Notes 43 BLACK and TURKEY VULTURE INTERACTIONS WITH
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Bald Eagle Haliaetus Leucocephalus
Appendix A: Birds Bald Eagle Haliaetus leucocephalus Federal Listing N/A State Listing T Global Rank G4 State Rank S2 Regional Status Photo by Jason Lambert Justification (Reason for Concern in NH) Bald Eagle populations in the conterminous United States entered a severe population decline in the 1950s, largely a result of reproductive failure induced by biomagnification of the insecticide DDT (Buehler 2000). Some regional breeding populations, especially in eastern and southern states, became locally extirpated. This serious decline led to the designation of the bald eagle as Endangered under the Endangered Species Act. Following the banning of DDT and intensive reintroduction efforts, Bald Eagle populations gradually rebounded, and the species was removed from the federal endangered list in 2007. In the Northeast, recovery has been particularly strong since 2000. However, most states still consider Bald Eagle a SGCN due to historic extirpations and historic sensitivity to certain environmental stressors, particularly contaminants. Distribution Bald eagles currently occur and breed in all Lower 48 states and in Alaska. Based upon data provided by state agencies, from a population low of 417 breeding pairs in 1963 the U.S. Fish and Wildlife Service estimated that there were an estimated 1,500 breeding pairs in the contiguous 48 states in 1982 and an estimated 5,300 pairs in the same area in 1997 (derived from data in Buehler 2000), and nearly 9800 breeding pairs in the Lower 48 states in 2006. The USFWS estimated that there were 463 breeding pairs in the six New England states in 2006. The nationwide population has probably increased substantially since 2006, but more recently compiled information is not available from USFWS. -
Turkey Vulture AKA: Turkey Buzzard, Buzzard, Vulture, Carrion Crow, Carrion Buzzard, Etc
Turkey Vulture AKA: Turkey Buzzard, Buzzard, Vulture, Carrion Crow, Carrion Buzzard, etc. Scientific Classification: Animalia, Chordata, Aves, Incertae sedis (disputed), Cathartidae; Cathartes; C. aura. Bird Size & Markings: Adult Turkey Vultures can be 32” long, stand 30” high and have 6 foot wingspans. Males and females have brownish-black body plum- age, silvery-gray flight feathers, bare red heads and a short yellow hooked bill. Turkey Vultures have very limited vocalization; it can only hiss or grunt. Habitat: The Turkey Vulture is the most abundant vulture in the Americas. It is commonly found in open and semi-open areas throughout the Americas from southern Canada to Cape Horn. It is a permanent resident in southern US States, though northern birds may migrate as far as South America. It prefers to roost on tall dead trees or high bare cliffs. It will roost on man-made structures such as water towers, skyscrapers, billboards and other structures of sufficient height. Nesting/Dens: There is little or no construction of a nest; eggs are laid on bare surfaces in protected locations such as a cliff, cave, burrow or inside a hollow A Turkey Vulture’s primary method of defence tree. They lay 1 or 2 eggs for each brood. Chicks fledge 9 to 10 weeks after hatch- is the projection vomiting of semi-digested car- ing. Family groups stay together until fall. rion. This deters most attackers (No doubt!). Food: Turkey Vultures prefer to feed on fresh carrion ranging in size from small mammals and dead fish to dead cattle and other grazers. They prefer fresh car- rion and avoid rotting carcasses. -
Bald Eagle Haliaeetus Leucocephalus
Wyoming Species Account Bald Eagle Haliaeetus leucocephalus REGULATORY STATUS USFWS: Delisted; Migratory Bird USFS R2: Sensitive USFS R4: Sensitive Wyoming BLM: Sensitive State of Wyoming: Protected Bird CONSERVATION RANKS USFWS: Bird of Conservation Concern WGFD: NSS3 (Bb), Tier II WYNDD: G5, S4B/S5N Wyoming Contribution: LOW IUCN: Least Concern PIF Continental Concern Score: 9 STATUS AND RANK COMMENTS Bald Eagle (Haliaeetus leucocephalus) is provided international protection under the Federal Migratory Bird Treaty Act of 1918, as amended 1. In 1940, Bald Eagle was provided protection under the Bald and Golden Eagle Protection Act 2. In 1966, the southern subspecies was listed as federally endangered under the Endangered Species Preservation Act; the entire population in the contiguous United States was listed as endangered in 1978 under the 1973 Endangered Species Act (ESA). A significant increase in numbers of nesting pairs, productivity, and distribution allowed Bald Eagle to be reclassified from Endangered to Threatened in 1995 under the ESA 3. Bald Eagle was delisted in 2007, and numbers are considered to be stable to increasing across its range 4. The species has been assigned different state conservation ranks by the Wyoming Natural Diversity Database for the breeding season and nonbreeding season because the abundance of the species is different between seasons. NATURAL HISTORY Taxonomy: Bald Eagle is a member of the family Accipitridae, which includes kites, eagles, harriers, and hawks 5. There are two subspecies of Bald Eagle; H. l. alascanus is found north of 40 degrees latitude across North America, including Wyoming, while H. l. leucocephalus is found south of 40 degrees latitude in the Gulf coast states 6. -
Temperature Regulation in Turkey Vultures
TheCondor90:913-919 0 TheCooper Ornithological Society 1988 TEMPERATURE REGULATION IN TURKEY VULTURES ZEEV ARAD Department of Biology, Technion,Haifa 32000, Israel MARVIN H. BERNSTEIN Department of Biology,New Mexico State University,Las Cruces,NM 88003 Abstract. Temperature regulation by six Turkey Vultures (Cathartesaura) was studied at ambient temperatures (T,) from 11 to 40°C in a metabolic chamber. Within this range body temperature varied little, averaging 39.7”C, and the ratio of CO, production to 0, consumption averaged 0.76. The thermal-neutral zone (TNZ) extended from 26 to 40°C. Below 26°C evaporative water loss and the heat-transfercoefficient were minimal, reflecting maximum insulation, and breathing and heart rates remained nearly constantat 10 and 142 min-I, respectively. Oxygen consumption increased by 12 ~1 0, STPD/(g hr) per “C of decreasein T, below 26°C so the percentageof metabolic heat lost by evaporation decreased from 22 to 13%. Within the TNZ 0, consumption was minimal, averaging 0.73 ml STPD/(g hr), but evaporation increased exponentially, dissipating metabolic heat to a maximum of about 90% at 40°C. Insulation decreasedexponentially within the TNZ. Despite this, however, the birds underwent rapid hyperthermia above 40°C. The likely explanation for this is that under the present experimental conditions the Turkey Vultures could not make use of important behavioral components of their thermoregulatoryrepertoire, including neck ex- tension, wing spreading,and urination on the legs. Were this not so they likely would have exhibited areater reduction in insulation and tolerated higher T.. The thermal relations of Turkey Viltures were similar to those calculated from allomeiric relations and to those measured previously in the closely related, partially sympatric Black Vulture (Coragyps atratus). -
The Reintroduction of Eurasian Griffon Monachus Vultures to France
Chancellor, R. D. & B.-U. Meyburg eds. 2004 Raptors Worldwide WWGBP/MME A Success Story: The Reintroduction of Eurasian Griffon Gyps fulvus and Black Aegypius monachus Vultures to France Michel Terrasse, François Sarrazin, Jean-Pierre Choisy, Céline Clémente, Sylvain Henriquet, Philippe Lécuyer, Jean Louis Pinna, and Christian Tessier ABSTRACT By the end of the 1960s, the future of vultures in France appeared bleak. Apart from the western half of the Pyrenees, with residual populations of Eurasian Griffon Gyps fulvus and Bearded Vultures Gypaetus barbatus, and Corsica with a few Bearded Vultures, most of France had lost its large vultures including the Black Vulture Aegypius monachus. Within the scope of a national conservation campaign, a process to restore raptor communities began. Concerning vultures, this was completed through reintroduction programmes. After the success of the Griffon Vulture reintroduction, started in 1968 in the Grands Causses of the Massif Central, other programmes followed in the 90s: Black Vultures in the Massif Central and then Griffon Vultures in the Southern Alps. In 2003 a viable population of Griffon Vultures in the Massif Central contained around 110 pairs. The same situation occurred in the Alps with about 50 breeding pairs of Griffon Vultures. Ten years after the beginning of the Black Vulture releases, the free ranging population included 11 breeding pairs. Accurate monitoring during the reintroduction period allowed us to estimate demographic parameters such as survival and breeding rates, evolution of breeding and foraging territories, main threats, movements between reintroduced populations and those from neighbouring countries, acceptance by people and the beneficial part played by vultures in what is called sustainable development. -
Regional Specialties Western
REGIONAL SPECIALTIES WESTERN OSPREY 21 - 26” length SOUTHERN . FERRUGINOUS . Eagle sized; clean, white body. HAWK Black wrist marks. 20 - 26” length . Glides with kink (M) in long, narrow wings. MISSISSIPPI . Largest buteo; eagle-like. KITE . Pale below with dark leggings. 13 - 15” length . Mostly white tail; 3 color morphs. Long, pointed wings; slim body. Light body; dark wings; narrow, black tail. Not to scale. Buoyant, acrobatic flight. NORTHERN HARRIER 16 - 20” length PRAIRIE FALCON 14 - 18” length . Long, narrow wings and tail; sharp dihedral. Size of Peregrine; much paler plumage. Brown above, streaked brown below – female. Narrow moustache; spotted breast; long tail. Gray above, pale below with black wing tips – male. Dark armpits and partial wing linings. WING PROFILE IMMATURE BALD EAGLE BALD EAGLE GOLDEN EAGLE . Immature birds vary GOLDEN EAGLE greatly in the amount 27 to 35” length of white spotting on body and wings. White showing on wing linings is surely a Bald Eagle. BALD EAGLE . Like large buteo, curvy wings. Head protrudes much less than tail. Slight dihedral to wing profile. NOTE: Some hawks soar and glide with their wings raised above the horizontal, called a dihedral. 27 to 35” length . Head and tail length similar. Long, flat wings. Straight leading edge to wings. 24 to 28” length This guide developed by Paul Carrier is the property of the Hawk Migration Association of North America (HMANA). HMANA is TURKey VUltUre a membership-based, non-profit organization committed to the . Dark wing linings with light flight feathers. conservation of raptors through the scientific study, enjoyment, and . Small head; long tail; sharp dihedral. -
The Andean Condor: a Field Study ______
_____________________________________ THE ANDEAN CONDOR: A FIELD STUDY _____________________________________ By: Jerry McGahan Box 71 Arlee, MT 59821 (406) 726-3480 [email protected] JerryMcGahan.com With photographs, field, and clerical assistance by: Libby Sale Dedicated to the Memory of Carlos Lehmann V Maria Koepcke Enrique Avila William Millie i Table of Contents PREFACE AND ACKNOWLEDMENTS……………………………………………………… 1 1 THE STUDY .............................................................................................................................. 6 INTRODUCTION ............................................................................................................. 6 STUDY AREAS .............................................................................................................. 15 Colombia .............................................................................................................. 15 Cerro Illescas ....................................................................................................... 18 Paracas ................................................................................................................ 20 THE SUBJECT ................................................................................................................ 21 Taxonomy ............................................................................................................. 21 Description ........................................................................................................... 22 -
Olfactory Sensitivity of the Turkey Vulture (Cathartes Aura) to Three Carrion-Associated Odorants
OLFACTORY SENSITIVITY OF THE TURKEY VULTURE (CATHARTES AURA) TO THREE CARRION-ASSOCIATED ODORANTS STEVEN A. SMITH • AND RICHARD A. PASELK Departmentsof BiologicalSciences and Chemistry, Humboldt State University, Arcata,California 95523 USA ABSTRACT.--TheTurkey Vulture (Cathartesaura) is generally thought to rely on olfactory cuesto locate carrion. Becausevertically rising odorantsare dispersedrapidly by wind tur- bulence, we predict that Turkey Vultures should be highly sensitive to these chemicalsto detect them at foraging altitudes. Olfactory thresholdsto three by-productsof animal decomposition(1 x 10-6 M for buta- noic acid and ethanethiol, and 1 x 10-5 M for trimethylamine) were determined from heart- rate responses.These relatively high thresholds indicate that these odorantsare probably not cuesfor foraging Turkey Vultures. Odorant thresholds,food habits of Turkey Vultures, and the theoretical properties of odorant dispersion cast some doubt on the general impor- tanceof olfaction in food locationby this species.Received 23 September1985, accepted 3 March 1986. THEsensory modality by which Turkey Vul- Companydiscovered that natural gas leaks could tures (Cathartes aura) locate carrion has been be tracedby injectingethanethiol into gaslines debatedby naturalistsfor nearly 140 years(see and patrolling the lines for Turkey Vultures Stager1964 for review). Most of the controver- that, ostensibly,were attractedto the metcap- sy concernedwhether olfaction or vision was tan (Stager 1964). Stager (1964: 56) concluded the more important sense,although other the- from anatomical examinations and field tests ories included an "occult" sense (Beck 1920), that the Turkey Vulture "possessesand utilizes the noiseof carrion-eatingrodents, or the noise a well developedolfactory food locatingmech- of carrion-eatinginsects (Taber 1928, Darling- anism." ton 1930) as attractingTurkey Vultures to their If Turkey Vulturesrely on olfactorycues to prey. -
Greater Yellow&Hyphen;Headed Vulture &Lpar;<I>Cathartes
38 SHORT COMMUNICATIONS VOL. 26, NO. 1 j RaptorRes. 26(1):38-39 ¸ 1992 The Raptor ResearchFoundation, Inc. GREATER YELLOW-HEADED VULTURE ( Cathartesrnelarnbrotus) LOCATES FOOD BY OLFACTION GARY R. GRAVES Departmentof VertebrateZoology, National Museum of Natural History, SmithsonianInstitution, Washington, DC 20560 Turkey Vultures (Cathartesaura) and LesserYellow- (6-8 m) was exceedinglydense, the carcasscould not be headed Vultures (Cathartesburrovianus) have acute senses observedfrom the air. Presumably,the vulture landedon of smell(Stager 1964, Houston1986, 1988). Althoughthe the trail and approachedthe carcass,some 10 m from the olfactorycapacities of the Greater Yellow-headedVulture trail edge, on foot. (C. melambrotus)are unknown, they are thought to be On another occasion,a pair of Greater Yellow-headed similar to thoseof its congeners(Houston 1988). Here I Vultures discovereda cacheof day-old flesh from a large report observationsthat stronglysuggest the use of smell museum specimenof the Brazilian Porcupine (Coendou by this speciesto locatecarrion. Collectively,these data prehensilis)that had been dumped200 m from camp at indicate that acute olfaction is a shared derived character the end of a poorly marked trail. The fleshhad beenpartly of Catharteswithin the Cathartidae, as reflectedby the covered with leaf litter and was further obscured from large olfactory lobe (Bangs 1964, pers. observation). view by the canopyof tall (30 m) seasonallyflooded forest. I made daily observationsof vulture abundanceand The cachewas difficult for me to visually locatewhen I behavior on the east bank of the Rio Xingu (3ø39'S returned to the area, and in all likelihood, could not have 52ø22'W), 52 km SSW of Altamira, Patti, Brazil (Graves beenobserved by vulturesflying abovethe canopy.In both and Zusi 1990), from 14 August to 29 September 1986. -
Predation by a Golden Eagle on a Brown Bear Cub
SHORT COMMUNICATION N Sørensen et al. Predation by a golden eagle on a brown bear cub Ole J. Sørensen1,4, Mogens Totsa˚ s2, Tore eagles attending bears. Murie hypothesized that Solstad2, and Robin Rigg3 eagles attending bears were waiting for opportunities to capture prey trying to escape from the bears. He 1North-Trondelag University College, Department of also observed eagles swooping at and diving low over Natural Resource Sciences and Information Technology, grizzlies and other carnivores, but interpreted this Box 2501, N-7729 Steinkjer, Norway behavior as play or curiosity, rather than predation. 2 Norwegian Nature Inspectorate, N-7485 Trondheim, C. McIntyre (US National Park Service, Fair- Norway 3 banks, Alaska, USA, personal communication, 2008), Slovak Wildlife Society, PO Box 72, 033 01 Liptovsky a golden eagle researcher in Denali National Park for Hradok, Slovakia many years, has never seen an eagle attack a bear, although she has often observed eagles following Abstract: During spring 2004 an adult female brown bears in open terrain, perhaps positioning themselves bear (Ursus arctos) and her 3 cubs-of-the-year were to take prey escaping from the bear as suggested by observed outside their den on a south-facing low- Murie. Commensalistic hunting, as well as curious or alpine slope in central Norway. They remained near play behavior by eagles in the vicinity of bears, could the den for 8–10 days and were, except for one day, be misinterpreted as eagles hunting, attacking, or observed daily by Totsa˚s and other wardens of the inspecting bears as possible prey. Predation by eagles Norwegian Nature Inspectorate. -
Anthony, R.G., J.A. Estes, M. A. Ricca, A. K. Miles, and E. D. Forsman
Ecology, 89(10), 2008, pp. 2725–2735 Ó 2008 by the Ecological Society of America BALD EAGLES AND SEA OTTERS IN THE ALEUTIAN ARCHIPELAGO: INDIRECT EFFECTS OF TROPHIC CASCADES 1,5 2 3 3 4 ROBERT G. ANTHONY, JAMES A. ESTES, MARK A. RICCA, A. KEITH MILES, AND ERIC D. FORSMAN 1U.S. Geological Survey, Oregon Cooperative Fish and Wildlife Research Unit, Department of Fisheries and Wildlife, Oregon State University, Corvallis, Oregon 97331 USA 2U.S. Geological Survey, Western Ecological Science Center, University of California, Santa Cruz, California 95060 USA 3U.S. Geological Survey, Western Ecological Science Center, University of California, Davis, California 95616 USA 4U.S. Forest Service, Pacific Northwest Research Station, 3200 Jefferson Way, Corvallis, Oregon 97331 USA Abstract. Because sea otters (Enhydra lutris) exert a wide array of direct and indirect effects on coastal marine ecosystems throughout their geographic range, we investigated the potential influence of sea otters on the ecology of Bald Eagles (Haliaeetus leucocephalus) in the Aleutian Islands, Alaska, USA. We studied the diets, productivity, and density of breeding Bald Eagles on four islands during 1993–1994 and 2000–2002, when sea otters were abundant and scarce, respectively. Bald Eagles depend on nearshore marine communities for most of their prey in this ecosystem, so we predicted that the recent decline in otter populations would have an indirect negative effect on diets and demography of Bald Eagles. Contrary to our predictions, we found no effects on density of breeding pairs on four islands from 1993–1994 to 2000–2002. In contrast, diets and diet diversity of Bald Eagles changed considerably between the two time periods, likely reflecting a change in prey availability resulting from the increase and subsequent decline in sea otter populations. -
Competitive Interactions Within and Between Species in a Guild of Avian Scavengers
COMPETITIVE INTERACTIONS WITHIN AND BETWEEN SPECIES IN A GUILD OF AVIAN SCAVENGERS MICHAEL P. WALLACE AND STANLEY A. TEMPLE Departmentof WildlifeEcology, University of Wisconsin,Madison, Wisconsin 53706 USA ABSTRACT.--Weobserved Andean Condors(Vultur gryphus),King Vultures (Sarcoramphus papa),Black Vultures (Coragypsatratus), Turkey Vultures (Cathartesaura), and CrestedCara- caras(Polyborus plancus) interacting at 217 animal carcassesat two sitesin northern Peru. At 53 carcassesfor which we knew order of arrival, Turkey Vulturesusually arrived first, Black Vulturessecond, and condorsthird. On the basisof our observationsof 8,066 aggressive encountersbetween birds, we constructeddominance hierarchies by calculatingthe propor- tion of encounterswon by an individualof one species,sex, or age during encounterswith an individual of another species,sex, or age. Within each speciesthere was a positive rela- tionship between a bird's dominanceand its age. In condors,males dominatedfemales of the sameage. Interspecificdominance was correlatedpositively with body mass.There are convergentsimilarities between the organizationsof guildsof Old and New World vultures. ReceivedI August1986, accepted24 November1986. WHENlimited resourcesare found in •9idely coramphuspapa), Black Vultures (Coragypsatra- dispersed,rich patchesthat are ephemeral and tus), Turkey Vultures (Cathartes aura), and unpredictable in spatial and temporal occur- Crested Caracaras(Polyborus plancus). We have rence, competition between consumers could shown previously that during