) since ~90 Ma. The consequent Keywords: absence of passive margins and measurable marine magnetic anomalies hampers a quantitative integration into GPlates Apparent Polar Wander Path the global circuit of plate motions.
    [Show full text]
  • Playing Jigsaw with Large Igneous Provinces a Plate Tectonic
    PUBLICATIONS Geochemistry, Geophysics, Geosystems RESEARCH ARTICLE Playing jigsaw with Large Igneous Provinces—A plate tectonic 10.1002/2015GC006036 reconstruction of Ontong Java Nui, West Pacific Key Points: Katharina Hochmuth1, Karsten Gohl1, and Gabriele Uenzelmann-Neben1 New plate kinematic reconstruction of the western Pacific during the 1Alfred-Wegener-Institut Helmholtz-Zentrum fur€ Polar- und Meeresforschung, Bremerhaven, Germany Cretaceous Detailed breakup scenario of the ‘‘Super’’-Large Igneous Province Abstract The three largest Large Igneous Provinces (LIP) of the western Pacific—Ontong Java, Manihiki, Ontong Java Nui Ontong Java Nui ‘‘Super’’-Large and Hikurangi Plateaus—were emplaced during the Cretaceous Normal Superchron and show strong simi- Igneous Province as result of larities in their geochemistry and petrology. The plate tectonic relationship between those LIPs, herein plume-ridge interaction referred to as Ontong Java Nui, is uncertain, but a joined emplacement was proposed by Taylor (2006). Since this hypothesis is still highly debated and struggles to explain features such as the strong differences Correspondence to: in crustal thickness between the different plateaus, we revisited the joined emplacement of Ontong Java K. Hochmuth, [email protected] Nui in light of new data from the Manihiki Plateau. By evaluating seismic refraction/wide-angle reflection data along with seismic reflection records of the margins of the proposed ‘‘Super’’-LIP, a detailed scenario Citation: for the emplacement and the initial phase of breakup has been developed. The LIP is a result of an interac- Hochmuth, K., K. Gohl, and tion of the arriving plume head with the Phoenix-Pacific spreading ridge in the Early Cretaceous. The G.
    [Show full text]
  • Plate Tectonic Regulation of Global Marine Animal Diversity
    Plate tectonic regulation of global marine animal diversity Andrew Zaffosa,1, Seth Finneganb, and Shanan E. Petersa aDepartment of Geoscience, University of Wisconsin–Madison, Madison, WI 53706; and bDepartment of Integrative Biology, University of California, Berkeley, CA 94720 Edited by Neil H. Shubin, The University of Chicago, Chicago, IL, and approved April 13, 2017 (received for review February 13, 2017) Valentine and Moores [Valentine JW, Moores EM (1970) Nature which may be complicated by spatial and temporal inequities in 228:657–659] hypothesized that plate tectonics regulates global the quantity or quality of samples (11–18). Nevertheless, many biodiversity by changing the geographic arrangement of conti- major features in the fossil record of biodiversity are consis- nental crust, but the data required to fully test the hypothesis tently reproducible, although not all have universally accepted were not available. Here, we use a global database of marine explanations. In particular, the reasons for a long Paleozoic animal fossil occurrences and a paleogeographic reconstruction plateau in marine richness and a steady rise in biodiversity dur- model to test the hypothesis that temporal patterns of continen- ing the Late Mesozoic–Cenozoic remain contentious (11, 12, tal fragmentation have impacted global Phanerozoic biodiversity. 14, 19–22). We find a positive correlation between global marine inverte- Here, we explicitly test the plate tectonic regulation hypothesis brate genus richness and an independently derived quantitative articulated by Valentine and Moores (1) by measuring the extent index describing the fragmentation of continental crust during to which the fragmentation of continental crust covaries with supercontinental coalescence–breakup cycles. The observed posi- global genus-level richness among skeletonized marine inverte- tive correlation between global biodiversity and continental frag- brates.
    [Show full text]
  • Paleomagnetism and U-Pb Geochronology of the Late Cretaceous Chisulryoung Volcanic Formation, Korea
    Jeong et al. Earth, Planets and Space (2015) 67:66 DOI 10.1186/s40623-015-0242-y FULL PAPER Open Access Paleomagnetism and U-Pb geochronology of the late Cretaceous Chisulryoung Volcanic Formation, Korea: tectonic evolution of the Korean Peninsula Doohee Jeong1, Yongjae Yu1*, Seong-Jae Doh2, Dongwoo Suk3 and Jeongmin Kim4 Abstract Late Cretaceous Chisulryoung Volcanic Formation (CVF) in southeastern Korea contains four ash-flow ignimbrite units (A1, A2, A3, and A4) and three intervening volcano-sedimentary layers (S1, S2, and S3). Reliable U-Pb ages obtained for zircons from the base and top of the CVF were 72.8 ± 1.7 Ma and 67.7 ± 2.1 Ma, respectively. Paleomagnetic analysis on pyroclastic units yielded mean magnetic directions and virtual geomagnetic poles (VGPs) as D/I = 19.1°/49.2° (α95 =4.2°,k = 76.5) and VGP = 73.1°N/232.1°E (A95 =3.7°,N =3)forA1,D/I = 24.9°/52.9° (α95 =5.9°,k =61.7)and VGP = 69.4°N/217.3°E (A95 =5.6°,N=11) for A3, and D/I = 10.9°/50.1° (α95 =5.6°,k = 38.6) and VGP = 79.8°N/ 242.4°E (A95 =5.0°,N = 18) for A4. Our best estimates of the paleopoles for A1, A3, and A4 are in remarkable agreement with the reference apparent polar wander path of China in late Cretaceous to early Paleogene, confirming that Korea has been rigidly attached to China (by implication to Eurasia) at least since the Cretaceous. The compiled paleomagnetic data of the Korean Peninsula suggest that the mode of clockwise rotations weakened since the mid-Jurassic.
    [Show full text]
  • 1 Introduction Gondwana
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Sydney eScholarship Regional plate tectonic reconstructions of the Indian Ocean Thesis Submitted in fulfilment of the requirements for the degree of Doctor of Philosophy Ana Gibbons School of Geosciences 2012 Supervised by Professor R. Dietmar Müller and Dr Joanne Whittaker The University of Sydney, PhD Thesis, Ana Gibbons, 2012 - Introduction DECLARATION I declare that this thesis contains less than 100,000 words and contains no work that has been submitted for a higher degree at any other university or institution. No animal or ethical approvals were applicable to this study. The use of any published written material or data has been duly acknowledged. Ana Gibbons ii The University of Sydney, PhD Thesis, Ana Gibbons, 2012 - Introduction ACKNOWLEDGEMENTS I would like to thank my supervisors for their endless encouragement, generosity, patience, and not least of all their expertise and ingenuity. I have thoroughly benefitted from working with them and cannot imagine a better supervisory team. I also thank Maria Seton, Carmen Gaina and Sabin Zahirovic for their help and encouragement. I thank Statoil (Norway), the Petroleum Exploration Society of Australia (PESA) and the School of Geosciences, University of Sydney for support. I am extremely grateful to Udo Barckhausen, Kaj Hoernle, Reinhard Werner, Paul Van Den Bogaard and all staff and crew of the CHRISP research cruise for a very informative and fun collaboration, which greatly refined this first chapter of this thesis. I also wish to thank Dr Yatheesh Vadakkeyakath from the National Institute of Oceanography, Goa, India, for his thorough review, which considerably improved the overall model and quality of the second chapter.
    [Show full text]
  • Geologic History of Siletzia, a Large Igneous Province in the Oregon And
    Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Wells, R., Bukry, D., Friedman, R., Pyle, D., Duncan, R., Haeussler, P., & Wooden, J. (2014). Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot. Geosphere, 10 (4), 692-719. doi:10.1130/GES01018.1 10.1130/GES01018.1 Geological Society of America Version of Record http://cdss.library.oregonstate.edu/sa-termsofuse Downloaded from geosphere.gsapubs.org on September 10, 2014 Geologic history of Siletzia, a large igneous province in the Oregon and Washington Coast Range: Correlation to the geomagnetic polarity time scale and implications for a long-lived Yellowstone hotspot Ray Wells1, David Bukry1, Richard Friedman2, Doug Pyle3, Robert Duncan4, Peter Haeussler5, and Joe Wooden6 1U.S. Geological Survey, 345 Middlefi eld Road, Menlo Park, California 94025-3561, USA 2Pacifi c Centre for Isotopic and Geochemical Research, Department of Earth, Ocean and Atmospheric Sciences, 6339 Stores Road, University of British Columbia, Vancouver, BC V6T 1Z4, Canada 3Department of Geology and Geophysics, University of Hawaii at Manoa, 1680 East West Road, Honolulu, Hawaii 96822, USA 4College of Earth, Ocean, and Atmospheric Sciences, Oregon State University, 104 CEOAS Administration Building, Corvallis, Oregon 97331-5503, USA 5U.S. Geological Survey, 4210 University Drive, Anchorage, Alaska 99508-4626, USA 6School of Earth Sciences, Stanford University, 397 Panama Mall Mitchell Building 101, Stanford, California 94305-2210, USA ABSTRACT frames, the Yellowstone hotspot (YHS) is on southern Vancouver Island (Canada) to Rose- or near an inferred northeast-striking Kula- burg, Oregon (Fig.
    [Show full text]
  • Precambrian Basement and Late Paleoproterozoic to Mesoproterozoic Tectonic Evolution of the SW Yangtze Block, South China
    minerals Article Precambrian Basement and Late Paleoproterozoic to Mesoproterozoic Tectonic Evolution of the SW Yangtze Block, South China: Constraints from Zircon U–Pb Dating and Hf Isotopes Wei Liu 1,2,*, Xiaoyong Yang 1,*, Shengyuan Shu 1, Lei Liu 1 and Sihua Yuan 3 1 CAS Key Laboratory of Crust-Mantle Materials and Environments, University of Science and Technology of China, Hefei 230026, China; [email protected] (S.S.); [email protected] (L.L.) 2 Chengdu Center, China Geological Survey, Chengdu 610081, China 3 Department of Earthquake Science, Institute of Disaster Prevention, Langfang 065201, China; [email protected] * Correspondence: [email protected] (W.L.); [email protected] (X.Y.) Received: 27 May 2018; Accepted: 30 July 2018; Published: 3 August 2018 Abstract: Zircon U–Pb dating and Hf isotopic analyses are performed on clastic rocks, sedimentary tuff of the Dongchuan Group (DCG), and a diabase, which is an intrusive body from the base of DCG in the SW Yangtze Block. The results provide new constraints on the Precambrian basement and the Late Paleoproterozoic to Mesoproterozoic tectonic evolution of the SW Yangtze Block, South China. DCG has been divided into four formations from the bottom to the top: Yinmin, Luoxue, Heishan, and Qinglongshan. The Yinmin Formation, which represents the oldest rock unit of DCG, was intruded by a diabase dyke. The oldest zircon age of the clastic rocks from the Yinmin Formation is 3654 Ma, with "Hf(t) of −3.1 and a two-stage modeled age of 4081 Ma. Another zircon exhibits an age of 2406 Ma, with "Hf(t) of −20.1 and a two-stage modeled age of 4152 Ma.
    [Show full text]
  • Connecting the Deep Earth and the Atmosphere
    In Mantle Convection and Surface Expression (Cottaar, S. et al., eds.) AGU Monograph 2020 (in press) Connecting the Deep Earth and the Atmosphere Trond H. Torsvik1,2, Henrik H. Svensen1, Bernhard Steinberger3,1, Dana L. Royer4, Dougal A. Jerram1,5,6, Morgan T. Jones1 & Mathew Domeier1 1Centre for Earth Evolution and Dynamics (CEED), University of Oslo, 0315 Oslo, Norway; 2School of Geosciences, University of Witwatersrand, Johannesburg 2050, South Africa; 3Helmholtz Centre Potsdam, GFZ, Telegrafenberg, 14473 Potsdam, Germany; 4Department of Earth and Environmental Sciences, Wesleyan University, Middletown, Connecticut 06459, USA; 5DougalEARTH Ltd.1, Solihull, UK; 6Visiting Fellow, Earth, Environmental and Biological Sciences, Queensland University of Technology, Brisbane, Queensland, Australia. Abstract Most hotspots, kimberlites, and large igneous provinces (LIPs) are sourced by plumes that rise from the margins of two large low shear-wave velocity provinces in the lowermost mantle. These thermochemical provinces have likely been quasi-stable for hundreds of millions, perhaps billions of years, and plume heads rise through the mantle in about 30 Myr or less. LIPs provide a direct link between the deep Earth and the atmosphere but environmental consequences depend on both their volumes and the composition of the crustal rocks they are emplaced through. LIP activity can alter the plate tectonic setting by creating and modifying plate boundaries and hence changing the paleogeography and its long-term forcing on climate. Extensive blankets of LIP-lava on the Earth’s surface can also enhance silicate weathering and potentially lead to CO2 drawdown (cooling), but we find no clear relationship between LIPs and post-emplacement variation in atmospheric CO2 proxies on very long (>10 Myrs) time- scales.
    [Show full text]
  • Plate Tectonics
    Plate tectonics tive motion determines the type of boundary; convergent, divergent, or transform. Earthquakes, volcanic activity, mountain-building, and oceanic trench formation occur along these plate boundaries. The lateral relative move- ment of the plates typically varies from zero to 100 mm annually.[2] Tectonic plates are composed of oceanic lithosphere and thicker continental lithosphere, each topped by its own kind of crust. Along convergent boundaries, subduction carries plates into the mantle; the material lost is roughly balanced by the formation of new (oceanic) crust along divergent margins by seafloor spreading. In this way, the total surface of the globe remains the same. This predic- The tectonic plates of the world were mapped in the second half of the 20th century. tion of plate tectonics is also referred to as the conveyor belt principle. Earlier theories (that still have some sup- porters) propose gradual shrinking (contraction) or grad- ual expansion of the globe.[3] Tectonic plates are able to move because the Earth’s lithosphere has greater strength than the underlying asthenosphere. Lateral density variations in the mantle result in convection. Plate movement is thought to be driven by a combination of the motion of the seafloor away from the spreading ridge (due to variations in topog- raphy and density of the crust, which result in differences in gravitational forces) and drag, with downward suction, at the subduction zones. Another explanation lies in the different forces generated by the rotation of the globe and the tidal forces of the Sun and Moon. The relative im- portance of each of these factors and their relationship to each other is unclear, and still the subject of much debate.
    [Show full text]
  • Age and Isotopic Evidence from Glacial Igneous Clasts, and Links With
    $FFHSWHG0DQXVFULSW 3URWHUR]RLFFUXVWDOHYROXWLRQRIFHQWUDO(DVW$QWDUFWLFD$JHDQGLVRWRSLFHYL GHQFHIURPJODFLDOLJQHRXVFODVWVDQGOLQNVZLWK$XVWUDOLDDQG/DXUHQWLD -RKQ:*RRGJH&0DUN)DQQLQJ&KULVWRSKHU0)LVKHU-HIIUH\'9HUYRRUW 3,, 6 ; '2, KWWSG[GRLRUJMSUHFDPUHV 5HIHUHQFH 35(&$0 7RDSSHDULQ Precambrian Research 5HFHLYHG'DWH )HEUXDU\ 5HYLVHG'DWH -XO\ $FFHSWHG'DWH -XO\ 3OHDVHFLWHWKLVDUWLFOHDV-:*RRGJH&0DUN)DQQLQJ&0)LVKHU-'9HUYRRUW3URWHUR]RLFFUXVWDOHYROXWLRQ RIFHQWUDO(DVW$QWDUFWLFD$JHDQGLVRWRSLFHYLGHQFHIURPJODFLDOLJQHRXVFODVWVDQGOLQNVZLWK$XVWUDOLDDQG /DXUHQWLDPrecambrian Research GRLKWWSG[GRLRUJMSUHFDPUHV 7KLVLVD3')ILOHRIDQXQHGLWHGPDQXVFULSWWKDWKDVEHHQDFFHSWHGIRUSXEOLFDWLRQ$VDVHUYLFHWRRXUFXVWRPHUV ZHDUHSURYLGLQJWKLVHDUO\YHUVLRQRIWKHPDQXVFULSW7KHPDQXVFULSWZLOOXQGHUJRFRS\HGLWLQJW\SHVHWWLQJDQG UHYLHZRIWKHUHVXOWLQJSURRIEHIRUHLWLVSXEOLVKHGLQLWVILQDOIRUP3OHDVHQRWHWKDWGXULQJWKHSURGXFWLRQSURFHVV HUURUVPD\EHGLVFRYHUHGZKLFKFRXOGDIIHFWWKHFRQWHQWDQGDOOOHJDOGLVFODLPHUVWKDWDSSO\WRWKHMRXUQDOSHUWDLQ Proterozoic crustal evolution of central East Antarctica: Age and isotopic evidence from glacial igneous clasts, and links with Australia and Laurentia John W. Goodge 1*, C. Mark Fanning2, Christopher M. Fisher3† and Jeffrey D. Vervoort3 1 Department of Earth and Environmental Sciences, University of Minnesota, Duluth, MN 55812 USA (correspondence: [email protected]) 2 Research School of Earth Sciences, Australian National University, Canberra, ACT 0200 Australia ([email protected]) 3 School of the Environment, Washington State University, Pullman, WA 99164, USA ([email protected],
    [Show full text]
  • Plate Tectonics on Early Earth? Weighing the Paleomagnetic Evidence
    spe440-12 3rd pages The Geological Society of America Special Paper 440 2008 Plate tectonics on early Earth? Weighing the paleomagnetic evidence David A.D. Evans* Department of Geology & Geophysics, Yale University, New Haven, Connecticut 06520-8109, USA Sergei A. Pisarevsky* School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JW, Scotland, UK ABSTRACT Paleomagnetism is the only quantitative method available to test for lateral motions by tectonic plates across the surface of ancient Earth. Here, we present several analyses of such motions using strict quality criteria from the global paleomagnetic database of pre–800 Ma rocks. Extensive surface motion of cratons can be documented confi dently to older than ca. 2775 Ma, but considering only the most reliable Archean data, we cannot discern differential motion from true polar wander (which can also generate surface motions relative to the geomagnetic reference frame). In order to fi nd evidence for differential motions between pairs of Precambrian cratons, we compared distances between paleomagnetic poles through precisely isochronous intervals for pairs of cra- tons. The existing database yields several such comparisons with ages ranging from ca. 1110 to ca. 2775 Ma. Only one pair of these ages, 1110–1880 Ma, brackets signifi cantly different apparent polar wander path lengths between the same two cratons and thus demonstrates differential surface motions. If slightly less reliable paleomagnetic results are considered, however, the number of comparisons increases dramatically, and an example is illustrated for which a single additional pole could constrain differential cratonic motion into the earliest Paleoproterozoic and late Neoarchean (in the interval 2445–2680 Ma).
    [Show full text]
  • Improving Global Paleogeography Since the Late Paleozoic Using Paleobiology
    Biogeosciences, 14, 5425–5439, 2017 https://doi.org/10.5194/bg-14-5425-2017 © Author(s) 2017. This work is distributed under the Creative Commons Attribution 3.0 License. Improving global paleogeography since the late Paleozoic using paleobiology Wenchao Cao1, Sabin Zahirovic1, Nicolas Flament1,a, Simon Williams1, Jan Golonka2, and R. Dietmar Müller1,3 1EarthByte Group and Basin GENESIS Hub, School of Geosciences, The University of Sydney, Sydney, NSW 2006, Australia 2Faculty of Geology, Geophysics and Environmental Protection, AGH University of Science and Technology, Mickiewicza 30, 30-059 Kraków, Poland 3Sydney Informatics Hub, The University of Sydney, Sydney, NSW 2006, Australia acurrent address: School of Earth and Environmental Sciences, University of Wollongong, Northfields Avenue, Wollongong, NSW 2522, Australia Correspondence to: Wenchao Cao ([email protected]) Received: 16 March 2017 – Discussion started: 18 April 2017 Revised: 10 October 2017 – Accepted: 21 October 2017 – Published: 4 December 2017 Abstract. Paleogeographic reconstructions are important to Jurassic, Late Cretaceous and most of the Cenozoic. The understand Earth’s tectonic evolution, past eustatic and re- global flooded continental areas since the Early Devonian gional sea level change, paleoclimate and ocean circulation, calculated from the revised paleogeography in this study are deep Earth resources and to constrain and interpret the dy- generally consistent with results derived from other paleoen- namic topography predicted by mantle convection models. vironment and paleo-lithofacies data and with the strontium Global paleogeographic maps have been compiled and pub- isotope record in marine carbonates. We also estimate the lished, but they are generally presented as static maps with terrestrial areal change over time associated with transfer- varying map projections, different time intervals represented ring reconstruction, filling gaps and modifying the paleogeo- by the maps and different plate motion models that underlie graphic geometries based on the paleobiology test.
    [Show full text]