Human Genetics of Plasma Dopamine Β-Hydroxylase Activity: Applications to Research in Psychiatry and Neurology

Total Page:16

File Type:pdf, Size:1020Kb

Human Genetics of Plasma Dopamine Β-Hydroxylase Activity: Applications to Research in Psychiatry and Neurology Psychopharmacology (2004) 174: 463–476 DOI 10.1007/s00213-004-1840-8 REVIEW J. F. Cubells . C. P. Zabetian Human genetics of plasma dopamine β-hydroxylase activity: applications to research in psychiatry and neurology Received: 5 August 2003 / Accepted: 5 February 2004 / Published online: 16 April 2004 # Springer-Verlag 2004 Abstract Rationale: Norepinephrine (NE) is a key ergic dysfunction to a variety of symptoms in Parkinson’s neurotransmitter in the central and peripheral nervous disease and other degenerative neurological disorders. systems. Dopamine β-hydroxylase (DβH) catalyzes the Conclusions: A model is proposed, in which lower levels synthesis of NE from dopamine (DA) and occurs in the of DβH protein may lead to elevated ratios of DA to NE. plasma as a stable heritable trait. Studies of this trait have This model may explain associations between lower been useful in psychiatric and neurological research. plasma DβH activity and vulnerability to psychotic Objective: To selectively and critically review the litera- symptoms. Genotype-controlled analysis of plasma DβH ture on plasma DβH, and on recent progress under- holds promise for promoting further progress in research standing the molecular genetic basis for its inheritance. on psychiatric and neurological disorders. Based on this review, directions for future research in psychiatry and neurology will be suggested. Methods: Keywords Catecholamines . Norepinephrine . We selectively review the literature on the biochemical and Quantitative trait locus . Sympathetic nervous system . molecular genetics of plasma DβH activity, as well as Psychosis . Depression . Alcoholism . Attention deficit research on plasma and cerebrospinal fluid (CSF) DβHin hyperactivity disorder . Parkinson’s disease . Hypotension psychiatric and neurological disorders. Results: Strong evidence implicates DBH, the structural locus encoding DβH enzyme, as the major quantitative trait locus influencing plasma DβH activity, with one single nucle- Norepinephrine (NE) mediates many important functions otide polymorphism (SNP) accounting for up to 50% of in the central and peripheral nervous systems. It is the the variance. Mutations at DBH appear to be responsible major post-ganglionic neurotransmitter of the sympathetic for the rare syndrome of DβH deficiency. Some nervous system (SNS), where its release regulates vascular biochemical and genetic studies suggest associations tone and cardiac contractility, among other vital functions. between low plasma or CSF DβH and psychotic symp- NE is also a hormone and a precursor for epinephrine in toms in several psychiatric disorders. Studies combining neurosecretory cells of the adrenal medulla. Both genotyping at DBH with biochemical measurement of hormones contribute to “fight–flight” endocrine responses plasma DβH have proven useful in studies of schizophre- such as vascular and cardiac responses, and mobilization nia, cocaine-induced paranoia (CIP), depression, attention of glucose from hepatic glycogen stores. In the central deficit hyperactivity disorder, and alcoholism. Such nervous system, NE is localized within several neuronal studies may also elucidate the contribution of noradren- populations in the hindbrain and midbrain. The locus ceruleus (LC) is the largest of these, and accounts for most J. F. Cubells (*) of the noradrenergic innervation of the forebrain. Norad- Department of Psychiatry, Yale University School of Medicine renergic neurons of the LC project widely throughout the and VA Connecticut Health Care System, brain, innervating virtually every gray-matter region. 950 Campbell Avenue, Numerous sub-cortical brain areas, as well as the neocor- West Haven, CT 06516, USA e-mail: [email protected] tex, are richly innervated by NE-containing fibers (Amaral Tel.: +1-203-937-4943 and Sinnamon 1977; Moore and Bloom 1979; Foote et al. Fax: +1-203-937-3897 1983). NE thus contributes to regulation of many centrally mediated physiological, cognitive, and behavioral func- C. P. Zabetian Department of Neurology, University of Washington School of tions (Grace et al. 1998; Arnsten 2000a,b). Medicine and VA Puget Sound Health Care System, Seattle, WA 98108, USA 464 NE is a target for medication treatment of many human diseases, and may also mediate pathophysiological processes. For example, medications influencing NE- mediated transmission are widely used in treatment of medical illnesses such as hypertension and myocardial ischemia (Esler et al. 2001); neurological conditions such as sleep disorders (Mitler et al. 1993), neurodegenerative disorders (Schirger et al. 1981), and migraine headaches (Holroyd et al. 1991); and psychiatric disorders such as major depressive disorder (Anand and Charney 2000), attention deficit-hyperactivity disorder (ADHD; Arnsten 2000a), and anxiety disorders (Kent et al. 2002). Recent Fig. 1 Diagram of NE synthesis within a hypothetical noradrener- data suggest that functional genetic variation in the β1 and gic neuron, showing localization of DβH within synaptic vesicles. α2c adrenergic receptor proteins modifies risk for poor Dopamine is synthesized in the cytoplasm, and then transported into outcomes in cardiovascular disease (Small et al. 2002). the vesicle by the vesicular monoamine transporter, which derives its energy from the proton gradient across the vesicular membrane. One of the premises underlying the present review is that Abbreviations: tyr, tyrosine; TH, tyrosine hydroxylase; AADC, genetic studies of other NE-related proteins will similarly aromatic L-amino acid decarboxylase elucidate medical, neurological and psychiatric disorders. We focus on DBH, the locus encoding dopamine β- hydroxylase (DβH), the enzyme catalyzing the synthesis vesicular proteins are released from sympathetic nerve of NE from dopamine (DA; Kaufman and Friedman terminals (Smith et al. 1970; Weinshilboum et al. 1971), 1965). and that DβH can be assayed in plasma (Weinshilboum As schematized in Fig. 1,DβH is specifically expressed and Axelrod 1971) led to attempts to use plasma DβH in NE-containing neurons; it is the only catecholamine- levels as an index of sympathetic noradrenergic tone. synthetic enzyme localized within synaptic vesicles, where However, it quickly became clear that plasma DβH levels it occurs in both soluble and membrane-bound forms were quite stable within individuals, even during strenuous (Stewart and Klinman 1988). As a result of its vesicular exercise and cold pressor stimulation, both known to localization, DβH is released together with NE and other produce large increases in circulating catecholamines vesicular contents during synaptic transmitter release (Winer and Carter 1977; Peronnet et al. 1985). The lack (Smith et al. 1970; Weinshilboum et al. 1971). Some of substantial acute changes in plasma DβH levels DβH protein might also be secreted via a constitutive following these stimuli probably reflected the large exocytotic pathway (Oyarce and Fleming 1991). By virtue difference in metabolic kinetics of plasma catecholamines of its secretion into the extracellular space, DβH occurs in versus DβH protein, as the half-life of circulating DβHis the cerebrospinal fluid (CSF), and in plasma or serum (we estimated at 4.2 days in rats (Grzanna and Coyle 1978). henceforth refer to plasma or serum DβH only as plasma Developmental and longitudinal studies show that DβH). Typically, plasma DβH is assayed as enzyme plasma DβH activity is remarkably stable within subjects activity under saturating substrate and co-factor conditions after the age of 5 years (Ogihara et al. 1975; Weinshil- (Nagatsu and Udenfriend 1972), but levels of DβH protein boum 1978; Heiss et al. 1980). In contrast, plasma DβH have also been estimated directly using radioimmune activity varies widely across unrelated individuals (Wein- assay (Dunnette and Weinshilboum 1976;O’Connor et al. shilboum et al. 1973). Robust correlations among levels of 1983, 1994). Since the two sets of measures correlate plasma DβH in first-degree relatives (Weinshilboum et al. strongly (r >0.80: Ebstein et al. 1973; Dunnette and 1973), and nearly perfect correlations between monozy- Weinshilboum 1976;O’Connor et al. 1983), we will use gotic twins (Ross 1973) strongly supported the hypothesis the terms plasma DβH activity and plasma DβH levels that genetic mechanisms contributed to inter-individual interchangeably. The remainder of this paper will review variation in plasma DβH. Population and family genetic recent progress in understanding molecular genetic studies by Weinshilboum et al. (1975) suggested that only mechanisms regulating plasma DβH levels, studies of a few genes accounted for the heritable variation in plasma plasma DβH activity and of DBH genotypes in psychiatric DβH activity. A subgroup of subjects in these studies and neurological disorders, and suggest specific areas of exhibited “very-low” plasma DβH levels, defined as research that may benefit from further genetic and levels below 50 IU/ml in a population distribution ranging biochemical analysis of plasma DβH activity. from approximately 0–2000 nmol/h per ml. Segregation analysis of the very-low DBH trait suggested that individuals exhibiting very low serum DBH activity Overview of past work: plasma DβH is a quantitative were homozygotes carrying an allele at a single hypothe- genetic trait tical locus, which Weinshilboum et al. named “DBHL.” The molecular identity of this locus was unknown at the Weinshilboum (1978) provides a comprehensive review of time. the seminal work on plasma
Recommended publications
  • Chemicalsynthesis
    CHEMICAL SYNTHESIS, DISPOSITION AND METABOLISM OF DOPAMINE AND NORADRENALINE SULPHATES BARBARA ALEKSANDRA OSIKOWSKA A thesis submitted for the degree of Doctor of Philosophy to the University of London December 1983 - 2- ABSTRACT The existence of an enzymatic pathway which is capable of sulphating the catecholamine neurotransmitters has been known for over four decades. The importance of this metabolic pathway and its overall contribution to the enzymatic breakdown of these neurotransmitters has generally received less attention than deamination and JKmethylation. The aim of this work was to synthesise authentic dopamine and noradrenaline ^-sulphates, for use as standards in studies on the disposition and metabolism of these important products of dopamine and noradrenaline metabolism. 1. Three products resulted from chemical sulphonation of dopamine: dopamine 3-0-sulphate, dopamine 4-0-sulphate and dopamine 6- s u l p h o n i c acid. 2. Because all three products of dopamine sulphonation are isomeric, chemically similar organic acids and could not be distinguished by analytical techiques such as elemental analysis, ultraviolet spectroscopy and infrared spectroscopy, high performance liquid chromatography was employed for the separation and purification of these products, and nuclear magnetic resonance spectroscopy was considered to be the only technique powerful enough to distinguish between these isomers. 3. Noradrenaline 3- and 4-0-sulphates were isolated from a one-step synthetic reaction. They were separated, purified and characterised using techniques applied for the synthesis and separation of dopamine ^-sulphates. - 3- 4. The disposition of dopamine 3- and 4-0-sulphates was investigated in human urine before and following L-dopa administration and in multiple urine samples from a single subject.
    [Show full text]
  • British Journal of Nutrition (2013), 110, 1524–1533 Doi:10.1017/S0007114513000743 Q the Authors 2013
    Downloaded from British Journal of Nutrition (2013), 110, 1524–1533 doi:10.1017/S0007114513000743 q The Authors 2013 https://www.cambridge.org/core The dopamine b-hydroxylase inhibitor, nepicastat, suppresses chocolate self-administration and reinstatement of chocolate seeking in rats Alessandro Zaru1, Paola Maccioni1, Giancarlo Colombo1 and Gian Luigi Gessa1,2* . IP address: 1Neuroscience Institute, National Research Council of Italy, Section of Cagliari, S.S. 554 km. 4,500, I-09042 Monserrato (CA), Italy 170.106.40.40 2Department of Biomedical Sciences, University of Cagliari, Monserrato (CA), Italy (Submitted 26 July 2012 – Final revision received 5 February 2013 – Accepted 6 February 2013 – First published online 8 April 2013) , on 28 Sep 2021 at 03:11:02 Abstract Craving for chocolate is a common phenomenon, which may evolve to an addictive-like behaviour and contribute to obesity. Nepicastat is a selective dopamine b-hydroxylase (DBH) inhibitor that suppresses cocaine-primed reinstatement of cocaine seeking in rats. We verified whether nepicastat was able to modify the reinforcing and motivational properties of a chocolate solution and to prevent the reinstatement of chocolate seeking in rats. Nepicastat (25, 50 and 100 mg/kg, intraperitoneal) produced a dose-related inhibition of operant self-administration of the chocolate solution in rats under fixed-ratio 10 (FR10) and progressive-ratio schedules , subject to the Cambridge Core terms of use, available at of reinforcement, measures of the reinforcing and motivational properties of the chocolate solution, respectively. The effect of nepica- stat on the reinstatement of chocolate seeking was studied in rats in which lever-responding had been extinguished by removing the chocolate solution for approximately 8 d.
    [Show full text]
  • Transfer of Pseudomonas Plantarii and Pseudomonas Glumae to Burkholderia As Burkholderia Spp
    INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Apr. 1994, p. 235-245 Vol. 44, No. 2 0020-7713/94/$04.00+0 Copyright 0 1994, International Union of Microbiological Societies Transfer of Pseudomonas plantarii and Pseudomonas glumae to Burkholderia as Burkholderia spp. and Description of Burkholderia vandii sp. nov. TEIZI URAKAMI, ’ * CHIEKO ITO-YOSHIDA,’ HISAYA ARAKI,’ TOSHIO KIJIMA,3 KEN-ICHIRO SUZUKI,4 AND MU0KOMAGATA’T Biochemicals Division, Mitsubishi Gas Chemical Co., Shibaura, Minato-ku, Tokyo 105, Niigata Research Laboratory, Mitsubishi Gas Chemical Co., Tayuhama, Niigatu 950-31, ’Plant Pathological Division of Biotechnology, Tochigi Agricultural Experiment Station, Utsunomiya 320, Japan Collection of Microorganisms, The Institute of Physical and Chemical Research, Wako-shi, Saitama 351-01,4 and Institute of Molecular Cell and Biology, The University of Tokyo, Bunkyo-ku, Tokyo 113,’ Japan Plant-associated bacteria were characterized and are discussed in relation to authentic members of the genus Pseudomonas sensu stricto. Bacteria belonging to Pseudomonas rRNA group I1 are separated clearly from members of the genus Pseudomonas sensu stricto (Pseudomonasfluorescens rRNA group) on the basis of plant association characteristics, chemotaxonomic characteristics, DNA-DNA hybridization data, rRNA-DNA hy- bridization data, and the sequences of 5s and 16s rRNAs. The transfer of Pseudomonas cepacia, Pseudomonas mallei, Pseudomonas pseudomallei, Pseudomonas caryophylli, Pseudomonas gladioli, Pseudomonas pickettii, and Pseudomonas solanacearum to the new genus Burkholderia is supported; we also propose that Pseudomonas plantarii and Pseudomonas glumae should be transferred to the genus Burkholderia. Isolate VA-1316T (T = type strain) was distinguished from Burkholderia species on the basis of physiological characteristics and DNA-DNA hybridization data. A new species, Burkholderia vandii sp.
    [Show full text]
  • JPET #212357 1 TITLE PAGE Effects of Pharmacologic Dopamine Β
    JPET Fast Forward. Published on May 9, 2014 as DOI: 10.1124/jpet.113.212357 JPETThis Fast article Forward. has not been Published copyedited and on formatted. May 9, The 2014 final as version DOI:10.1124/jpet.113.212357 may differ from this version. JPET #212357 TITLE PAGE Effects of Pharmacologic Dopamine β-Hydroxylase Inhibition on Cocaine-Induced Reinstatement and Dopamine Neurochemistry in Squirrel Monkeys Debra A. Cooper, Heather L. Kimmel, Daniel F. Manvich, Karl T. Schmidt, David Weinshenker, Leonard L. Howell Yerkes National Primate Research Center Division of Neuropharmacology and Neurologic Diseases (D.A.C., H.L.K., L.L.H.), Department of Pharmacology (H.L.K., L.L.H.), Department of Human Genetics (D.A.C., D.F.M, K.T.S., D.W.), and Department of Psychiatry and Behavioral Sciences (L.L.H.) Emory University, Atlanta, Georgia Downloaded from jpet.aspetjournals.org at ASPET Journals on September 24, 2021 1 Copyright 2014 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on May 9, 2014 as DOI: 10.1124/jpet.113.212357 This article has not been copyedited and formatted. The final version may differ from this version. JPET #212357 RUNNING TITLE PAGE Running Title: Effects of Dopamine β-Hydroxylase Inhibition in Monkeys Correspondence: Dr LL Howell, Yerkes National Primate Research Center, Emory University, 954 Gatewood Road, Atlanta, GA 30329, USA, Tel: +1 404 727 7786; Fax: +1 404 727 1266; E- mail: [email protected] Text Pages: 19 # Tables: 1 # Figures: 5 # References: 51 Abstract: 250 words Introduction: 420 words Discussion: 1438 words Downloaded from Abbreviations aCSF artificial cerebrospinal fluid DA dopamine jpet.aspetjournals.org DBH dopamine β-hydroxylase EDMax maximally-effective unit dose of cocaine (self-administration) EDPeak maximally-effective dose of pre-session drug prime (reinstatement) at ASPET Journals on September 24, 2021 FI fixed-interval FR fixed-ratio HPLC high-performance liquid chromatography i.m.
    [Show full text]
  • Disulfiram Attenuates Drug-Primed Reinstatement of Cocaine Seeking Via Inhibition of Dopamine B-Hydroxylase
    Neuropsychopharmacology (2010) 35, 2440–2449 & 2010 Nature Publishing Group All rights reserved 0893-133X/10 $32.00 www.neuropsychopharmacology.org Disulfiram Attenuates Drug-Primed Reinstatement of Cocaine Seeking via Inhibition of Dopamine b-Hydroxylase 1,6 1,6 1 1 1 Jason P Schroeder , Debra A Cooper , Jesse R Schank , Megan A Lyle , Meriem Gaval-Cruz , 1 2 3 2,4 3 Yvonne E Ogbonmwan , Nikita Pozdeyev , Kimberly G Freeman , P Michael Iuvone , Gaylen L Edwards , Philip V Holmes5 and David Weinshenker*,1 1 2 Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA; Department of Pharmacology, Emory University 3 4 School of Medicine, Atlanta, GA, USA; Department of Physiology and Pharmacology, University of Georgia, Athens, GA, USA; Department of 5 Ophthalmology, Emory University School of Medicine, Atlanta, GA, USA; Department of Psychology, University of Georgia, Athens, GA, USA The antialcoholism medication disulfiram (Antabuse) inhibits aldehyde dehydrogenase (ALDH), which results in the accumulation of acetaldehyde upon ethanol ingestion and produces the aversive ‘Antabuse reaction’ that deters alcohol consumption. Disulfiram has also been shown to deter cocaine use, even in the absence of an interaction with alcohol, indicating the existence of an ALDH-independent therapeutic mechanism. We hypothesized that disulfiram’s inhibition of dopamine b-hydroxylase (DBH), the catecholamine biosynthetic enzyme that converts dopamine (DA) to norepinephrine (NE) in noradrenergic neurons, underlies the drug’s ability to treat cocaine dependence. We tested the effects of disulfiram on cocaine and food self-administration behavior and drug-primed reinstatement of cocaine seeking in rats. We then compared the effects of disulfiram with those of the selective DBH inhibitor, nepicastat.
    [Show full text]
  • Effects of Inhibitors of Catecholamine-Synthesizing Enzymes on the Mouse Adrenal Medulla
    ACTA HISTOCHEM. CYTOCHEM. Vol. 5 No. 2, 1972 EFFECTS OF INHIBITORS OF CATECHOLAMINE- SYNTHESIZING ENZYMES ON THE MOUSE ADRENAL MEDULLA IKUKO NAGATSU, YUMIKO SOTOKAWA* and MASAO SANO * Department of Anatomy and Physiology, Aichi Prefectural Collegeof Nursing, ands Department of Anatomy, School of Dentistry, Aichi-Gakuin University, Nagoya Received for publication March 16, 1972 Oudenone (a tyrosine hydroxylase inhibitor) and fusaric acid (a dopamine- β-hydroxylase inhibitor) had some effects on fine structures of the adrenal medulla. The Golgi apparatus was not seen to be well developed, and the formation of epinephrine and norepinephrine granules appeared to be dec- reased. The limiting membrane of norepinephrine granules showed a ten- dency of fusing each other, and the density of epinephrine granules was seen to be decreased. Both epinephrine and norepinephrine granules showed a reduction in size of their dense core. It is concluded that oudenone and fusaric acid may have some inhibjtory effects on epinephrine and norepinephrine biosynthesis in the mouse adrenal medulla. These results agree well with the biochemical data presented previously. Specific and potent inhibitors of the enzymes involved in catecholamine bio- synthesis have been recently discovered from the culture media of microorganisms by Umezawa et al (7, 11, 12, 13, 17). Oudenone ( (S)-2-[4, 5-dihydro- 5-propyl-2 (3H)-furylidene]-1, 3-cyclopentanedione) (12, 13, 17) is an inhibitor of tyrosine hydroxylase which was isolated from the culture filtrate of Oudenansiella radieata and shown to inhibit the enzyme in vivo to reduce the endogenous level of catecholamines. Fusaric acid (5-butylpicolinic acid) is an inhibtor of dopamine- ,3-hydroxylase which was isolated from the culture filtrate of a fungus of Fusarium species and shown to be a potent inhibitor of the enzyme in vitro and in vivo (7, 11).
    [Show full text]
  • Translating Molecular and Neuroendocrine Findings in PTSD
    ACCEPTED MANUSCRIPT DePierro et al. Supplement Translating Molecular and Neuroendocrine Findings in Posttraumatic Stress Disorder and Resilience to Novel Therapies Supplemental Information Table S1. Extended summary of candidate PTSD pharmacotherapies Treatment Target Rationale for use in Effect Status Reverse Translation Engagement PTSD Size SSRIs (1, 2) Serotonergic M ainly to treat 0.48 A Perhaps PTSD involves (several 5-HT comorbid symptoms; diminished capacity to receptors) perhaps PTSD involves downregulate 5-HT1B receptors; diminished capacity to alterations of serotonergic downregulate 5-HT1B receptors in the amygdala; receptors MANUSCRIPT connection of serotonin, trauma, and hippocampal volume Venlafaxine (2) Monoaminergic Treatment of 0.48 B Not thoroughly investigated (serotonergic, symptoms overlapping norepinephrinergic) with depression; adrenergic involvement Trazodone (2) Monoaminergic I mprove sleep n/a B, but Not thoroughly investigated (5-HT2; alpha-1 disturbance may for antagonist) improve symptoms comorbid insomnia only Atypical Dopaminergic treat psychotic-like 0.1-0.41 C Not thoroughly investigated Antipsychotics (2) (D2 antagonism)ACCEPTED symptoms Benzodiazepines GABAergic treat anxiety 0.28 C Alterations of GABA (2) (GABA-A positive receptors allosteric modulator) 1 ACCEPTED MANUSCRIPT DePierro et al. Supplement Treatment Target Rationale for use in Effect Status Reverse Translation Engagement PTSD Size Clonidine/ Adrenergic Reduction of -0.08 C Modest effects suggest that Guanfacine (3-5) (alpha-2-agonist) hyperadrenergic
    [Show full text]
  • Trichoderma: the “Secrets” of a Multitalented Biocontrol Agent
    plants Review Trichoderma: The “Secrets” of a Multitalented Biocontrol Agent 1, 1, 2 3 Monika Sood y, Dhriti Kapoor y, Vipul Kumar , Mohamed S. Sheteiwy , Muthusamy Ramakrishnan 4 , Marco Landi 5,6,* , Fabrizio Araniti 7 and Anket Sharma 4,* 1 School of Bioengineering and Biosciences, Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab 144411, India; [email protected] (M.S.); [email protected] (D.K.) 2 School of Agriculture, Lovely Professional University, Delhi-Jalandhar Highway, Phagwara, Punjab 144411, India; [email protected] 3 Department of Agronomy, Faculty of Agriculture, Mansoura University, Mansoura 35516, Egypt; [email protected] 4 State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China; [email protected] 5 Department of Agriculture, University of Pisa, I-56124 Pisa, Italy 6 CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy 7 Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Località Feo di Vito, SNC I-89124 Reggio Calabria, Italy; [email protected] * Correspondence: [email protected] (M.L.); [email protected] (A.S.) Authors contributed equal. y Received: 25 May 2020; Accepted: 16 June 2020; Published: 18 June 2020 Abstract: The plant-Trichoderma-pathogen triangle is a complicated web of numerous processes. Trichoderma spp. are avirulent opportunistic plant symbionts. In addition to being successful plant symbiotic organisms, Trichoderma spp. also behave as a low cost, effective and ecofriendly biocontrol agent. They can set themselves up in various patho-systems, have minimal impact on the soil equilibrium and do not impair useful organisms that contribute to the control of pathogens.
    [Show full text]
  • The Use of Stems in the Selection of International Nonproprietary Names (INN) for Pharmaceutical Substances
    WHO/PSM/QSM/2006.3 The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances 2006 Programme on International Nonproprietary Names (INN) Quality Assurance and Safety: Medicines Medicines Policy and Standards The use of stems in the selection of International Nonproprietary Names (INN) for pharmaceutical substances FORMER DOCUMENT NUMBER: WHO/PHARM S/NOM 15 © World Health Organization 2006 All rights reserved. Publications of the World Health Organization can be obtained from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications – whether for sale or for noncommercial distribution – should be addressed to WHO Press, at the above address (fax: +41 22 791 4806; e-mail: [email protected]). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters.
    [Show full text]
  • Pharmaceutical Appendix to the Tariff Schedule 2
    Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE HARMONIZED TARIFF SCHEDULE Harmonized Tariff Schedule of the United States (2007) (Rev. 2) Annotated for Statistical Reporting Purposes PHARMACEUTICAL APPENDIX TO THE TARIFF SCHEDULE 2 Table 1. This table enumerates products described by International Non-proprietary Names (INN) which shall be entered free of duty under general note 13 to the tariff schedule. The Chemical Abstracts Service (CAS) registry numbers also set forth in this table are included to assist in the identification of the products concerned. For purposes of the tariff schedule, any references to a product enumerated in this table includes such product by whatever name known. ABACAVIR 136470-78-5 ACIDUM LIDADRONICUM 63132-38-7 ABAFUNGIN 129639-79-8 ACIDUM SALCAPROZICUM 183990-46-7 ABAMECTIN 65195-55-3 ACIDUM SALCLOBUZICUM 387825-03-8 ABANOQUIL 90402-40-7 ACIFRAN 72420-38-3 ABAPERIDONUM 183849-43-6 ACIPIMOX 51037-30-0 ABARELIX 183552-38-7 ACITAZANOLAST 114607-46-4 ABATACEPTUM 332348-12-6 ACITEMATE 101197-99-3 ABCIXIMAB 143653-53-6 ACITRETIN 55079-83-9 ABECARNIL 111841-85-1 ACIVICIN 42228-92-2 ABETIMUSUM 167362-48-3 ACLANTATE 39633-62-0 ABIRATERONE 154229-19-3 ACLARUBICIN 57576-44-0 ABITESARTAN 137882-98-5 ACLATONIUM NAPADISILATE 55077-30-0 ABLUKAST 96566-25-5 ACODAZOLE 79152-85-5 ABRINEURINUM 178535-93-8 ACOLBIFENUM 182167-02-8 ABUNIDAZOLE 91017-58-2 ACONIAZIDE 13410-86-1 ACADESINE 2627-69-2 ACOTIAMIDUM 185106-16-5 ACAMPROSATE 77337-76-9
    [Show full text]
  • Patent Application Publication ( 10 ) Pub . No . : US 2019 / 0192440 A1
    US 20190192440A1 (19 ) United States (12 ) Patent Application Publication ( 10) Pub . No. : US 2019 /0192440 A1 LI (43 ) Pub . Date : Jun . 27 , 2019 ( 54 ) ORAL DRUG DOSAGE FORM COMPRISING Publication Classification DRUG IN THE FORM OF NANOPARTICLES (51 ) Int . CI. A61K 9 / 20 (2006 .01 ) ( 71 ) Applicant: Triastek , Inc. , Nanjing ( CN ) A61K 9 /00 ( 2006 . 01) A61K 31/ 192 ( 2006 .01 ) (72 ) Inventor : Xiaoling LI , Dublin , CA (US ) A61K 9 / 24 ( 2006 .01 ) ( 52 ) U . S . CI. ( 21 ) Appl. No. : 16 /289 ,499 CPC . .. .. A61K 9 /2031 (2013 . 01 ) ; A61K 9 /0065 ( 22 ) Filed : Feb . 28 , 2019 (2013 .01 ) ; A61K 9 / 209 ( 2013 .01 ) ; A61K 9 /2027 ( 2013 .01 ) ; A61K 31/ 192 ( 2013. 01 ) ; Related U . S . Application Data A61K 9 /2072 ( 2013 .01 ) (63 ) Continuation of application No. 16 /028 ,305 , filed on Jul. 5 , 2018 , now Pat . No . 10 , 258 ,575 , which is a (57 ) ABSTRACT continuation of application No . 15 / 173 ,596 , filed on The present disclosure provides a stable solid pharmaceuti Jun . 3 , 2016 . cal dosage form for oral administration . The dosage form (60 ) Provisional application No . 62 /313 ,092 , filed on Mar. includes a substrate that forms at least one compartment and 24 , 2016 , provisional application No . 62 / 296 , 087 , a drug content loaded into the compartment. The dosage filed on Feb . 17 , 2016 , provisional application No . form is so designed that the active pharmaceutical ingredient 62 / 170, 645 , filed on Jun . 3 , 2015 . of the drug content is released in a controlled manner. Patent Application Publication Jun . 27 , 2019 Sheet 1 of 20 US 2019 /0192440 A1 FIG .
    [Show full text]
  • Supervised Disulfiram As Adjunct to Psychotherapy in Alcoholism Treatment
    Curr Pharm Des. 2010;16(19):2076-90. Supervised disulfiram as adjunct to psychotherapy in alcoholism treatment. Krampe H , Ehrenreich H . Department of Anaesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Germany. [email protected] Abstract Supervised intake of the alcohol deterrent (AD) disulfiram has proven to be an effective adjunct to biopsychosocial alcoholism therapy for more than 60 years. This article summarizes disulfiram literature between 1937 and 2000 and reviews 13 clinical trials of disulfiram in alcoholism treatment from the years 2000 to 2008. After giving an update of general safety issues and recent case reports concerning safety problems with disulfiram, we focus on the introduction of psychotherapeutic application of supervised disulfiram. The results of our review show: (1) Disulfiram proved to be an effective therapeutic tool in all clinical studies published from 2000 to 2008. (2) Comparisons with other pharmacological agents - naltrexone, acamprosate, topiramate and gamma-hydroxybutyrate - indicate that disulfiram was equal in two trials but superior in the majority of trials. (3) Therapy programs that make use of the psychological effects of supervised disulfiram have - independently of the dose - better results than programs that neglect psychological effects. As a consequence, we suggest that supervised low-dose disulfiram (not more than 100mg/d), will show highest success when it is carefully integrated into psychotherapeutic alcoholism therapy. The major program of psychotherapy with disulfiram comprises the steps "Initial psychoeducation about the effect of disulfiram and its therapeutic implications", "Advanced psychoeducation", and "Disulfiram as coping skill and extension of repertoire of coping skills". As psychological mechanisms of supervised disulfiram we suggest: (1) deterrence; (2) (auto)suggestion; (3) therapeutic ritual around (4) a frequently renewed active decision process; (5) continuous reinforcement of a sober lifestyle and development of new coping skills.
    [Show full text]