Overview of Foundry Processes and Technologies: Manufacturing Metal Castings
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Treatise on Combined Metalworking Techniques: Forged Elements and Chased Raised Shapes Bonnie Gallagher
Rochester Institute of Technology RIT Scholar Works Theses Thesis/Dissertation Collections 1972 Treatise on combined metalworking techniques: forged elements and chased raised shapes Bonnie Gallagher Follow this and additional works at: http://scholarworks.rit.edu/theses Recommended Citation Gallagher, Bonnie, "Treatise on combined metalworking techniques: forged elements and chased raised shapes" (1972). Thesis. Rochester Institute of Technology. Accessed from This Thesis is brought to you for free and open access by the Thesis/Dissertation Collections at RIT Scholar Works. It has been accepted for inclusion in Theses by an authorized administrator of RIT Scholar Works. For more information, please contact [email protected]. TREATISE ON COMBINED METALWORKING TECHNIQUES i FORGED ELEMENTS AND CHASED RAISED SHAPES TREATISE ON. COMBINED METALWORKING TECHNIQUES t FORGED ELEMENTS AND CHASED RAISED SHAPES BONNIE JEANNE GALLAGHER CANDIDATE FOR THE MASTER OF FINE ARTS IN THE COLLEGE OF FINE AND APPLIED ARTS OF THE ROCHESTER INSTITUTE OF TECHNOLOGY AUGUST ( 1972 ADVISOR: HANS CHRISTENSEN t " ^ <bV DEDICATION FORM MUST GIVE FORTH THE SPIRIT FORM IS THE MANNER IN WHICH THE SPIRIT IS EXPRESSED ELIEL SAARINAN IN MEMORY OF MY FATHER, WHO LONGED FOR HIS CHILDREN TO HAVE THE OPPORTUNITY TO HAVE THE EDUCATION HE NEVER HAD THE FORTUNE TO OBTAIN. vi PREFACE Although the processes of raising, forging, and chasing of metal have been covered in most technical books, to date there is no major source which deals with the functional and aesthetic requirements -
Actions Aimed at Increasing the Beneficial Use of Foundry Sand
Draft 9/17/09 ACTIONS AIMED AT INCREASING THE BENEFICIAL USE OF FOUNDRY SAND A MULTI-STAKEHOLDER ACTION PLAN September, 2009 Draft 9/17/09 September, 2009 Over the past year, a core planning group has worked in consultation with a broad group of stakeholders, to consider various actions for increasing the beneficial use of foundry sand. This process has produced a Multi-Stakeholder Action Plan (MAP) which identifies key challenges to increased beneficial use, and a comprehensive set of actions aimed at increasing the beneficial use, of foundry sands. These actions will a) document the economic and environmental case for beneficial use, b) foster sustainable markets linking sand generators with end users, c) address regulatory processes, and d) establish a coordinated framework to oversee implementation and measure progress. The planning process also generated a set of Initial Priority Actions that various key parties are undertaking over the next few years. These actions will address many of the challenges identified in the MAP and lay the groundwork for implementation of additional MAP actions. Currently, the foundry industry estimates that about 28% of sands are directed to beneficial use. The industry’s national trade association—the American Foundry Society—has set a goal of 50% beneficial use by 2015. During the development of the MAP, the stakeholders listed below expressed support for this goal and committed to work together towards achieving it through implementation of the Initial Priority Actions. Organizations Playing Key Roles -
A New Occurrence of Terrestrial Native Iron in the Earth's Surface
geosciences Article A New Occurrence of Terrestrial Native Iron in the Earth’s Surface: The Ilia Thermogenic Travertine Case, Northwestern Euboea, Greece Christos Kanellopoulos 1,2,* ID , Eugenia Valsami-Jones 3,4, Panagiotis Voudouris 1, Christina Stouraiti 1 ID , Robert Moritz 2, Constantinos Mavrogonatos 1 ID and Panagiotis Mitropoulos 1,† 1 Department of Geology and Geoenvironment, National and Kapodistrian University of Athens, Panepistimioupolis Zografou, 15784 Athens, Greece; [email protected] (P.V.); [email protected] (C.S.); [email protected] (C.M.); [email protected] (P.M.) 2 Section of Earth and Environmental Sciences, University of Geneva, Rue des Maraichers 13, 1205 Geneva, Switzerland; [email protected] 3 School of Geography, Earth & Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; [email protected] 4 Department of Earth Sciences, Natural History Museum London, Cromwell Road, London SW7 5BD, UK * Correspondence: [email protected] † Professor Panagiotis Mitropoulos has passed away in 2017. Received: 6 April 2018; Accepted: 23 July 2018; Published: 31 July 2018 Abstract: Native iron has been identified in an active thermogenic travertine deposit, located at Ilia area (Euboea Island, Greece). The deposit is forming around a hot spring, which is part of a large active metallogenetic hydrothermal system depositing ore-bearing travertines. The native iron occurs in two shapes: nodules with diameter 0.4 and 0.45 cm, and angular grains with length up to tens of µm. The travertine laminae around the spherical/ovoid nodules grow smoothly, and the angular grains are trapped inside the pores of the travertine. -
Repoussé Work for Amateurs
rf Bi oN? ^ ^ iTION av op OCT i 3 f943 2 MAY 8 1933 DEC 3 1938 MAY 6 id i 28 dec j o m? Digitized by the Internet Archive in 2011 with funding from Boston Public Library http://www.archive.org/details/repoussworkforamOOhasl GROUP OF LEAVES. Repousse Work for Amateurs. : REPOUSSE WORK FOR AMATEURS: BEING THE ART OF ORNAMENTING THIN METAL WITH RAISED FIGURES. tfjLd*- 6 By L. L. HASLOPE. ILLUSTRATED. LONDON L. UPCOTT GILL, 170, STRAND, W.C, 1887. PRINTED BY A. BRADLEY, 170, STRAND, LONDON. 3W PREFACE. " JjJjtfN these days, when of making books there is no end," ^*^ and every description of work, whether professional or amateur, has a literature of its own, it is strange that scarcely anything should have been written on the fascinating arts of Chasing and Repousse Work. It is true that a few articles have appeared in various periodicals on the subject, but with scarcely an exception they treated only of Working on Wood, and the directions given were generally crude and imperfect. This is the more surprising when we consider how fashionable Repousse Work has become of late years, both here and in America; indeed, in the latter country, "Do you pound brass ? " is said to be a very common question. I have written the following pages in the hope that they might, in some measure, supply a want, and prove of service to my brother amateurs. It has been hinted to me that some of my chapters are rather "advanced;" in other words, that I have gone farther than amateurs are likely to follow me. -
Low-Pressure Casting of Aluminium Alsi7mg03 (A356) in Sand and Permanent Molds
MATEC Web of Conferences 326, 06001 (2020) https://doi.org/10.1051/matecconf/202032606001 ICAA17 Low-Pressure Casting of Aluminium AlSi7Mg03 (A356) in Sand and Permanent Molds Franco Chiesa1*, Bernard Duchesne2, and Gheorghe Marin1 1Centre de Métallurgie du Québec, 3095 Westinghouse, Trois-Rivières, Qc, Canada G9A 5E1 2Collège de Trois-Rivières, 3500 de Courval, Trois-Rivières, Qc, Canada, G9A 5E6 Abstract. Aluminium A356 (AlSi7Mg03) is the most common foundry alloy poured in sand and permanent molds or lost-wax shells. Because of its magnesium content, this alloy responds to a precipitation hardening treatment. The strength and ductility combination of the alloy can be varied at will by changing the temper treatment that follows the solutionizing and quenching of the part. By feeding the mold from the bottom, the low-pressure process provides a tranquil filling of the cavity. A perfect control of the liquid metal stream is provided by programming the pressure rise applied on the melt surface. It compares favorably to the more common gravity casting where a turbulent filling is governed by the geometry of the gating system. 1 The low-pressure permanent 2) The very efficient feeding achieved via the mold process bottom feeder tube by applying a pressure of up to one atmosphere to the melt; the resulting yield is very high, typically 80-90% versus 50-60% for The low-pressure permanent mold casting gravity casting. However, the low-pressure (LPPM) [1], schematized in Figure 1a and shown process cannot pour any casting geometries. in Figure 1b and 1c, is a common process Low-pressure sand casting (LPS) is much less producing high quality castings resulting from common than LPPM; the sand mold rests on top two main characteristics: of the pressurized enclosure as shown in Figure 1) The perfectly controlled quiescent filling 1d. -
Electroless Copper Plating a Review: Part I
Electroless Copper Plating A Review: Part I By Cheryl A. Deckert Electroless, or autocatalytic, metal plating is a non- necessary components of an electro- electrolytic method of deposition from solution. The less plating solution are the metal salt minimum necessary components of an electroless and a reducing agent. The source of plating solution are a metal salt and an appropriate copper is a simple cupric salt, such as reducing agent. An additional requirement is that the copper sulfate, chloride or nitrate. solution, although thermodynamically unstable, is Various common reducing agents stable in practice until a suitable catalyzed surface is have been suggested7 for use in elec- introduced. Plating is then initiated upon the catalyzed troless copper baths, namely formal- surface, and the plating reaction is sustained by the dehyde, dimethylamine borane, boro- catalytic nature of the plated metal surface itself. This hydride, hypophosphite,8 hydrazine, definition of electroless plating eliminates both those sugars (sucrose, glucose, etc.), and solutions that spontaneously plate on all surfaces dithionite. In practice, however, vir- (“homogeneous chemical reduction”), such as silver tually all commercial electroless cop- mirroring solutions; also “immersion” plating solu- per solutions have utilized formalde- tions, which deposit by displacement a very thin film of hyde as reducing agent. This is a a relatively noble metal onto the surface of a sacrificial, result of the combination of cost, less noble metal. effectiveness, and ease -
The Revised Handbook for Analyzing Jobs
This is a reproduction of a library book that was digitized by Google as part of an ongoing effort to preserve the information in books and make it universally accessible. https://books.google.com The Revised Handbook for Analyzing Jobs U.S. Department of Labor Employment and Training Administration - 1I . 1 a .1 i MM | • 1 \ \ j • far* ! \ > f | f • i ' 1 • ■ J : ■1 mm i 1 1 I ' • < - ' ffiiliKii ... * in .n mil i ifnrtriw ffiii * > l • \ / i r □ j | . - j Material in this publication is in the public domain and may be reproduced, fully or partially, without permission of the Federal Government. Source credit is requested but not required. Permis sion is required only to reproduce any copyrighted material contained herein. The Handbook for Analyzing Jobs (HAJ) contains the methodology Ml and benchmarks used by the cooperative Federal-State Occupational Analysis Program in gathering and recording information about jobs. Major Occupational Analysis products include the Dictionary of Occu pational Titles which contains occupational definitions of some 13,000 occupations, Selected Characteristics of Occupations Defined in the Dictionary of Occupational Titles, and the Guide for Occupational Exploration. All of these publications are available from the U.S. Government Printing Office. Since the first edition of the Handbook was published in 1944, changes and improvement in occupational analysis methodology have resulted in periodic revisions. This, the fourth revision, has been used by staff of State Occupational Analysis Field Centers since 1984. Dur ing this time, analysts have continued to refine the Handbook in order to reduce ambiguities and further refine procedures to facilitate accu rate and consistent gathering, synthesis, interpretation, and reporting of occupational information. -
Stoichiometry: the Reaction of Iron with Copper(II) Sulfate
CEAC 103 GENERAL CHEMISTRY Experiment 2 Stoichiometry: The Reaction of Iron with Copper(II) Sulfate Purpose: To enhance the understanding of stoichiometry, a reaction between iron and copper (II) sulfate solution will be conducted. This will help you to differentiate limiting and excess reactant in a chemical reaction. Finally the theoretical and percent yield of this reaction will be calculated. Theory Stoichiometry is the measurement of quantitative relationships in chemical formulas and equations. In this experiment stoichiometric principles will be used to obtain the appropriate equation between the reaction of iron metal and copper(II) sulfate solution. After the reaction is taking place, the formation of metallic copper, which is seen precipitating as a finely divided reddish-orange powder will be observed. This reaction is one of the example of single substitution reaction in which one element “displaces” from a compound by another element. The element which has ability of displacing other element from compound is said to be “more active” than the displaced metal. In this experiment, iron is more active than copper. Two distinct forms of iron are present, namely Fe2+ and Fe3+. Stoichiometric principles will be used to determine which reaction is more dominant compared to other one by examining the reaction between iron and copper (II) sulfate solution. If Fe2+ is formed, then equation (1) is dominant, while equation (2) will be selected if Fe3+ is formed. This can be determined 1 according to mole ratio of copper to iron. If the moles of copper is equal to the moles of iron, then equation (1) has taken place. -
Cupola Practice in Modern Gray Iron Foundry
Scholars' Mine Professional Degree Theses Student Theses and Dissertations 1924 Cupola practice in modern gray iron foundry George E. Mellow Follow this and additional works at: https://scholarsmine.mst.edu/professional_theses Part of the Mechanical Engineering Commons Department: Recommended Citation Mellow, George E., "Cupola practice in modern gray iron foundry" (1924). Professional Degree Theses. 56. https://scholarsmine.mst.edu/professional_theses/56 This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Professional Degree Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. CUPOLA PHAC11ICE IN MODERN GRAY IRON FlOUNDRY BY GEORGE E. MELLOW A "THESIS submitted to the faculty of the SCHOOL OF MINES AND ~~TALLURGY OF THE UNIVERSITY OF MISSOURI in partial fulfillment of the work required for the Degree Of' Mechanica.l Engineer St. Louis, Mo. 1924 Approved by.?f'..Q... .. Cupola Practice in Modern Gray-Iron Ii'oundry Cupola practice, as described in this paper, 'will include only the practical operation or a cupola and the details of the work necessary in daily routine, and very little of the theory of combustion,or history of cupola development, is presented. A brief ~escription of the cupola will give an idea of its construction, and the names of the parts may be found on the sketch herewith. The cupola consists of a steel shell, cylindrical in shape, which stands veDtically on four cast-iron legs, about four feet off the floor; it is open at the top, and has SWinging cast-iron doors at the bottom. -
Implementation of Metal Casting Best Practices
Implementation of Metal Casting Best Practices January 2007 Prepared for ITP Metal Casting Authors: Robert Eppich, Eppich Technologies Robert D. Naranjo, BCS, Incorporated Acknowledgement This project was a collaborative effort by Robert Eppich (Eppich Technologies) and Robert Naranjo (BCS, Incorporated). Mr. Eppich coordinated this project and was the technical lead for this effort. He guided the data collection and analysis. Mr. Naranjo assisted in the data collection and analysis of the results and led the development of the final report. The final report was prepared by Robert Naranjo, Lee Schultz, Rajita Majumdar, Bill Choate, Ellen Glover, and Krista Jones of BCS, Incorporated. The cover was designed by Borys Mararytsya of BCS, Incorporated. We also gratefully acknowledge the support of the U.S. Department of Energy, the Advanced Technology Institute, and the Cast Metals Coalition in conducting this project. Disclaimer This report was prepared as an account of work sponsored by an Agency of the United States Government. Neither the United States Government nor any Agency thereof, nor any of their employees, makes any warranty, expressed or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any Agency thereof. The views and opinions expressed by the authors herein do not necessarily state or reflect those of the United States Government or any Agency thereof. -
S Foundry Solutions By: Ricardo Volkmann Index
Issue #2 Adolf′s Foundry Solutions by: Ricardo Volkmann www.foundrysupply.com Index: Mission Statement & History 3 Style ~A~ Alignment Inserts 4 Alignment Core Prints 4 Wood Cutting Tools 4 Style ~B~ Alignment Inserts 5 Alignment Core Boxes 5 Single Cavity Filtering Basins 6-7 Double Cavity Filtering Basins 6 Pouring Basins 6 Riser Rings 7 Filtering Runner Basins 7 14 Inch Sprues 8 Filtering Sprue Plugs 8 Pop-up Sprue Basins 9 Single Faced Basins 10-11 Pyramid Style Basins 10-11 Three Faced Basins 10 Sprue Pins 10-11 Filtering Basin 10 Four Faced Basins 11 Test Bar Basins 12-13 Inter-Changeable Test Bars 12-13 Test Wedges Basins 12-13 Inter-Changeable Test Wedges 12-13 Test Coupon Basins 12 PIG Boxes 13 Photo Gallery 14-15 Silent Adjustable Vibrator 16 DuraTech Tooling Material 16 Buy direct and save... No sales tax in Oregon 2 www.foundrysupply.com Mission Statement “Doing it Right the First Time” Our mission is to provide new lean manufacturing practices to the foundry industry. Adolf’s Foundry Solutions are products made with the highest integrity, they are dependable, exteremly durable and very cost effective. History 1949 Adolf started his pattern maker apprenticeship in Berlin, Germany during 1949. Trained by German master craftsmen, Adolf excelled as an apprentice and completed a four year apprenticeship program in three years, allowing him to graduate at the top of his class with honors. In Germany, at that time, it was mandatory practice for all apprentices to spend six weeks working in a foundry doing piece work on the molding line. -
Iron –Carbon Phase Diagram
IRON –CARBON PHASE DIAGRAM CB.EN.P2MFG15018 Definition of structures: Various phases that appear on the Iron- Carbon equilibrium phase diagram are as under: • Austenite • Ferrite • Pearlite • Cementite • Martensite • Ledeburite Definition of structures: Austenite is an interstitial solid solution of Carbon dissolved in (F.C.C.) iron. Maximum solubility is 2.0 % C at 1130°C. High formability, most of heat treatments begin with this single phase. It is normally not stable at room temperature. But, under certain conditions it is possible to obtain austenite at room temperature. Austenite Average properties are: Tensile strength = 150,000 psi; Elongation = 10 percent in 2 in.; Hardness = Rockwell C 40, approx; and toughness = high Definition of structures: Ferrite is known as α solid solution. It is an interstitial solid solution of a small amount of carbon dissolved in α (BCC) iron. stable form of iron below 912 deg.C. The maximum solubility is 0.025 % C at 723C and it dissolves only 0.008 % C at room temperature. It is the softest structure that appears on the diagram. Ferrite Average properties are: Tensile strength = 40,000 psi; Elongation = 40 % in 2 in; Hardness > Rockwell C 0 or > Rockwell B 90 Definition of structures: Pearlite is the eutectoid mixture containing 0.80 % C and is formed at 723°C on very slow cooling. It is a very fine platelike or lamellar mixture of ferrite and cementite. The white ferritic background or matrix contains thin plates of cementite (dark). Pearlite Average properties are: Tensile strength = 120,000 psi; Elongation = 20 % in 2 in.; Hardness = Rockwell C20, BHN-300 Definition of structures: Cementite or iron carbide, is very hard, brittle intermetallic compound of iron & carbon, as Fe3C, contains 6.67 % C.