Using Triangle Centers to Create Similar Or Congruent Triangles Kathryn E
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Point of Concurrency the Three Perpendicular Bisectors of a Triangle Intersect at a Single Point
3.1 Special Segments and Centers of Classifications of Triangles: Triangles By Side: 1. Equilateral: A triangle with three I CAN... congruent sides. Define and recognize perpendicular bisectors, angle bisectors, medians, 2. Isosceles: A triangle with at least and altitudes. two congruent sides. 3. Scalene: A triangle with three sides Define and recognize points of having different lengths. (no sides are concurrency. congruent) Jul 249:36 AM Jul 249:36 AM Classifications of Triangles: Special Segments and Centers in Triangles By angle A Perpendicular Bisector is a segment or line 1. Acute: A triangle with three acute that passes through the midpoint of a side and angles. is perpendicular to that side. 2. Obtuse: A triangle with one obtuse angle. 3. Right: A triangle with one right angle 4. Equiangular: A triangle with three congruent angles Jul 249:36 AM Jul 249:36 AM Point of Concurrency The three perpendicular bisectors of a triangle intersect at a single point. Two lines intersect at a point. The point of When three or more lines intersect at the concurrency of the same point, it is called a "Point of perpendicular Concurrency." bisectors is called the circumcenter. Jul 249:36 AM Jul 249:36 AM 1 Circumcenter Properties An angle bisector is a segment that divides 1. The circumcenter is an angle into two congruent angles. the center of the circumscribed circle. BD is an angle bisector. 2. The circumcenter is equidistant to each of the triangles vertices. m∠ABD= m∠DBC Jul 249:36 AM Jul 249:36 AM The three angle bisectors of a triangle Incenter properties intersect at a single point. -
Median and Altitude of a Triangle Goal: • to Use Properties of the Medians
Median and Altitude of a Triangle Goal: • To use properties of the medians of a triangle. • To use properties of the altitudes of a triangle. Median of a Triangle Median of a Triangle – a segment whose endpoints are the vertex of a triangle and the midpoint of the opposite side. Vertex Median Median of an Obtuse Triangle A D Point of concurrency “P” or centroid E P C B F Medians of a Triangle The medians of a triangle intersect at a point that is two-thirds of the distance from each vertex to the midpoint of the opposite side. A D If P is the centroid of ABC, then AP=2 AF E 3 P C CP=22CE and BP= BD B F 33 Example - Medians of a Triangle P is the centroid of ABC. PF 5 Find AF and AP A D E P C B F 5 Median of an Acute Triangle A Point of concurrency “P” or centroid E D P C B F Median of a Right Triangle A F Point of concurrency “P” or centroid E P C B D The three medians of an obtuse, acute, and a right triangle always meet inside the triangle. Altitude of a Triangle Altitude of a triangle – the perpendicular segment from the vertex to the opposite side or to the line that contains the opposite side A altitude C B Altitude of an Acute Triangle A Point of concurrency “P” or orthocenter P C B The point of concurrency called the orthocenter lies inside the triangle. Altitude of a Right Triangle The two legs are the altitudes A The point of concurrency called the orthocenter lies on the triangle. -
Exploring Some Concurrencies in the Tetrahedron
Exploring some concurrencies in the tetrahedron Consider the corresponding analogues of perpendicular bisectors, angle bisectors, medians and altitudes of a triangle for a tetrahedron, and investigate which of these are also concurrent for a tetrahedron. If true, prove it; if not, provide a counter-example. Let us start with following useful assumption (stated without proof) for 3D: Three (non-parallel) planes meet in a point. (It is easy to see this in a rectangular room where two walls and the ceiling meet perpendicularly in a point.) Definition 1: The perpendicular edge bisector is the A generalisation to 3D of the concept of a perpendicular bisector. For example, the perpendicular edge bisector of AB is the plane through the midpoint of AB, and perpendicular D to it. Or equivalently, it is the set of points equidistant from A and B. B Theorem 1: The six perpendicular edge bisectors of a C tetrahedron all meet at the circumcentre. Proof: Let S be the intersection of the three perpendicular edge bisectors of AB, BC, CD. Therefore SA = SB = SC = SD. Therefore S must lie on all 6 perpendicular edge bisectors, and the sphere, centre S and radius SA, goes through all four vertices. Definition 2: Let a, b, c, d denote the four faces of a A tetrahedron ABCD. The face angle bisector of ab is the plane through CD bisecting the angle between b the faces a, b. It is therefore also the set of points equidistant from a and b. D a Theorem 2: The six face angle bisectors of a B tetrahedron all meet at the incentre. -
The Apollonius Problem on the Excircles and Related Circles
Forum Geometricorum b Volume 6 (2006) xx–xx. bbb FORUM GEOM ISSN 1534-1178 The Apollonius Problem on the Excircles and Related Circles Nikolaos Dergiades, Juan Carlos Salazar, and Paul Yiu Abstract. We investigate two interesting special cases of the classical Apollo- nius problem, and then apply these to the tritangent of a triangle to find pair of perspective (or homothetic) triangles. Some new triangle centers are constructed. 1. Introduction This paper is a study of the classical Apollonius problem on the excircles and related circles of a triangle. Given a triad of circles, the Apollonius problem asks for the construction of the circles tangent to each circle in the triad. Allowing both internal and external tangency, there are in general eight solutions. After a review of the case of the triad of excircles, we replace one of the excircles by another (possibly degenerate) circle associated to the triangle. In each case we enumerate all possibilities, give simple constructions and calculate the radii of the circles. In this process, a number of new triangle centers with simple coordinates are constructed. We adopt standard notations for a triangle, and work with homogeneous barycen- tric coordinates. 2. The Apollonius problem on the excircles 2.1. Let Γ=((Ia), (Ib), (Ic)) be the triad of excircles of triangle ABC. The sidelines of the triangle provide 3 of the 8 solutions of the Apollonius problem, each of them being tangent to all three excircles. The points of tangency of the excircles with the sidelines are as follows. See Figure 2. BC CA AB (Ia) Aa =(0:s − b : s − c) Ba =(−(s − b):0:s) Ca =(−(s − c):s :0) (Ib) Ab =(0:−(s − a):s) Bb =(s − a :0:s − c) Cb =(s : −(s − c):0) (Ic) Ac =(0:s : −(s − a)) Bc =(s :0:−(s − c)) Cc =(s − a : s − b :0) Publication Date: Month day, 2006. -
Stanley Rabinowitz, Arrangement of Central Points on the Faces of A
International Journal of Computer Discovered Mathematics (IJCDM) ISSN 2367-7775 ©IJCDM Volume 5, 2020, pp. 13{41 Received 6 August 2020. Published on-line 30 September 2020 web: http://www.journal-1.eu/ ©The Author(s) This article is published with open access1. Arrangement of Central Points on the Faces of a Tetrahedron Stanley Rabinowitz 545 Elm St Unit 1, Milford, New Hampshire 03055, USA e-mail: [email protected] web: http://www.StanleyRabinowitz.com/ Abstract. We systematically investigate properties of various triangle centers (such as orthocenter or incenter) located on the four faces of a tetrahedron. For each of six types of tetrahedra, we examine over 100 centers located on the four faces of the tetrahedron. Using a computer, we determine when any of 16 con- ditions occur (such as the four centers being coplanar). A typical result is: The lines from each vertex of a circumscriptible tetrahedron to the Gergonne points of the opposite face are concurrent. Keywords. triangle centers, tetrahedra, computer-discovered mathematics, Eu- clidean geometry. Mathematics Subject Classification (2020). 51M04, 51-08. 1. Introduction Over the centuries, many notable points have been found that are associated with an arbitrary triangle. Familiar examples include: the centroid, the circumcenter, the incenter, and the orthocenter. Of particular interest are those points that Clark Kimberling classifies as \triangle centers". He notes over 100 such points in his seminal paper [10]. Given an arbitrary tetrahedron and a choice of triangle center (for example, the circumcenter), we may locate this triangle center in each face of the tetrahedron. We wind up with four points, one on each face. -
Searching for the Center
Searching For The Center Brief Overview: This is a three-lesson unit that discovers and applies points of concurrency of a triangle. The lessons are labs used to introduce the topics of incenter, circumcenter, centroid, circumscribed circles, and inscribed circles. The lesson is intended to provide practice and verification that the incenter must be constructed in order to find a point equidistant from the sides of any triangle, a circumcenter must be constructed in order to find a point equidistant from the vertices of a triangle, and a centroid must be constructed in order to distribute mass evenly. The labs provide a way to link this knowledge so that the students will be able to recall this information a month from now, 3 months from now, and so on. An application is included in each of the three labs in order to demonstrate why, in a real life situation, a person would want to create an incenter, a circumcenter and a centroid. NCTM Content Standard/National Science Education Standard: • Analyze characteristics and properties of two- and three-dimensional geometric shapes and develop mathematical arguments about geometric relationships. • Use visualization, spatial reasoning, and geometric modeling to solve problems. Grade/Level: These lessons were created as a linking/remembering device, especially for a co-taught classroom, but can be adapted or used for a regular ed, or even honors level in 9th through 12th Grade. With more modification, these lessons might be appropriate for middle school use as well. Duration/Length: Lesson #1 45 minutes Lesson #2 30 minutes Lesson #3 30 minutes Student Outcomes: Students will: • Define and differentiate between perpendicular bisector, angle bisector, segment, triangle, circle, radius, point, inscribed circle, circumscribed circle, incenter, circumcenter, and centroid. -
Midpoints and Medians in Triangles
MPM1D Midpoints and Medians in Triangles Midpoint: B A C 1) Use a ruler to create a midpoint for AB. Label it X. 2) Use a ruler to create a midpoint for AC. Label it Y. 3) Join the points X and Y with a line. 4) Measure all the sides. Write them on the diagram. Q: What do you notice about the lenGth of XY and BC? Q: What do you notice about the direction of the lines XY and BC? Q: How could we prove this? The line seGments joining the midpoint of two sides of a triangle is _________________________ the third side and ___________________________ . Recall: The area of a trianGle is: � = Median: A line from one vertex to the midpoint of the opposite side. A B C 1) Draw the midpoint of BC, label it M 2) Draw the median from A to BC 3) Calculate the area of rABM and rAMC (MeasurinG any lenGths you need to find the area) Medians of a trianGle ________ its area. Example 2 The area of rXYZ is 48 ��(. A median is drawn from X, and the midpoint of the opposite side is labelled M. What is the area of rXYM? 1. Find the length of line segment MN in each triangle. a) b) c) d) 2. Find the lengths of line segments AD and DE in each triangle. a) b) c) d) 3. The area of rABC is 10 cm2. Calculate the area of each triangle. a) rABD b) rADC 4. Calculate the area of each triangle given the area of rMNQ is 12 cm2. -
Arxiv:2101.02592V1 [Math.HO] 6 Jan 2021 in His Seminal Paper [10]
International Journal of Computer Discovered Mathematics (IJCDM) ISSN 2367-7775 ©IJCDM Volume 5, 2020, pp. 13{41 Received 6 August 2020. Published on-line 30 September 2020 web: http://www.journal-1.eu/ ©The Author(s) This article is published with open access1. Arrangement of Central Points on the Faces of a Tetrahedron Stanley Rabinowitz 545 Elm St Unit 1, Milford, New Hampshire 03055, USA e-mail: [email protected] web: http://www.StanleyRabinowitz.com/ Abstract. We systematically investigate properties of various triangle centers (such as orthocenter or incenter) located on the four faces of a tetrahedron. For each of six types of tetrahedra, we examine over 100 centers located on the four faces of the tetrahedron. Using a computer, we determine when any of 16 con- ditions occur (such as the four centers being coplanar). A typical result is: The lines from each vertex of a circumscriptible tetrahedron to the Gergonne points of the opposite face are concurrent. Keywords. triangle centers, tetrahedra, computer-discovered mathematics, Eu- clidean geometry. Mathematics Subject Classification (2020). 51M04, 51-08. 1. Introduction Over the centuries, many notable points have been found that are associated with an arbitrary triangle. Familiar examples include: the centroid, the circumcenter, the incenter, and the orthocenter. Of particular interest are those points that Clark Kimberling classifies as \triangle centers". He notes over 100 such points arXiv:2101.02592v1 [math.HO] 6 Jan 2021 in his seminal paper [10]. Given an arbitrary tetrahedron and a choice of triangle center (for example, the circumcenter), we may locate this triangle center in each face of the tetrahedron. -
Barycentric Coordinates in Olympiad Geometry
Barycentric Coordinates in Olympiad Geometry Max Schindler∗ Evan Cheny July 13, 2012 I suppose it is tempting, if the only tool you have is a hammer, to treat everything as if it were a nail. Abstract In this paper we present a powerful computational approach to large class of olympiad geometry problems{ barycentric coordinates. We then extend this method using some of the techniques from vector computations to greatly extend the scope of this technique. Special thanks to Amir Hossein and the other olympiad moderators for helping to get this article featured: I certainly did not have such ambitious goals in mind when I first wrote this! ∗Mewto55555, Missouri. I can be contacted at igoroogenfl[email protected]. yv Enhance, SFBA. I can be reached at [email protected]. 1 Contents Title Page 1 1 Preliminaries 4 1.1 Advantages of barycentric coordinates . .4 1.2 Notations and Conventions . .5 1.3 How to Use this Article . .5 2 The Basics 6 2.1 The Coordinates . .6 2.2 Lines . .6 2.2.1 The Equation of a Line . .6 2.2.2 Ceva and Menelaus . .7 2.3 Special points in barycentric coordinates . .7 3 Standard Strategies 9 3.1 EFFT: Perpendicular Lines . .9 3.2 Distance Formula . 11 3.3 Circles . 11 3.3.1 Equation of the Circle . 11 4 Trickier Tactics 12 4.1 Areas and Lines . 12 4.2 Non-normalized Coordinates . 13 4.3 O, H, and Strong EFFT . 13 4.4 Conway's Formula . 14 4.5 A Few Final Lemmas . 15 5 Example Problems 16 5.1 USAMO 2001/2 . -
The Euler Line in Non-Euclidean Geometry
California State University, San Bernardino CSUSB ScholarWorks Theses Digitization Project John M. Pfau Library 2003 The Euler Line in non-Euclidean geometry Elena Strzheletska Follow this and additional works at: https://scholarworks.lib.csusb.edu/etd-project Part of the Mathematics Commons Recommended Citation Strzheletska, Elena, "The Euler Line in non-Euclidean geometry" (2003). Theses Digitization Project. 2443. https://scholarworks.lib.csusb.edu/etd-project/2443 This Thesis is brought to you for free and open access by the John M. Pfau Library at CSUSB ScholarWorks. It has been accepted for inclusion in Theses Digitization Project by an authorized administrator of CSUSB ScholarWorks. For more information, please contact [email protected]. THE EULER LINE IN NON-EUCLIDEAN GEOMETRY A Thesis Presented to the Faculty of California State University, San Bernardino In Partial Fulfillment of the Requirements for the Degree Master of Arts in Mathematics by Elena Strzheletska December 2003 THE EULER LINE IN NON-EUCLIDEAN GEOMETRY A Thesis Presented to the Faculty of California State University, San Bernardino by Elena Strzheletska December 2003 Approved by: Robert Stein, Committee Member Susan Addington, Committee Member Peter Williams, Chair Terry Hallett, Department of Mathematics Graduate Coordinator Department of Mathematics ABSTRACT In Euclidean geometry, the circumcenter and the centroid of a nonequilateral triangle determine a line called the Euler line. The orthocenter of the triangle, the point of intersection of the altitudes, also belongs to this line. The main purpose of this thesis is to explore the conditions of the existence and the properties of the Euler line of a triangle in the hyperbolic plane. -
Triangle-Centers.Pdf
Triangle Centers Maria Nogin (based on joint work with Larry Cusick) Undergraduate Mathematics Seminar California State University, Fresno September 1, 2017 Outline • Triangle Centers I Well-known centers F Center of mass F Incenter F Circumcenter F Orthocenter I Not so well-known centers (and Morley's theorem) I New centers • Better coordinate systems I Trilinear coordinates I Barycentric coordinates I So what qualifies as a triangle center? • Open problems (= possible projects) mass m mass m mass m Centroid (center of mass) C Mb Ma Centroid A Mc B Three medians in every triangle are concurrent. Centroid is the point of intersection of the three medians. mass m mass m mass m Centroid (center of mass) C Mb Ma Centroid A Mc B Three medians in every triangle are concurrent. Centroid is the point of intersection of the three medians. Centroid (center of mass) C mass m Mb Ma Centroid mass m mass m A Mc B Three medians in every triangle are concurrent. Centroid is the point of intersection of the three medians. Incenter C Incenter A B Three angle bisectors in every triangle are concurrent. Incenter is the point of intersection of the three angle bisectors. Circumcenter C Mb Ma Circumcenter A Mc B Three side perpendicular bisectors in every triangle are concurrent. Circumcenter is the point of intersection of the three side perpendicular bisectors. Orthocenter C Ha Hb Orthocenter A Hc B Three altitudes in every triangle are concurrent. Orthocenter is the point of intersection of the three altitudes. Euler Line C Ha Hb Orthocenter Mb Ma Centroid Circumcenter A Hc Mc B Euler line Theorem (Euler, 1765). -
The Feuerbach Point and Euler Lines
Forum Geometricorum b Volume 6 (2006) 191–197. bbb FORUM GEOM ISSN 1534-1178 The Feuerbach Point and Euler lines Bogdan Suceav˘a and Paul Yiu Abstract. Given a triangle, we construct three triangles associated its incircle whose Euler lines intersect on the Feuerbach point, the point of tangency of the incircle and the nine-point circle. By studying a generalization, we show that the Feuerbach point in the Euler reflection point of the intouch triangle, namely, the intersection of the reflections of the line joining the circumcenter and incenter in the sidelines of the intouch triangle. 1. A MONTHLY problem Consider a triangle ABC with incenter I, the incircle touching the sides BC, CA, AB at D, E, F respectively. Let Y (respectively Z) be the intersection of DF (respectively DE) and the line through A parallel to BC.IfE and F are the midpoints of DZ and DY , then the six points A, E, F , I, E, F are on the same circle. This is Problem 10710 of the American Mathematical Monthly with slightly different notations. See [3]. Y A Z Ha F E E F I B D C Figure 1. The triangle Ta and its orthocenter Here is an alternative solution. The circle in question is indeed the nine-point circle of triangle DY Z. In Figure 1, ∠AZE = ∠CDE = ∠CED = ∠AEZ. Therefore AZ = AE. Similarly, AY = AF . It follows that AY = AF = AE = AZ, and A is the midpoint of YZ. The circle through A, E, F , the midpoints of the sides of triangle DY Z, is the nine-point circle of the triangle.