The Cuba-Florida Plant-Pest Pathway

Total Page:16

File Type:pdf, Size:1020Kb

The Cuba-Florida Plant-Pest Pathway University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Center for Systematic Entomology, Gainesville, Insecta Mundi Florida 2016 The ubC a-Florida plant-pest pathway Cory Penca University of Florida, [email protected] Damian C. Adams University of Florida, [email protected] Jiri Hulcr University of Florida, [email protected] Follow this and additional works at: https://digitalcommons.unl.edu/insectamundi Part of the Ecology and Evolutionary Biology Commons, and the Entomology Commons Penca, Cory; Adams, Damian C.; and Hulcr, Jiri, "The ubC a-Florida plant-pest pathway" (2016). Insecta Mundi. 995. https://digitalcommons.unl.edu/insectamundi/995 This Article is brought to you for free and open access by the Center for Systematic Entomology, Gainesville, Florida at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Insecta Mundi by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. INSECTA MUNDI A Journal of World Insect Systematics 0490 The Cuba-Florida plant-pest pathway Cory Penca Department of Entomology and Nematology University of Florida 1881 Steinmetz Hall Gainesville, Fl. 32611 Damian C. Adams School of Forest Resources & Conservation Food and Resource Economics Department University of Florida Jiri Hulcr School of Forest Resources and Conservation Entomology and Nematology Department University of Florida Date of Issue: June 24, 2016 CENTER FOR SYSTEMATIC ENTOMOLOGY, INC., Gainesville, FL Cory Penca, Damian C. Adams, and Jiri Hulcr The Cuba-Florida plant-pest pathway Insecta Mundi 0490: 1-17 ZooBank Registered: LSID: urn:lsid:zoobank.org:pub:41958C96-882E-42AD-9988-8521C24B3729 Published in 2016 by Center for Systematic Entomology, Inc. P. O. Box 141874 Gainesville, FL 32614-1874 USA http://www.centerforsystematicentomology.org/ Insecta Mundi is a journal primarily devoted to insect systematics, but articles can be published on any non- marine arthropod. Topics considered for publication include systematics, taxonomy, nomenclature, checklists, faunal works, and natural history. Insecta Mundi will not consider works in the applied sciences (i.e. medical entomology, pest control research, etc.), and no longer publishes book reviews or editorials. Insecta Mundi pub- lishes original research or discoveries in an inexpensive and timely manner, distributing them free via open access on the internet on the date of publication. Insecta Mundi is referenced or abstracted by several sources including the Zoological Record, CAB Abstracts, etc. Insecta Mundi is published irregularly throughout the year, with completed manuscripts assigned an indi- vidual number. Manuscripts must be peer reviewed prior to submission, after which they are reviewed by the editorial board to ensure quality. One author of each submitted manuscript must be a current member of the Center for Systematic Entomology. Manuscript preparation guidelines are availablr at the CSE website. Chief Editor: Paul E. Skelley, e-mail: [email protected] Assistant Editor: David Plotkin Head Layout Editor: Eugenio H. Nearns Editorial Board: J. H. Frank, M. J. Paulsen, Michael C. Thomas Review Editors: Listed on the Insecta Mundi webpage Manuscript Preparation Guidelines and Submission Requirements available on the Insecta Mundi web-page at: http://centerforsystematicentomology.org/insectamundi/ Printed copies (ISSN 0749-6737) annually deposited in libraries: CSIRO, Canberra, ACT, Australia Museu de Zoologia, São Paulo, Brazil Agriculture and Agrifood Canada, Ottawa, ON, Canada The Natural History Museum, London, Great Britain Muzeum i Instytut Zoologii PAN, Warsaw, Poland National Taiwan University, Taipei, Taiwan California Academy of Sciences, San Francisco, CA, USA Florida Department of Agriculture and Consumer Services, Gainesville, FL, USA Field Museum of Natural History, Chicago, IL, USA National Museum of Natural History, Smithsonian Institution, Washington, DC, USA Zoological Institute of Russian Academy of Sciences, Saint-Petersburg, Russia Electronic copies (On-Line ISSN 1942-1354, CDROM ISSN 1942-1362) in PDF format: Printed CD or DVD mailed to all members at end of year. Archived digitally by Portico. Florida Virtual Campus: http://purl.fcla.edu/fcla/insectamundi University of Nebraska-Lincoln, Digital Commons: http://digitalcommons.unl.edu/insectamundi/ Goethe-Universität, Frankfurt am Main: http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:hebis:30:3-135240 Copyright held by the author(s). This is an open access article distributed under the terms of the Creative Commons, Attribution Non-Commercial License, which permits unrestricted non-commercial use, distribution, and reproduc- tion in any medium, provided the original author(s) and source are credited. http://creativecommons.org/licenses/ by-nc/3.0/ Layout Editor for this article: Michael C. Thomas 0490: 1-17 2016 The Cuba-Florida plant-pest pathway Cory Penca Department of Entomology and Nematology University of Florida 1881 Steinmetz Hall Gainesville, Fl. 32611 [email protected] Damian C. Adams School of Forest Resources & Conservation Food and Resource Economics Department University of Florida [email protected] Jiri Hulcr School of Forest Resources and Conservation Entomology and Nematology Department University of Florida [email protected] Abstract. Recent shifts in US policies towards Cuba suggest a relaxation or lifting of the embargo may occur in the near future. With the prospects of open travel and trade with Cuba come concerns over the introduction of agricultural pests. In an effort to assess these concerns the distribution-based introduction risk of pests listed in the 2015 Coopera- tive Agricultural Pest Survey’s (CAPS) list of priority pests of economic and environmental importance is reviewed. Of the 59 pests on the CAPS priority pest list, 20 have been recorded in the literature as being present in the Caribbean Basin, South America and Central America. For these 20 New World pests a commodity and distribution-based risk rating was assigned to describe their potential for introduction through the Cuba-Florida pest pathway. The highest rating was given to the six listed pests currently reported as being present in Cuba, and potential for introduction and subsequent impact of these six pests on Florida agriculture is discussed. In addition to the pests found on the 2015 CAPS priority pest list, information regarding pests of concern in the family Tephritidae and the Old World bollworm Helicoverpa armigera (Hübner), is also included, as is a description of the Cuban plant health and regulatory struc- ture. The significance of plant-pest introductions between Cuba and Florida is discussed, with an emphasis on proac- tive engagement in research and collaboration to address these issues. Key words. Invasive species, Biosecurity, Caribbean, Helicoverpa armigera, Plant pests, Cooperative Agricultural Pest Survey, Embargo. Resumen. Las nuevas políticas de los Estados Unidos hacia Cuba sugieren la posibilidad de que el embargo será suavizado o levantado en un futuro próximo. Asociada a la posible apertura del comercio con Cuba está la preocupación por la introducción de nuevas plagas agrícolas. En un esfuerzo por atender dicha preocupación, y tomando como base su distribución geográfica, este trabajo analiza las plagas comprendidas en la lista del 2015, elaborada por el Programa de Monitoreo de Plagas Agrícolas (CAPS Cooperative Agricultural Pest Survey), la cual incluye aquellas que han sido consideradas prioritarias por la importancia económica y ambiental que supone su riesgo. La literatura reporta que 20 de las 59 plagas listadas están presentes en el Caribe, Centro y Sudamérica. A cada una de estas veinte plagas del Nuevo Mundo le fue asignada una categoría de riesgo que describe la posibilidad de introducción por la vía Cuba- Florida. La categoría de riesgo más alta fue atribuida a seis especies que han sido registradas en Cuba. Los autores discuten el potencial de introducción y los posibles efectos que éstas pueden causar en la agricultura de Florida. Además de las plagas clasificadas en la lista CAPS 2015, el artículo incluye información acerca de las que corresponden a la familia Tephritidae, así como del gusano cogollero Helicoverpa armigera (Hübner). A la vez, analizan el sistema de sanidad vegetal y la estructura regulatoria en Cuba. El artículo finaliza con una discusión sobre la importancia de los riesgos de introducción de plagas entre Cuba y Florida, haciendo énfasis en la necesidad de contar con un enfoque proactivo de investigación y colaboración entre ambos países para atender este problema. 1 2 • INSECTA MUNDI 0490, June 2016 PENCA ET AL. Introduction Recent occurrences of economically significant quarantine pests in the Caribbean, including detec- tions of the major lepidopteran pest, the Old World bollworm Helicoverpa armigera (Hübner) (Kriticos et al. 2015) and Mediterranean fruit fly Ceratitis capitata (Wiedemann) (APHIS 2015) in both Puerto Rico and the Dominican Republic, suggest that among the Caribbean Basin countries with whom US has open trade and travel, the agricultural-pest situation is constantly changing. Despite its geographic proximity, Cuba has been functionally isolated from the United States since the Cuban Revolution and the subse- quent commercial, economic, and trade embargo. The volume of international trade between countries can serve as a proxy for propagule pressure and is strongly correlated with the number of invasive alien species found in a particular region (Westphal
Recommended publications
  • Evaluation of Pre-Mating Reproductive Isolation in Archachatina Marginata from Three Populations in the Humid Tropics
    African Journal of Biotechnology Vol. 10(65), pp. 14669-14677, 24 October, 2011 Available online at http://www.academicjournals.org/AJB DOI: 10.5897/AJB11.882 ISSN 1684–5315 © 2011 Academic Journals Full Length Research Paper Evaluation of pre-mating reproductive isolation in Archachatina marginata from three populations in the humid tropics Ogbu, C. C* and Ugwu, S. O. C. Department of Animal Science, University of Nigeria, Nsukka. Accepted 26 August, 2011 Three populations of Archachatina marginata snails (P 1, P 2 and P 3) obtained from natural snail habitats located in three states of Nigeria (one population per state) namely Enugu, Edo and River States were evaluated for pre-mating reproductive isolation using mate-choice tests. Total number of mated snails were very small (19.2%) compared to the number tested. Mating propensity (MP) varied significantly (P ≤ 0.05) among snail populations in two test groups and observed MP in the test groups differed significantly (chi-square test, P <<<0.05; 0.001) from that expected under random mating. Pair formation was significantly (chi-square test, P <<< 0.05; 0.001) influenced by differences in MP and within-population (homotypic) and between population (heterotypic) mating occurred in frequencies that differed significantly (chi-square test, P ℜℜℜ 0.05; 0.001) from that expected under random mating. Whereas observed heterotypic pair formation were less than that expected under random mating, homotypic pair formation were either equal or more than that expected under random mating. Duration of reproductive activities differed significantly (P ≤ 0.05) among test populations. It was concluded that reduced pair formation, elongated duration of courtship, and reduced mating between populations of A.
    [Show full text]
  • Universidade Federal De Juiz De Fora Pós-Graduação Em Ciências Biológicas Mestrado Em Comportamento E Biologia Animal
    UNIVERSIDADE FEDERAL DE JUIZ DE FORA PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS MESTRADO EM COMPORTAMENTO E BIOLOGIA ANIMAL Camilla Aparecida de Oliveira Estratégia de história de vida e recaracterização morfológica Sarasinula linguaeformis (Semper, 1885) (Eupulmonata, Veronicellidae) Juiz de Fora 2019 Camilla Aparecida de Oliveira Estratégia de história de vida e recaracterização morfológica Sarasinula linguaeformis (Semper, 1885) (Eupulmonata, Veronicellidae) Dissertação apresentada ao Programa de Pós-Graduação em Ciências Biológicas, área de concentração: Comportamento e Biologia Animal da Universidade Federal de Juiz de Fora, como requisito parcial para obtenção do título de Mestre. Orientadora: Prof.ª. Drª. Sthefane D’ávila Juiz de Fora 2019 A todos que estiveram ao meu lado me apoiando e incentivando diante das dificuldades da carreira acadêmica, e incentivaram minha formação pessoal, profissional e dando-me suporte emocional. A vocês o meu eterno agradecimento! AGRADECIMENTOS Agradeço primeiramente a Deus por abençoar o meu caminho durante esse trabalho. A fé que tenho em Ti alimentou meu foco, minha força e minha disciplina. Depois aos meus amigos da Ciências Biológicas: Alexssandra Silva, Flávio Macanha, Isabel Macedo, Sue-helen Mondaini, Tayrine Carvalho, Kássia Malta e Yuri Carvalho meu eterno agradecimento, pois fizeram uma contribuição valiosa para a minha jornada acadêmica com seus conselhos, auxílio, palavras de apoio e risadas. Também agradeço a todos aqueles amigos que de forma direta ou indireta estiveram ajudando e torcendo por mim, em especial a Ana Claudia Mazetto, Ana Clara Files, Tamires Lima, Lígia Araújo, Raquel Seixas, Natália Corrêa e Carlota Augusta. Vocês foram fundamentais para minha formação. Agradeço à minha orientadora Sthefane D' ávila, que acompanhou meu percurso ao longo dos últimos anos e ofereceu uma orientação repleta de conhecimento, sabedoria e paciência.
    [Show full text]
  • Technical Bulletin for Oxycarenus Hyalinipennis (Cotton Seed Bug)
    USDA United States Department of Agriculture United States Department of Agriculture Technical Bulletin- Oxycarenus Animal and Plant hyalinipennis (Costa) (Hemiptera: Health Inspection Service Oxycarenidae) Cotton seed bug April 23, 2021 Cotton seed bug, O. hyalinipennis (image courtesy of Julieta Brambila, USDA– APHIS–PPQ) Agency Contact: Plant Epidemiology and Risk Analysis Laboratory Science and Technology Plant Protection and Quarantine Animal and Plant Health Inspection Service United States Department of Agriculture 1730 Varsity Drive, Suite 300 Raleigh, NC 27606 Oxcarenus hyalinipennis Cotton seed bug Technical Bulletin 5 E E Figure 1. Adult and five nymphal stages of Oxycarenus hyalinipennis (image courtesy of Natasha Wright, FDACS-DPI). Introduction: Cotton seed bug (CSB), Oxycarenus distinct wingpads that extend to the third abdominal hyalinipennis, is an important global pest of cotton segment (Henry, 1983). (Smith and Brambila, 2008). Native to Africa, CSB is now widespread with distribution in Asia, Europe, Eggs: Egg are 0.29 mm (0.01 in) wide by 0.97 mm Middle East, South America and the Caribbean (Bolu (0.04 in) long and slender with 25 longitudinal ribs or et al., 2020; Halbert and Dobbs, 2010). Cotton seed corrugations. During development, the eggs change from straw yellow to orange or pink (Fig. 2) (Henry, bug infestations can cause weight loss in cottonseed, 1983; Sweet, 2000). decrease seed germination, and reduce oil seed (Henry, 1983). Additionally, when CSB is present in sufficient numbers, cotton fibers become stained during processing (Smith and Brambila, 2008) which results in decreased value. Description: Final identification of CSB is based on the morphology of adult male internal structures (Brambila, 2020).
    [Show full text]
  • Growth Response of Tiger Giant Land Snail Hatchlings Achatina Achatina Linne to Different Compounded Diets
    International Journal of Agriculture and Earth Science Vol. 3 No. 6 2017 ISSN 2489-0081 www.iiardpub.org Growth Response of Tiger Giant Land Snail Hatchlings Achatina Achatina Linne to Different Compounded Diets Akpobasa, B. I. O. Department of Agricultural Technology, Delta State Polytechnic, Ozoro, Delta State, Nigeria [email protected] Abstract This experiment was conducted at the snailery unit of the Delta State Polytechnic Ozoro to study the effects of different compounded diets on the growth response of hatlings Tiger giants land snail (Archatina archatina). Different feed ingredients were used for the compoundment. Three diets were formulated with crude protein percentage of 15%, 20% and 25%. A 2 x 3 factorial arrangement in CRD was used with six treatments. Each treatment was replicated thrice with five snails per replicate. The trial lasted for 90 days. The protein source main effects were significant (P<0.05) in average daily feed intake which was higher in feeds with soyabeen cake than groundnut cake. The higher crude protein percentage diet influence growth rate of the hatchlings more as well as been significant (P<0.05) in feed conversion ratio. Mortality was not recorded during the experiment. The diet with higher protein percentage 25% should be considered most appropriate since the growth rate of snail hatchlings increased as the crude protein level increased in the compounded diet. INTRODUCTION The present level of livestock production cannot meet daily demand for animal protein , this have affected the animal protein intake by Nigerians which is below 67g as recommended by the World Health Organization (Kehinde et al., 2002), and thus has led to an acute malnutrition amongst the greater percentage of the rural populace [FAO,1986].
    [Show full text]
  • Veronicella Spp.*
    Veronicella spp.* *In April 2013, the family Veronicellidae, a target on the 2013 and 2014 AHP Prioritized Pest Lists, was broken down into six genera of concern, including Veronicella spp. Information in the datasheet may be at the family, genus, or species level. Information for specific species within the genus is included when known and relevant; other species may occur in the genus and are still reportable at the genus level. Portions of this document were taken Figure 1. Veronicella cubensis (Pfeiffer), (Image directly from the New Pest Response courtesy of David Robinson, USDA-APHIS-PPQ) Guidelines for Tropical Terrestrial Gastropods (USDA-APHIS, 2010a). Scientific Names Veronicella cubensis (Pfeiffer, 1840) Veronicella sloanii (Cuvier, 1817) Synonyms: Veronicella cubensis Onchidium cubense Pfeiffer, 1840, Onchidium cubensis, Veronicella cubensis Thomé [Thomé], 1975 Veronicella sloanei Vaginulus sloanei Férussac, [Férussac] Vaginulus laevis de Blainville, 1817 Common Name No common name, leatherleaf slugs Figure 2. Veronicella sloanei (Cuvier), (Image courtesy of David Robinson, USDA-APHIS-PPQ) Veronicella cubensis: Cuban slug Veronicella sloanii: Pancake slug Type of Pest Mollusk Taxonomic Position Class: Gastropoda, Order: Systellommatophora, Family: Veronicellidae Last update: May 2014 1 Reason for Inclusion in Manual CAPS Target: AHP Prioritized Pest List for FY 2011 – 2015* *Originally listed under the family Veronicellidae. Pest Description Veronicellidae are anatomically distinct from many other terrestrial slugs in that they have a posterior anus, eyes on contractile tentacles, and no pulmonate lung. The sensory tentacles are bilobed. This family also lacks a mantel cavity (Runham and Hunter, 1970). Although this family is fairly easy to tell apart from others, species within this family can be difficult to distinguish due to similar morphology between species and multiple color variations within a single species.
    [Show full text]
  • Archachatina Marginata) and Its Parasites Collected from Three Communities in Edo State, Nigeria
    International Journal of Scientific & Engineering Research, Volume 7, Issue 10, October-2016 793 ISSN 2229-5518 Assessment of Heavy Metals in African Giant Snail (Archachatina marginata) and its Parasites Collected from three communities in Edo State, Nigeria 1Awharitoma, A. O., *2Ewere, E. E., 3Alari, P. O., 4Idowu, D. O. and 5Osowe, K. A. 1,2,3,4,5Department of Animal and Environmental Biology, faculty of Life Sciences, University of Benin, P.M.B 1154, Benin City, Nigeria *Corresponding author: [email protected] Abstract—Archachatina marginata, a mollusk, is highly prized as food in Africa and Asia, and is a vector of parasites and defoliators. The environments where the snails thrive are highly contaminated with heavy metals through various anthropogenic activities. Levels of heavy metals (Fe, Ni, Mn, Cu, Pb, Cd and Co) in A. marginata (parasite infected and uninfected) and its parasites were assessed from three communities (Ugbogui, Ugo and Okogbo) in Edo State to check the pollution status. Samples of snail were collected, cracked and parasites were isolated from the samples using standard methods. The isolated parasites and the snail samples were analyzed for heavy metals using Flame Atomic Absorption Spectrophotometry (FAAS). The parasite isolated from the infected snail was identified as nematode (Rhabditis axei). The mean concentration of Fe, Ni, Mn, Cu, Pb, Cd and Co ranged 38.61 – 70.49mg/kg, 9.09 – 16.58mg/kg, 5.09 – 8.90mg/kg, 4.10 – 7.48mg/kg, 0.39 – 0.71mg/kg, 0.19 – 0.35mg/kg and 0.04 – 0.07mg/kg respectively in infected snail; 14.94 – 28.45mg/kg, 3.26 – 5.96mg/kg, 2.85 -4.79mg/kg, 1.47 – 2.69mg/kg, 0.14 – 0.26mg/kg, 0.07 – 0.13mg/kg and 0.03 – 0.05mg/kg respectively in uninfected snail tissues; 11.34 – 27.61mg/kg, 1.17 – 1.92mg/kg, 1.73 – 4.89mg/kg, 0.51 – 0.87mg/kg, 0.05 – 0.08mg/kg, 0.03 – 0.04mg/kg and 0.04 – 0.05mg/kg respectively in parasite.
    [Show full text]
  • Developmental Stages of Eggs of Giant African Land Snail (Archachatina
    14844 Ekaluo, U.B et al./ Elixir Appl. Biology 58 (2013) 14844-14845 Available online at www.elixirpublishers.com (Elixir International Journal) Applied Biology Elixir Appl. Biology 58 (2013) 14844-14845 Developmental stages of eggs of giant African land snail ( Archachatina marginata ) Ekaluo, U.B 1,*, Okon, B 2, Ikpeme, E. V 1 and Etukudo, O.M 1 1Department of Genetics and Biotechnology, University of Calabar, Calabar, Nigeria. 2Department of Animal Science, University of Calabar, Calabar, Nigeria. ARTICLE INFO ABSTRACT Article history: One hundred (100) mature black-skinned ectotype of giant African land snails (Archachatina Received: 8 February 2013; marginata) were managed intensively in wooden cages to generate eggs used to investigate Received in revised form: the developmental stages of eggs. The eggs laid by the black-skinned ectotype of snails were 7 May 2013; partial cracked by the side and a small portion of the shell using pin opened up for Accepted: 11 May 2013; microscopic examination at two days interval. The microscopic examination and photographs of the internal structures of the eggs revealed that embryo and shell formation Keywords took place between the eighth and fourteenth days. From days eighteen to twenty, the snails Development, were found to be completely formed. The baby snail or hatchling crawled out of the egg’s Hatchling, shell on the twenty-four day, marking the incubation period for the eggs of black-skinned Embryo, ectotype of A. marginata to be 24 days. Eggs, © 2013 Elixir All rights reserved. Snails. Introduction micro-environment similar to the natural habitat of snails as well Giant African land snails consist of many species among the as shade that protected the cages used for the study from direct various species commonly found in the southern part of Nigeria sunlight.
    [Show full text]
  • Archachatina Marginata
    Volume 11 No. 5 September 2011 NUTRITIONAL AND SENSORY PROFILING OF THE AFRICAN GIANT LAND SNAIL FED COMMERCIAL-TYPE AND LEAF-BASED DIETS IN A RAIN-FOREST ECOLOGY 1 2* Kalio GA and I Etela Godfrey Adokiye Kalio Ibisime Etela *Corresponding author email: [email protected] 1Department of Agriculture, Rivers State University of Education, PMB 5047, Ndele, Nigeria. 2Department of Animal Science and Fisheries, University of Port Harcourt, PMB 5323, Port Harcourt, Rivers State, Nigeria. 5254 Volume 11 No. 5 September 2011 ABSTRACT Nutritional and organoleptic properties of the African giant land snails (Archachatina marginata) were investigated using 96 healthy-looking growing snails maintained on broiler starter mash (BSM) as control, Talinium triangulare or waterleaf, Centrosema molle or centro leaves, and Carica papaya or pawpaw leaves for 16 weeks. This study was set up as a completely randomized design (CRD) with the snails allocated to 4 treatment groups (broiler starter mash (BSM) as control; Talinium triangulare leaves or waterleaf; Centrosema molle or centro leaves; Carica papaya or pawpaw leaves) and 3 replications each of 8 snails (giving a total of 24 snails per treatment group). At the end of the 16-week period, 4 snails were each harvested at random from the 3 replicates of each of the 4 treatments, sacrificed, processed and analyzed. Dry matter (DM), ash, fat or ether extract (EE) and nitrogen-free extract (NFE) were higher (P < 0.05) in the BSM group, while crude fibre (CF) was higher (P < 0.05) in centro leaves (34.2 g/100 g) and crude protein (CP) was higher in pawpaw leaves.
    [Show full text]
  • Slug: an Emerging Menace in Agriculture: a Review
    Journal of Entomology and Zoology Studies 2020; 8(4): 01-06 E-ISSN: 2320-7078 P-ISSN: 2349-6800 www.entomoljournal.com Slug: An emerging menace in agriculture: A JEZS 2020; 8(4): 01-06 © 2020 JEZS review Received: 01-05-2020 Accepted: 03-06-2020 Partha Pratim Gyanudoy Das, Badal Bhattacharyya, Sudhansu Partha Pratim Gyanudoy Das All India Network Project on Bhagawati, Elangbam Bidyarani Devi, Nang Sena Manpoong and K Soil Arthropod Pests, Sindhura Bhairavi Department of Entomology, Assam Agricultural University, Jorhat, Assam, India Abstract Most of the terrestrial slugs are potential threat to agriculture across the globe. Their highly adaptive Badal Bhattacharyya nature helps them to survive in both temperate and tropical climates which is one of the major reasons of All India Network Project on its abundant species diversity. It is not only a severe problem in different seedlings of nursery and Soil Arthropod Pests, orchards, also a worry factor for the seeds of legumes sown in furrows. The whitish slimy mucus Department of Entomology, generated by this pest makes the flower and vegetables unfit for sale. However, despite of its euryphagic Assam Agricultural University, nature, very few works have been carried out on slug morphology, biology, ecology, taxonomy and its Jorhat, Assam, India management in India. This review article tries to integrate the information of economically important slug species of the world as well as India, their bio-ecology, nature of damage, favorable factors with Sudhansu Bhagawati special emphasis on eco-friendly management tactics of this particular gastropod pest. All India Network Project on Soil Arthropod Pests, Keywords: Slug, euryphagic, bio-ecology, management, gastropod pest Department of Entomology, Assam Agricultural University, Jorhat, Assam, India Introduction With a number of 80,000 to 135,000 members, mollusc ranks second largest invertebrate Elangbam Bidyarani Devi group in the world, out of which 1129 species of terrestrial molluscs are found in India [1, 2, 3].
    [Show full text]
  • Ergebnisse Der Österreichischen Neukaledonien-Expedition 1965
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Annalen des Naturhistorischen Museums in Wien Jahr/Year: 1970 Band/Volume: 74 Autor(en)/Author(s): Oberzeller Edda Artikel/Article: Ergebnisse der Österreichischen Neukaledonien-Expedition 1965. Terrestrische Gastropoda II: Veronicellidae und Athoracophoridae. 325-341 ©Naturhistorisches Museum Wien, download unter www.biologiezentrum.at Ann. Naturhistor. Mus. Wien 74 325-341 Wien, November 1970 Ergebnisse der Österreichischen Neukaledonien-Expedition 1965 Terrestrische Gastropoda, II: Veronicellidae und Athoracophoridae Von EDDA OBERZELLER *) (Mit 18 Textabbildungen und 5 Tafeln) Manuskript eingelangt am 24. April 1969 Um eine hydrobiologische Untersuchung auf der Insel Neukaledonien im SW-Pazifik durchzuführen, fand im Sommer (Juni—Okt.) 1965 eine Forschungs- reise unter der Leitung von Doz. Dr. F. STARMÜHLNER statt. Die weiteren Teilnehmer waren Dr. A. KALTENBACH, Dr. G. WENINGER und Cand. phil. E. OBERZELLER. Als Aufenthaltszeit wurde der südliche Winter wegen der relativen Trockenheit gewählt, da nur zu dieser Jahreszeit die zum Ziel ge- setzten hydrobiologischen Untersuchungen (STARMÜHLNER 1968, WENINGER 1968) möglich waren. Der Hauptaufgabenbereich der Expeditionsteilnehmer und die für das Auffinden von Landgastropoden ungünstige Jahreszeit erklärt die geringe Ausbeute. Die Aufsammlungen konnten nur neben der eigentlichen Fließwasseruntersuchung an Bach- und Flußufern durchgeführt werden.
    [Show full text]
  • Cotton Seed Bug, Oxycarenus Hyalinipennis (Costa): a Serious Pest of Cotton That Has Become Established in the Caribbean Basin
    DACS-P-01726 Florida Department of Agriculture and Consumer Services, Division of Plant Industry Charles H. Bronson, Commissioner of Agriculture Cotton Seed Bug, Oxycarenus hyalinipennis (Costa): A serious pest of cotton that has become established in the Caribbean Basin Susan E. Halbert, [email protected], Florida Department of Agriculture and Consumer Services, Division of Plant Industry Thomas Dobbs, [email protected], USDA-APHIS-PPQ, Miami INTRODUCTION: The cotton seed bug, Oxycarenus hyalinipennis (Costa), is a serious pest of cotton and other malvaceous plants. It is native to Africa. It has become established in the Caribbean Basin (Baranowski and Slater 2005, Slater and Baranowski 1994). The cotton seed bug has been intercepted on numerous occasions on material from Africa, Asia, Europe, the Middle East, Central America, South America and the Caribbean. An infestation of O. hyalinipennis was found in a trailer park in Stock Island, Monroe County, Florida on 23 March 2010 by William A. Thiel, USDA/APHIS/PPQ. A detailed risk analysis, reviewing much of the relevant literature, was written by the Plant Epidemiology and Risk Analysis Laboratory, Center for Plant Health Science and Technology, APHIS/Plant Protection and Quarantine, Raleigh, NC. DESCRIPTION: As the name suggests, this is a bug with transparent wings. The rest of the body is dark, giving the bug a contrasting black and white appearance. The head is shaped like the head of a rat (Fig. 1). The bugs are 4-5 mm long. Nymphs can be reddish (Sweet 2000). There are about 55 valid described species of Oxycarenus, several of which are known pests (Sweet 2000).
    [Show full text]
  • Gastropoda: Stylommatophora)1 John L
    EENY-494 Terrestrial Slugs of Florida (Gastropoda: Stylommatophora)1 John L. Capinera2 Introduction Florida has only a few terrestrial slug species that are native (indigenous), but some non-native (nonindigenous) species have successfully established here. Many interceptions of slugs are made by quarantine inspectors (Robinson 1999), including species not yet found in the United States or restricted to areas of North America other than Florida. In addition to the many potential invasive slugs originating in temperate climates such as Europe, the traditional source of invasive molluscs for the US, Florida is also quite susceptible to invasion by slugs from warmer climates. Indeed, most of the invaders that have established here are warm-weather or tropical species. Following is a discus- sion of the situation in Florida, including problems with Figure 1. Lateral view of slug showing the breathing pore (pneumostome) open. When closed, the pore can be difficult to locate. slug identification and taxonomy, as well as the behavior, Note that there are two pairs of tentacles, with the larger, upper pair ecology, and management of slugs. bearing visual organs. Credits: Lyle J. Buss, UF/IFAS Biology as nocturnal activity and dwelling mostly in sheltered Slugs are snails without a visible shell (some have an environments. Slugs also reduce water loss by opening their internal shell and a few have a greatly reduced external breathing pore (pneumostome) only periodically instead of shell). The slug life-form (with a reduced or invisible shell) having it open continuously. Slugs produce mucus (slime), has evolved a number of times in different snail families, which allows them to adhere to the substrate and provides but this shell-free body form has imparted similar behavior some protection against abrasion, but some mucus also and physiology in all species of slugs.
    [Show full text]