Conservation-Of-European-Dragonflies-And

Total Page:16

File Type:pdf, Size:1020Kb

Conservation-Of-European-Dragonflies-And See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/289506984 Conservation of European dragonflies and damselflies Chapter · December 2015 CITATIONS READS 4 151 3 authors: Geert De Knijf Tim Termaat Research Institute for Nature and Forest Dutch Butterfly Conservation / De Vlinderstichting, Wageningen, Netherlands 183 PUBLICATIONS 923 CITATIONS 29 PUBLICATIONS 488 CITATIONS SEE PROFILE SEE PROFILE Juergen Ott L.U.P.O. GmbH 29 PUBLICATIONS 1,178 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Diversity and Conservation of Odonata in Europe and the Mediterranean View project Monitoring species for Natura2000 View project All content following this page was uploaded by Geert De Knijf on 30 April 2020. The user has requested enhancement of the downloaded file. Conservalion G. Oe Knijf, T. Termaat fr J. Ott Bern Convention in 1982, incorporating it in 1992 in "Although it is species themselves that typically have the the Habitats Directive which came inro force in 1994 greater impact on public consciousness when they are and was updated several times following the ioclusion threatened with extinction, it is their habitats, and the of additional countries into the European Communiry. ecosystems and biotopes that contain those habitats, This Directive has several implications and resulted in that must constitute the primary targets tor protection, a list of species proteered in all member srates of the because no species can persist tor long without a suita ­ European Union, either directly or through rheir habi­ ble place in which to live" tat(s) . Besides, in several countries of Western and Cen­ (Corbet 1999) tral Europe some or even all dragonfly species and their babirats are officiallv proteered by narional legislarion. Introduetion An overview of these different legislations is given Efforts to proteet and conserve dragooflies need to below and their impli cations for rhe conservation of focus on the protection, conservation and management dragonflies and their babirats are discussed. of their habitats, particularly the aquatic babirats where they reproduce. That of course does oot meao The Ramsar Convention that actions should notsametimes be directed at specif­ The Convention on Wetlands of Internati onal lmpor­ ic species, especially those less mobile, rare or endemie tance, known as the Ramsar Convention, is an inter­ to limited areas. governmenral treaty that provides the framework for On a global scale, the most urgent need is to conserve national action and international cooperation for rhe a wide range of habitats in nature reserves, giving pri­ conserva:ion of wetlands. lt is the only global treaty ority to streams in rainforest and surviving lowland that deals with a particular ecosystem. An assignment marshes (Moore 1991d in Corbet 1999). Biotopes for as a Ramsar site is mostly based on the prese11ee of dragonilies, terrestrial as wel! as aquatic ecosystems, (water) birds, often called rhe 1 ° o rulc of the total are being lost or degraded all over the world at an population of a species \Vhich is present. The criteria accelerating rare (Corbet 1999). On regional and local for identifying wetlands of International importance scales, conservation efforts should be focused on the are not only applicable to birds but also roother taxo­ most valuable and threatened habitats. In most parrs of nomie groups although this has to our knowledge Europe the large variation in biomes in combination neve r been applied to dragonflies. The following rhree with human pressure on many habitats makes conset­ official criteria used in the Ramsar Convention could vation planning a complex matter. Hence it is an be applied to dragonflics : impossible task to propose general conservation meas­ • A wetland should be considered internationally ures for all European species (Sa hlén et al. 2004). Each importantifit supports vulnerable, endangered, or region must look at the species pool present and take critically endangered species. appropriate measures. • A wetland should be considered internationally The fust plea for the proteetion of ome European important if it supports popularions of plant and/or dragooflies goes back to the early seventies, when animal species important for maintaining rh e biolog­ Durnoot (1971) drew attention totheneed for protee­ ica] diversiry of a particular biogeographic region . tion of six species in Europe. Forty yea rs later, the li st • A wetland should be considered internarionally of proteered species has expanded to sixteen through important if it regularl~ · supports 1 % of the indi­ the European Habitats Directive in its last version, and viduals in a popularion of one species or subspecies an assessment was made of all European dragonfly spe­ of wetland-dependent non-avian animal species. cies, resulting in the first European Red List of dragoo­ flies (Kalkman et al. 2010). This means rhat localiri es which harbour populations of (nearly) endemie European species such as Pyrrhosoma Legislation and Legal Proteetion elisabethae (A lbania, Greece), Boyeria eretensis (Crere Species of dragooflies and their habitatscan be proteer­ - Greece), Somatochfora borisii (B ul ga ria , Greece, Tur­ ed on a global, European and nationallevel. The oldest key) and Macromia splendens (France, Portugal, Spain ) and at the same time the only global treaty of impar­ could be incorporated into thi s internationally proreered tanee related to dragooflies is the Ramsar Convention. nen.vork. Also the localities of ve ry rare species within a lt is seldom taken into account when it comes to pro­ specific biogeographic region could be included. This is teetion of dragooflies but is nonetheless very important rhe case, among orhers, for Coenagrion hylas in rh e for the conservation of wetlands and the species they Alpine region, Somatochfora sahlbergi in the Boreal host. The only pan-European treaty is the Convention region, Aeshna caerulea in rhe Atlantic region in Scat­ of Bern, which aims to proteet European wildlife and land and the large populations of Leucorrhinia peeto­ natura! habitats. The European Union (EU) ratified the ralis in rhe Ariamie Biogeographic region. Conservation ----------------- ------------------------ 27 The Bern Convention cies, including migratory species. This convention The Convention on the Conservation of European included annexes listing plantand animal species requir­ Wildlife and Natura! Habitats, called the Bern Conven­ ing proteetion but does not refer to networks of proteer­ tion, is a binding international legal in strument in the ed areas. A total of 16 dragonfly species are listed, 14 of field of nature conservation that aims toproteet the nat­ them being also included in the Habitats Directive ura! heritage in Europe (including the Russian Federa­ (Table 5). Only Calopteryx syriaca and Brachythemis tion, Georgia, Armenia and Turkey). lts aims are to con­ fuscopaliata were not considered for the Habitats Direc­ serve wild flora and fauna and their natura! habitats and tive, as these two do not occur in Europe. In the Euro­ to promate European cooperation in that field. lt places pean Union member states, the Bern Convention has particular importance on the need to proteet endan­ been implemented by means of the Habitats Directive gered natura! habitats and endangered vulnerable spe- which has effectively replaced the Bern Convention. Table 5. Dragantlies which are either mentioned in the Bern Convention, or listed in Annexes 11 or IV of the Habitats Directive, or which are endemie to Europe or threatened in Europe or the EU27. '' The three subspecies of Cordulegoster hellodico have been each assessed and were classified as Critica! Endangered (ssp. kostolio) or Endangered (ssp. hellodico and ssp. buchhofll). 28 ---------------------------- Atlas of the European dragantlies and damselflies Outside the EU member states, the Bern Convention has andrepresent western Europe disproportionately. With not been fully implemenred in national legislation and the extending of the EU in 2004 ro include most coun­ therefore has not resulted in better proteetion of drag­ tries of Eastern Europe, only a few species were added onflies and their habitats. to the H abitats Directive species li st. In addition, many of the species threatened in the 1980s have recovered, Habitats Directive partly due to proteetion afforded by the Directive, and Since its implementation in 1994, the Habitats Direc­ are no Jonger considered to be strongly threatened, tive (Council Directive 92/43/EEC on the Conservation although they are still good indicators of habitats need­ of natura! habitats and of wild fauna and flora ) has ing protection. Camparing the li st of Annex species become a fundamental and increasingly important way with the list of threatened species in Europe (Kalkman of implemenring nature conservation within the Euro­ et al. 2010), it is clear that species in needof proteetion pean Union. This measure and the Birds Directive at a Europea n scale are not covered by the H abitats (1979) rogether provide the main pieces of legislation Directive (Ca rdoso 2011). Therefore fo r adequate pro­ ensuring the proteetion of nature in Europe. One of the teetion of dragonfli es in Europe rhe se lection of ~ p ecies regulations of the Habitats Directive is that member li sred in the H abitats Directive should be updated. states must designare SpecialAreasof Conservation for some 220 specific types
Recommended publications
  • Rospuda Valley Survey 2007
    Rospuda Valley Survey 2007 review of surveyed groups European species lists Biodiversity Survey final report - November 2008 Cite this report as: European Biodiversity Survey (): Biodiversity Survey Rospuda Valley, Final Report. Gronin- gen, European Biodiversity Survey. © European Biodiversity Survey (EBS). is is an open-access publication distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Photos on cover: top le corner: Nehallenia speciosa, by Tim Faasen. Middle right: Boloria eu- phrosyne, by Tim Faasen. Middle le: Colobochyla salicalis, by Wouter Moerland. Right bottom: Calcereous fen, by Bram Kuijper. European Biodiversity Survey Van Royenlaan A ES Groningen e-mail: info at biodiversitysurvey.eu www: www.biodiversitysurvey.eu is is not a eld guide. e Rospuda Vally and especially its valuable bogs are very vulnerable. ough more information on the distribution of species in the Rospuda Vally is important, please think twice before you enter the area. Contents Preface Introduction . Geography and natural history of the Rospuda area ................. . Pristine character ..................................... . ViaBaltica ......................................... . Vegetation zonation in the mire ............................. . Rationale for this survey ................................. . Methods .......................................... Aquatic fauna . Introduction .......................................
    [Show full text]
  • 1 June 2021 Researchgate: Researchgate.Net/Profile
    DAVID OUTOMURO PRIEDE, PH.D. CURRICULUM VITAE June 2021 Researchgate: researchgate.net/profile/David_Outomuro ORCID: orcid.org/0000-0002-1296-7273 EDUCATION Ph.D. 2011 University of Oviedo, Spain (Biology). Summa cum laude. (Dr. Francisco J. Ocharan) B.S. 2005 University of Oviedo, Spain (Biology). Valedictorian. PROFESSIONAL EXPERIENCE Aug 2017- Aug 2021 Postdoctoral researcher, Dept. Biological Sciences, University of Cincinnati, USA (Dr. Nathan Morehouse) Jul 2015-Jun 2017 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Drs. Frank Johansson, Anders Ödeen, & Karin Nordström) Jul 2014-Jul 2015 Visiting Professor, Dept. Ciencias Biológicas, Universidad de los Andes, Colombia Nov 2011-Dec 2013 Postdoctoral researcher, Evolutionary Biology Centre, Uppsala University, Sweden (Dr. Frank Johansson) Jun 2006-May 2010 Graduate researcher and Teaching assistant, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) Jul 2005-Aug 2005 Intern, Servicio Regional de Investigación y Desarrollo Agroalimentario de Asturias (SERIDA), Spain (Dr. Isabel Feito Díaz) Sep 2004-Jun 2005 Undergraduate research fellow, Dept. Biología de Organismos y Sistemas, University of Oviedo, Spain (Dr. Francisco J. Ocharan) RESEARCH INTERESTS I am a behavioral ecologist, interested in the micro- and macroevolutionary processes that promote diversity. My research has explored questions on the evolution of color signals, color vision, and flight morphology. I am particularly interested in understanding the evolution of color signals, how they are perceived by intended and unintended receivers and the role of these audiences in driving population and species divergence. I also study the evolution of flight morphology because wings are large conspicuous body surfaces that can be also used as motion signal vehicles for intra- and interspecific communication.
    [Show full text]
  • Wales Information for S1044
    European Community Directive on the Conservation of Natural Habitats and of Wild Fauna and Flora (92/43/EEC) Fourth Report by the United Kingdom under Article 17 on the implementation of the Directive from January 2013 to December 2018 Supporting documentation for the conservation status assessment for the species: S1044 ‐ Southern damselflyCoenagrion ( mercuriale) WALES IMPORTANT NOTE ‐ PLEASE READ • The information in this document is a country‐level contribution to the UK Reporton the conservation status of this species, submitted to the European Commission aspart of the 2019 UK Reporting under Article 17 of the EU Habitats Directive. • The 2019 Article 17 UK Approach document provides details on how this supporting information was used to produce the UK Report. • The UK Report on the conservation status of this species is provided in a separate doc‐ ument. • The reporting fields and options used are aligned to those set out in the European Com‐ mission guidance. • Explanatory notes (where provided) by the country are included at the end. These pro‐ vide an audit trail of relevant supporting information. • Some of the reporting fields have been left blank because either: (i) there was insuffi‐ cient information to complete the field; (ii) completion of the field was not obligatory; (iii) the field was not relevant to this species (section 12 Natura 2000 coverage forAnnex II species) and/or (iv) the field was only relevant at UK‐level (sections 9 Future prospects and 10 Conclusions). • For technical reasons, the country‐level future trends for Range, Population and Habitat for the species are only available in a separate spreadsheet that contains all the country‐ level supporting information.
    [Show full text]
  • Critical Species of Odonata in Europe
    See discussions, stats, and author profiles for this publication at: http://www.researchgate.net/publication/228966602 Critical species of Odonata in Europe ARTICLE in INTERNATIONAL JOURNAL OF ODONATOLOGY · JULY 2004 Impact Factor: 0.5 · DOI: 10.1080/13887890.2004.9748223 CITATIONS DOWNLOADS VIEWS 25 181 148 5 AUTHORS, INCLUDING: Adolfo Cordero-Rivera University of Vigo 151 PUBLICATIONS 1,594 CITATIONS SEE PROFILE Frank Suhling Technische Universität Braun… 79 PUBLICATIONS 793 CITATIONS SEE PROFILE Available from: Frank Suhling Retrieved on: 13 September 2015 Guardians of the watershed. Global status of dragonflies: critical species, threat and conservation Critical species of Odonata in Europe Göran Sahlén 1, Rafal Bernard 2, Adolfo Cordero Rivera 3, Robert Ketelaar 4 & Frank Suhling 5 1 Ecology and Environmental Science, Halmstad University, P.O. Box 823, SE-30118 Halmstad, Sweden. <[email protected]> 2 Department of General Zoology, Adam Mickiewicz University, Fredry 10, PO-61-701 Poznan, Poland. <[email protected]> 3 Departamento de Ecoloxía e Bioloxía Animal, Universidade de Vigo, EUET Forestal, Campus Universitario, ES-36005 Pontevedra, Spain. <[email protected]> 4 Dutch Butterfly Conservation. Current address: Dutch Society for the Preservation of Nature, P.O. Box 494, NL-5613 CM, Eindhoven, The Netherlands. <[email protected]> 5 Institute of Geoecology, Dpt of Environmental System Analysis, Technical University of Braunschweig, Langer Kamp 19c, D-38102 Braunschweig, Germany. <[email protected]> Key words: Odonata, dragonfly, IUCN, FFH directive, endemic species, threatened species, conservation, Europe. Abstract The status of the odonate fauna of Europe is fairly well known, but the current IUCN Red List presents only six species out of ca 130, two of which are actually out of danger today.
    [Show full text]
  • ABSTRACT Gregarine Parasitism in Dragonfly Populations of Central
    ABSTRACT Gregarine Parasitism in Dragonfly Populations of Central Texas with an Assessment of Fitness Costs in Erythemis simplicicollis Jason L. Locklin, Ph.D. Mentor: Darrell S. Vodopich, Ph.D. Dragonfly parasites are widespread and frequently include gregarines (Phylum Apicomplexa) in the gut of the host. Gregarines are ubiquitous protozoan parasites that infect arthropods worldwide. More than 1,600 gregarine species have been described, but only a small percentage of invertebrates have been surveyed for these apicomplexan parasites. Some consider gregarines rather harmless, but recent studies suggest otherwise. Odonate-gregarine studies have more commonly involved damselflies, and some have considered gregarines to rarely infect dragonflies. In this study, dragonfly populations were surveyed for gregarines and an assessment of fitness costs was made in a common and widespread host species, Erythemis simplicicollis. Adult dragonfly populations were surveyed weekly at two reservoirs in close proximity to one another and at a flow-through wetland system. Gregarine prevalences and intensities were compared within host populations between genders, among locations, among wing loads, and through time. Host fitness parameters measured included wing load, egg size, clutch size, and total egg count. Of the 37 dragonfly species surveyed, 14 species (38%) hosted gregarines. Thirteen of those species were previously unreported as hosts. Gregarine prevalences ranged from 2% – 52%. Intensities ranged from 1 – 201. Parasites were aggregated among their hosts. Gregarines were found only in individuals exceeding a minimum wing load, indicating that gregarines are likely not transferred from the naiad to adult during emergence. Prevalence and intensity exhibited strong seasonality during both years at one of the reservoirs, but no seasonal trend was detected at the wetland.
    [Show full text]
  • IDF-Report 95 (2016)
    IDF International Dragonfly Fund Report Journal of the International Dragonfly Fund 1­25 Dejan Kulijer, Iva Miljević & Jelena Jakovljev Contribution of the participants of 4th Balkan Odonatological Meeting to the knowledge of Odonata distribution in Bosnia and Herzegovina Published 26.04.2016 95 ISSN 1435­3393 The International Dragonfly Fund (IDF) is a scientific society founded in 1996 for the impro­ vement of odonatological knowledge and the protection of species. Internet: http://www.dragonflyfund.org/ This series intends to publish studies promoted by IDF and to facilitate cost­efficient and ra­ pid dissemination of odonatological data.. Editorial Work: Milen Marinov, Geert de Knijf & Martin Schorr Layout: Martin Schorr IDF­home page: Holger Hunger Indexed: Zoological Record, Thomson Reuters, UK Printing: Colour Connection GmbH, Frankfurt Impressum: Publisher: International Dragonfly Fund e.V., Schulstr. 7B, 54314 Zerf, Germany. E­mail: [email protected] Responsible editor: Martin Schorr Cover picture: Cordulegaster heros Photographer: Falk Petzold Published 26.04.2016 Contribution of the participants of 4th Balkan Odonatological Meeting to the knowledge of Odonata distribution in Bosnia and Herzegovina Dejan Kulijer1, Iva Miljević2 & Jelena Jakovljev3 1National Museum of Bosnia and Herzegovina, Zmaja od Bosne 3, 71000 Sarajevo, Bosnia and Herzegovina. E­mail: [email protected] 2Center for Environment, Cara Lazara 24, 78 000 Banja Luka, Bosnia and Herzegovina. E­mail: [email protected] 3Univesity of Natural Resources and Life Sciences, Baumgasse 58/19 1030 Vienna, Austria. E­mail: [email protected] Abstract As a result of increased interest in dragonflies and close cooperation between odo­ natologists on the Balkan Peninsula, the Balkan Odonatological Meeting (BOOM) has been established in 2011.
    [Show full text]
  • Pittsfield Produced in 2012
    BioMap2 CONSERVING THE BIODIVERSITY OF MASSACHUSETTS IN A CHANGING WORLD Pittsfield Produced in 2012 This report and associated map provide information about important sites for biodiversity conservation in your area. This information is intended for conservation planning, and is not intended for use in state regulations. BioMap2 Conserving the Biodiversity of Massachusetts in a Changing World Table of Contents Introduction What is BioMap2 Ȯ Purpose and applications One plan, two components Understanding Core Habitat and its components Understanding Critical Natural Landscape and its components Understanding Core Habitat and Critical Natural Landscape Summaries Sources of Additional Information Pittsfield Overview Core Habitat and Critical Natural Landscape Summaries Elements of BioMap2 Cores Core Habitat Summaries Elements of BioMap2 Critical Natural Landscapes Critical Natural Landscape Summaries Natural Heritage Massachusetts Division of Fisheries and Wildlife 1 Rabbit Hill Road, Westborough, MA 015813 & Endangered phone: 508-389-6360 fax: 508-389-7890 Species Program For more information on rare species and natural communities, please see our fact sheets online at www.mass.gov/nhesp. BioMap2 Conserving the Biodiversity of Massachusetts in a Changing World Introduction The Massachusetts Department of Fish & Game, ɳɧɱɮɴɦɧ ɳɧɤ Dɨɵɨɲɨɮɭ ɮɥ Fɨɲɧɤɱɨɤɲ ɠɭɣ Wɨɫɣɫɨɥɤ˘ɲ Natural Heritage & Endangered Species Program (NHESP), and The Nature Cɮɭɲɤɱɵɠɭɢɸ˘ɲ Mɠɲɲɠɢɧɴɲɤɳɳɲ Pɱɮɦɱɠɬ developed BioMap2 ɳɮ ɯɱɮɳɤɢɳ ɳɧɤ ɲɳɠɳɤ˘ɲ biodiversity in the context of climate change. BioMap2 ɢɮɬɡɨɭɤɲ NHESP˘ɲ ȯȬ ɸɤɠɱɲ ɮɥ rigorously documented rare species and natural community data with spatial data identifying wildlife species and habitats that were the focus ɮɥ ɳɧɤ Dɨɵɨɲɨɮɭ ɮɥ Fɨɲɧɤɱɨɤɲ ɠɭɣ Wɨɫɣɫɨɥɤ˘ɲ ȮȬȬȱ State Wildlife Action Plan (SWAP).
    [Show full text]
  • The Dragonfly Fauna of the Aude Department (France): Contribution of the ECOO 2014 Post-Congress Field Trip
    Tome 32, fascicule 1, juin 2016 9 The dragonfly fauna of the Aude department (France): contribution of the ECOO 2014 post-congress field trip Par Jean ICHTER 1, Régis KRIEG-JACQUIER 2 & Geert DE KNIJF 3 1 11, rue Michelet, F-94200 Ivry-sur-Seine, France; [email protected] 2 18, rue de la Maconne, F-73000 Barberaz, France; [email protected] 3 Research Institute for Nature and Forest, Rue de Clinique 25, B-1070 Brussels, Belgium; [email protected] Received 8 October 2015 / Revised and accepted 10 mai 2016 Keywords: ATLAS ,AUDE DEPARTMENT ,ECOO 2014, EUROPEAN CONGRESS ON ODONATOLOGY ,FRANCE ,LANGUEDOC -R OUSSILLON ,ODONATA , COENAGRION MERCURIALE ,GOMPHUS FLAVIPES ,GOMPHUS GRASLINII , GOMPHUS SIMILLIMUS ,ONYCHOGOMPHUS UNCATUS , CORDULEGASTER BIDENTATA ,MACROMIA SPLENDENS ,OXYGASTRA CURTISII ,TRITHEMIS ANNULATA . Mots-clés : A TLAS ,AUDE (11), CONGRÈS EUROPÉEN D 'ODONATOLOGIE ,ECOO 2014, FRANCE , L ANGUEDOC -R OUSSILLON ,ODONATES , COENAGRION MERCURIALE ,GOMPHUS FLAVIPES ,GOMPHUS GRASLINII ,GOMPHUS SIMILLIMUS , ONYCHOGOMPHUS UNCATUS ,CORDULEGASTER BIDENTATA ,M ACROMIA SPLENDENS ,OXYGASTRA CURTISII ,TRITHEMIS ANNULATA . Summary – After the third European Congress of Odonatology (ECOO) which took place from 11 to 17 July in Montpellier (France), 21 odonatologists from six countries participated in the week-long field trip that was organised in the Aude department. This area was chosen as it is under- surveyed and offered the participants the possibility to discover the Languedoc-Roussillon region and the dragonfly fauna of southern France. In summary, 43 sites were investigated involving 385 records and 45 dragonfly species. These records could be added to the regional database. No less than five species mentioned in the Habitats Directive ( Coenagrion mercuriale , Gomphus flavipes , G.
    [Show full text]
  • Odonate Wing Vein Preferences in Haemolymph Sucking Forcipomyia Paludis 27
    Odonate wing vein preferences in haemolymph sucking Forcipomyia paludis 27. Februar 2021189 Odonate wing vein preferences in haemolymph sucking Forcipomyia paludis (Diptera: Ceratopogonidae; Odonata) René Manger Schukkingpad 17, 7971 BV Havelte, The Netherlands, [email protected] Abstract In summer 2020, the Odonata fauna in the Weerribben-Wieden National Park was exam- ined at various localities for the Odonata parasiteForcipomyia paludis. This park is currently one of the localities in the Netherlands where the species is found every year. Five localities in the area have been surveyed and many of the Odonata species were found to be infected by biting midges. The parasites have been studied in more detail on photos of the Odonata species and an accurate overview was obtained on which wing veins they sucked. The high- est numbers of biting midges were observed on the Cubitus vein. Furthermore, 91% of all observed midges sucked on the lower wing veins of the dragonflies and 9% on the upper ones. Biting midges were not observed in all of the sites surveyed in the park. Zusammenfassung Analyse der vom Libellenparasiten Forcipomyia paludis bevorzugten Flügeladern (Diptera: Ceratopogonidae; Odonata) – Im Sommer 2020 wurde die Libellenfauna an verschiedenen Orten im Nationalpark Weerribben-Wieden auf den Libellenparasiten Forci pomyia paludis untersucht. Dieser Park ist derzeit einer der Orte in den Niederlanden, an denen die Art jedes Jahr gefunden wird. Fünf Standorte in der Region wurden auf ihre Libellenfauna unter- sucht, und eine große Anzahl der Libellen war von Gnitzen parasitiert. Die Gnitzen wurden auf Fotos der Libellen genauer untersucht, und dabei ergab sich ein genaues Bild, auf wel- chen Flügelvenen sie parasitierten.
    [Show full text]
  • Recovery and Further Protection of Rheophilic Odonata in the Netherlands and North Rhine- Westphalia
    Recovery and further protection of rheophilic Odonata in the Netherlands and North Rhine- Westphalia Robert Ketelaar Introduction urban areas. The water quality of most running waters, However, since 1985, when this negative trend such as springs, brooks and rivers, reached came to a halt, most species have shown a an all time low in the period 1960-1980. Many remarkable recovery (table 1). Some species of the dragonflies and damselflies depending like Gomphus flavipes and G. vulgatissimus are on these habitats declined sharply and many possibly more common than they have ever been species either disappeared (Gomphus flavipes, in the Netherlands and North Rhine-Westphalia. Ophiogomphus cecilia), or almost disappeared This is mainly the effect of an improvement in (Calopteryx virgo, Cordulegaster boltonii). Since water quality, and re-naturalisation projects. then, environmental policies in Germany and the Although recent climatic changes have also Netherlands have resulted in an improvement probably helped. However, a few species have in water quality (see www.milieubalans.nl). In not benefitted from the recent improvement many cases, steps have also been taken to re- of lotic ecosystems, notably Coenagrion naturalise running waters that were canalised on mercuriale, C. boltonii and Ophiogomphus a large scale during agricultural land reforms. cecilia , all of which are still very scarce. This article describes which dragonfly species benefitted from these improvements, and the challenges still ahead for the further recovery of Table 1. Strictly and predominantly rheophilic the Odonata of fluviatile ecosystems. species of The Netherlands and North Rhine- Westphalia. Rheophilic Odonata A number of Odonata can be found in fluviatile Strictly rheophilic habitats.
    [Show full text]
  • The Impacts of Urbanisation on the Ecology and Evolution of Dragonflies and Damselflies (Insecta: Odonata)
    The impacts of urbanisation on the ecology and evolution of dragonflies and damselflies (Insecta: Odonata) Giovanna de Jesús Villalobos Jiménez Submitted in accordance with the requirements for the degree of Doctor of Philosophy (Ph.D.) The University of Leeds School of Biology September 2017 The candidate confirms that the work submitted is her own, except where work which has formed part of jointly-authored publications has been included. The contribution of the candidate and the other authors to this work has been explicitly indicated below. The candidate confirms that appropriate credit has been given within the thesis where reference has been made to the work of others. The work in Chapter 1 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G., Dunn, A.M. & Hassall, C., 2016. Dragonflies and damselflies (Odonata) in urban ecosystems: a review. Eur J Entomol, 113(1): 217–232. I was responsible for the collection and analysis of the data with advice from co- authors, and was solely responsible for the literature review, interpretation of the results, and for writing the manuscript. All co-authors provided comments on draft manuscripts. The work in Chapter 2 of the thesis has appeared in publication as follows: Villalobos-Jiménez, G. & Hassall, C., 2017. Effects of the urban heat island on the phenology of Odonata in London, UK. International Journal of Biometeorology, 61(7): 1337–1346. I was responsible for the data analysis, interpretation of results, and for writing and structuring the manuscript. Data was provided by the British Dragonfly Society (BDS). The co-author provided advice on the data analysis, and also provided comments on draft manuscripts.
    [Show full text]
  • Swaegers Etal 2014
    doi: 10.1111/jeb.12481 Ecological and evolutionary drivers of range size in Coenagrion damselflies J. SWAEGERS*, S. B. JANSSENS†,S.FERREIRA‡§¶,P.C.WATTS¶**, J. MERGEAY††, M. A. MC PEEK‡‡ &R.STOKS* *Laboratory of Aquatic Ecology, Evolution and Conservation, KU Leuven, Leuven, Belgium †Botanic Garden Meise, Meise, Belgium ‡CIBIO/InBIO – Centro de Investigacßao~ em Biodiversidade e Recursos Geneticos da Universidade do Porto, Vairao,~ Portugal §Departamento de Biologia da Faculdade de Ci^encias da Universidade do Porto, Porto, Portugal ¶Institute of Integrative Biology, University of Liverpool, Liverpool, UK **Department of Biology, University of Oulu, Oulu, Finland ††Research Institute for Nature and Forest, Geraardsbergen, Belgium ‡‡Department of Biological Sciences, Dartmouth College, Hanover, NH, USA Keywords: Abstract Bergmann’s rule; Geographic range size is a key ecological and evolutionary characteristic of a dispersal capacity; species, yet the causal basis of variation in range size among species remains latitudinal patterns; largely unresolved. One major reason for this is that several ecological and phylogeny; evolutionary traits may jointly shape species’ differences in range size. We range size; here present an integrated study of the contribution of ecological (dispersal Rapoport’s rule. capacity, body size and latitudinal position) and macroevolutionary (species’ age) traits in shaping variation in species’ range size in Coenagrion damsel- flies. We reconstructed the phylogenetic tree of this genus to account for evolutionary history when assessing the contribution of the ecological traits and to evaluate the role of the macroevolutionary trait (species’ age). The genus invaded the Nearctic twice independently from the Palearctic, yet this was not associated with the evolution of larger range sizes or dispersal capacity.
    [Show full text]