The Critical Exponent, the Hausdorff Dimension of the Limit Set and the Convex Core Entropy of a Kleinian Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Möbius Transformations
Möbius transformations Möbius transformations are simply the degree one rational maps of C: az + b σ : z 7! : ! A cz + d C C where ad − bc 6= 0 and a b A = c d Then A 7! σA : GL(2C) ! fMobius transformations g is a homomorphism whose kernel is ∗ fλI : λ 2 C g: The homomorphism is an isomorphism restricted to SL(2; C), the subgroup of matri- ces of determinant 1. We have an action of GL(2; C) on C by A:(B:z) = (AB):z; A; B 2 GL(2; C); z 2 C: The action of SL(2; R) preserves the upper half-plane fz 2 C : Im(z) > 0g and also R [ f1g and the lower half-plane. The action of the subgroup a b SU(1; 1) = : jaj2 − jbj2 = 1 b a preserves the open unit disc, the closed unit disc, and its exterior. All of these actions are transitive that is, for all z and w in the domain there is A in the group with A:z = w. Kleinian groups Definition 1 A Kleinian group is a subgroup Γ of P SL(2; C) which is discrete, that is, there is an open neighbourhood U ⊂ P SL(2; C) of the identity element I such that U \ Γ = fIg: Definition 2 A Fuchsian group is a discrete subgroup of P SL(2; R) Equivalently (as usual with topological groups) there is an open neighbourhood V of I such that γV \ γ0V = ; for all γ, γ0 2 Γ, γ 6= γ0. To get this, choose V with V = V −1 and V:V ⊂ U. -
Basic Properties of Filter Convergence Spaces
Basic Properties of Filter Convergence Spaces Barbel¨ M. R. Stadlery, Peter F. Stadlery;z;∗ yInstitut fur¨ Theoretische Chemie, Universit¨at Wien, W¨ahringerstraße 17, A-1090 Wien, Austria zThe Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA ∗Address for corresponce Abstract. This technical report summarized facts from the basic theory of filter convergence spaces and gives detailed proofs for them. Many of the results collected here are well known for various types of spaces. We have made no attempt to find the original proofs. 1. Introduction Mathematical notions such as convergence, continuity, and separation are, at textbook level, usually associated with topological spaces. It is possible, however, to introduce them in a much more abstract way, based on axioms for convergence instead of neighborhood. This approach was explored in seminal work by Choquet [4], Hausdorff [12], Katˇetov [14], Kent [16], and others. Here we give a brief introduction to this line of reasoning. While the material is well known to specialists it does not seem to be easily accessible to non-topologists. In some cases we include proofs of elementary facts for two reasons: (i) The most basic facts are quoted without proofs in research papers, and (ii) the proofs may serve as examples to see the rather abstract formalism at work. 2. Sets and Filters Let X be a set, P(X) its power set, and H ⊆ P(X). The we define H∗ = fA ⊆ Xj(X n A) 2= Hg (1) H# = fA ⊆ Xj8Q 2 H : A \ Q =6 ;g The set systems H∗ and H# are called the conjugate and the grill of H, respectively. -
Basic Topologytaken From
Notes by Tamal K. Dey, OSU 1 Basic Topology taken from [1] 1 Metric space topology We introduce basic notions from point set topology. These notions are prerequisites for more sophisticated topological ideas—manifolds, homeomorphism, and isotopy—introduced later to study algorithms for topological data analysis. To a layman, the word topology evokes visions of “rubber-sheet topology”: the idea that if you bend and stretch a sheet of rubber, it changes shape but always preserves the underlying structure of how it is connected to itself. Homeomorphisms offer a rigorous way to state that an operation preserves the topology of a domain, and isotopy offers a rigorous way to state that the domain can be deformed into a shape without ever colliding with itself. Topology begins with a set T of points—perhaps the points comprising the d-dimensional Euclidean space Rd, or perhaps the points on the surface of a volume such as a coffee mug. We suppose that there is a metric d(p, q) that specifies the scalar distance between every pair of points p, q ∈ T. In the Euclidean space Rd we choose the Euclidean distance. On the surface of the coffee mug, we could choose the Euclidean distance too; alternatively, we could choose the geodesic distance, namely the length of the shortest path from p to q on the mug’s surface. d Let us briefly review the Euclidean metric. We write points in R as p = (p1, p2,..., pd), d where each pi is a real-valued coordinate. The Euclidean inner product of two points p, q ∈ R is d Rd 1/2 d 2 1/2 hp, qi = Pi=1 piqi. -
Qualitative Picture of Scaling in the Entropy Formalism
Entropy 2008, 10, 224-239; DOI: 10.3390/e10030224 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.org/entropy Article Qualitative Picture of Scaling in the Entropy Formalism Hans Behringer Faculty of Physics, University of Bielefeld, D-33615 Bielefeld, Germany E-mail: [email protected] Received: 30 June 2008; in revised form: 27 August 2008 / Accepted: 2 September 2008 / Published: 5 September 2008 Abstract: The properties of an infinite system at a continuous phase transition are charac- terised by non-trivial critical exponents. These non-trivial exponents are related to scaling relations of the thermodynamic potential. The scaling properties of the singular part of the specific entropy of infinite systems are deduced starting from the well-established scaling re- lations of the Gibbs free energy. Moreover, it turns out that the corrections to scaling are suppressed in the microcanonical ensemble compared to the corresponding corrections in the canonical ensemble. Keywords: Critical phenomena, microcanonical entropy, scaling relations, Gaussian and spherical model 1. Introduction In a mathematically idealised way continuous phase transitions are described in infinite systems al- though physical systems in nature or in a computer experiment are finite. The singular behaviour of physical quantities such as the response functions is related to scaling properties of the thermodynamic potential which is used for the formulation [1, 2]. Normally the Gibbs free energy is chosen for the description although other potentials also contain the full information about an equilibrium phase transi- tion. The Hankey-Stanley theorem relates the scaling properties of the Gibbs free energy to the scaling properties of any other energy-like potential that is obtained from the Gibbs free energy by a Legendre transformation [3]. -
Handlebody Orbifolds and Schottky Uniformizations of Hyperbolic 2-Orbifolds
proceedings of the american mathematical society Volume 123, Number 12, December 1995 HANDLEBODY ORBIFOLDS AND SCHOTTKY UNIFORMIZATIONS OF HYPERBOLIC 2-ORBIFOLDS MARCO RENI AND BRUNO ZIMMERMANN (Communicated by Ronald J. Stern) Abstract. The retrosection theorem says that any hyperbolic or Riemann sur- face can be uniformized by a Schottky group. We generalize this theorem to the case of hyperbolic 2-orbifolds by giving necessary and sufficient conditions for a hyperbolic 2-orbifold, in terms of its signature, to admit a uniformization by a Kleinian group which is a finite extension of a Schottky group. Equiva- lent^, the conditions characterize those hyperbolic 2-orbifolds which occur as the boundary of a handlebody orbifold, that is, the quotient of a handlebody by a finite group action. 1. Introduction Let F be a Fuchsian group, that is a discrete group of Möbius transforma- tions—or equivalently, hyperbolic isometries—acting on the upper half space or the interior of the unit disk H2 (Poincaré model of the hyperbolic plane). We shall always assume that F has compact quotient tf = H2/F which is a hyperbolic 2-orbifold with signature (g;nx,...,nr); here g denotes the genus of the quotient which is a closed orientable surface, and nx, ... , nr are the orders of the branch points (the singular set of the orbifold) of the branched covering H2 -» H2/F. Then also F has signature (g;nx,... , nr), and (2 - 2g - £-=1(l - 1/«/)) < 0 (see [12] resp. [15] for information about orbifolds resp. Fuchsian groups). In case r — 0, or equivalently, if the Fuch- sian group F is without torsion, the quotient H2/F is a hyperbolic or Riemann surface without branch points. -
Hyperbolic Geometry, Fuchsian Groups, and Tiling Spaces
HYPERBOLIC GEOMETRY, FUCHSIAN GROUPS, AND TILING SPACES C. OLIVARES Abstract. Expository paper on hyperbolic geometry and Fuchsian groups. Exposition is based on utilizing the group action of hyperbolic isometries to discover facts about the space across models. Fuchsian groups are character- ized, and applied to construct tilings of hyperbolic space. Contents 1. Introduction1 2. The Origin of Hyperbolic Geometry2 3. The Poincar´eDisk Model of 2D Hyperbolic Space3 3.1. Length in the Poincar´eDisk4 3.2. Groups of Isometries in Hyperbolic Space5 3.3. Hyperbolic Geodesics6 4. The Half-Plane Model of Hyperbolic Space 10 5. The Classification of Hyperbolic Isometries 14 5.1. The Three Classes of Isometries 15 5.2. Hyperbolic Elements 17 5.3. Parabolic Elements 18 5.4. Elliptic Elements 18 6. Fuchsian Groups 19 6.1. Defining Fuchsian Groups 20 6.2. Fuchsian Group Action 20 Acknowledgements 26 References 26 1. Introduction One of the goals of geometry is to characterize what a space \looks like." This task is difficult because a space is just a non-empty set endowed with an axiomatic structure|a list of rules for its points to follow. But, a priori, there is nothing that a list of axioms tells us about the curvature of a space, or what a circle, triangle, or other classical shapes would look like in a space. Moreover, the ways geometry manifests itself vary wildly according to changes in the axioms. As an example, consider the following: There are two spaces, with two different rules. In one space, planets are round, and in the other, planets are flat. -
16 Continuous Functions Definition 16.1. Let F
Math 320, December 09, 2018 16 Continuous functions Definition 16.1. Let f : D ! R and let c 2 D. We say that f is continuous at c, if for every > 0 there exists δ>0 such that jf(x)−f(c)j<, whenever jx−cj<δ and x2D. If f is continuous at every point of a subset S ⊂D, then f is said to be continuous on S. If f is continuous on its domain D, then f is said to be continuous. Notice that in the above definition, unlike the definition of limits of functions, c is not required to be a limit point of D. It is clear from the definition that if c is an isolated point of the domain D, then f must be continuous at c. The following statement gives the interpretation of continuity in terms of neighborhoods and sequences. Theorem 16.2. Let f :D!R and let c2D. Then the following three conditions are equivalent. (a) f is continuous at c (b) If (xn) is any sequence in D such that xn !c, then limf(xn)=f(c) (c) For every neighborhood V of f(c) there exists a neighborhood U of c, such that f(U \D)⊂V . If c is a limit point of D, then the above three statements are equivalent to (d) f has a limit at c and limf(x)=f(c). x!c From the sequential interpretation, one gets the following criterion for discontinuity. Theorem 16.3. Let f :D !R and c2D. Then f is discontinuous at c iff there exists a sequence (xn)2D, such that (xn) converges to c, but the sequence f(xn) does not converge to f(c). -
A TEXTBOOK of TOPOLOGY Lltld
SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY lltld SEI FER T: 7'0PO 1.OG 1' 0 I.' 3- Dl M E N SI 0 N A I. FIRERED SPACES This is a volume in PURE AND APPLIED MATHEMATICS A Series of Monographs and Textbooks Editors: SAMUELEILENBERG AND HYMANBASS A list of recent titles in this series appears at the end of this volunie. SEIFERT AND THRELFALL: A TEXTBOOK OF TOPOLOGY H. SEIFERT and W. THRELFALL Translated by Michael A. Goldman und S E I FE R T: TOPOLOGY OF 3-DIMENSIONAL FIBERED SPACES H. SEIFERT Translated by Wolfgang Heil Edited by Joan S. Birman and Julian Eisner @ 1980 ACADEMIC PRESS A Subsidiary of Harcourr Brace Jovanovich, Publishers NEW YORK LONDON TORONTO SYDNEY SAN FRANCISCO COPYRIGHT@ 1980, BY ACADEMICPRESS, INC. ALL RIGHTS RESERVED. NO PART OF THIS PUBLICATION MAY BE REPRODUCED OR TRANSMITTED IN ANY FORM OR BY ANY MEANS, ELECTRONIC OR MECHANICAL, INCLUDING PHOTOCOPY, RECORDING, OR ANY INFORMATION STORAGE AND RETRIEVAL SYSTEM, WITHOUT PERMISSION IN WRITING FROM THE PUBLISHER. ACADEMIC PRESS, INC. 11 1 Fifth Avenue, New York. New York 10003 United Kingdom Edition published by ACADEMIC PRESS, INC. (LONDON) LTD. 24/28 Oval Road, London NWI 7DX Mit Genehmigung des Verlager B. G. Teubner, Stuttgart, veranstaltete, akin autorisierte englische Ubersetzung, der deutschen Originalausgdbe. Library of Congress Cataloging in Publication Data Seifert, Herbert, 1897- Seifert and Threlfall: A textbook of topology. Seifert: Topology of 3-dimensional fibered spaces. (Pure and applied mathematics, a series of mono- graphs and textbooks ; ) Translation of Lehrbuch der Topologic. Bibliography: p. Includes index. 1. -
Statistical Field Theory University of Cambridge Part III Mathematical Tripos
Preprint typeset in JHEP style - HYPER VERSION Michaelmas Term, 2017 Statistical Field Theory University of Cambridge Part III Mathematical Tripos David Tong Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Wilberforce Road, Cambridge, CB3 OBA, UK http://www.damtp.cam.ac.uk/user/tong/sft.html [email protected] –1– Recommended Books and Resources There are a large number of books which cover the material in these lectures, although often from very di↵erent perspectives. They have titles like “Critical Phenomena”, “Phase Transitions”, “Renormalisation Group” or, less helpfully, “Advanced Statistical Mechanics”. Here are some that I particularly like Nigel Goldenfeld, Phase Transitions and the Renormalization Group • Agreatbook,coveringthebasicmaterialthatwe’llneedanddelvingdeeperinplaces. Mehran Kardar, Statistical Physics of Fields • The second of two volumes on statistical mechanics. It cuts a concise path through the subject, at the expense of being a little telegraphic in places. It is based on lecture notes which you can find on the web; a link is given on the course website. John Cardy, Scaling and Renormalisation in Statistical Physics • Abeautifullittlebookfromoneofthemastersofconformalfieldtheory.Itcoversthe material from a slightly di↵erent perspective than these lectures, with more focus on renormalisation in real space. Chaikin and Lubensky, Principles of Condensed Matter Physics • Shankar, Quantum Field Theory and Condensed Matter • Both of these are more all-round condensed matter books, but with substantial sections on critical phenomena and the renormalisation group. Chaikin and Lubensky is more traditional, and packed full of content. Shankar covers modern methods of QFT, with an easygoing style suitable for bedtime reading. Anumberofexcellentlecturenotesareavailableontheweb.Linkscanbefoundon the course webpage: http://www.damtp.cam.ac.uk/user/tong/sft.html. -
POINT SET TOPOLOGY Definition 1 a Topological Structure On
POINT SET TOPOLOGY De¯nition 1 A topological structure on a set X is a family (X) called open sets and satisfying O ½ P (O ) is closed for arbitrary unions 1 O (O ) is closed for ¯nite intersections. 2 O De¯nition 2 A set with a topological structure is a topological space (X; ) O ; = 2;Ei = x : x Eifor some i = [ [i f 2 2 ;g ; so is always open by (O ) ; 1 ; = 2;Ei = x : x Eifor all i = X \ \i f 2 2 ;g so X is always open by (O2). Examples (i) = (X) the discrete topology. O P (ii) ; X the indiscrete of trivial topology. Of; g These coincide when X has one point. (iii) =the rational line. Q =set of unions of open rational intervals O De¯nition 3 Topological spaces X and X 0 are homomorphic if there is an isomorphism of their topological structures i.e. if there is a bijection (1-1 onto map) of X and X 0 which generates a bijection of and . O O e.g. If X and X are discrete spaces a bijection is a homomorphism. (see also Kelley p102 H). De¯nition 4 A base for a topological structure is a family such that B ½ O every o can be expressed as a union of sets of 2 O B Examples (i) for the discrete topological structure x x2X is a base. f g (ii) for the indiscrete topological structure ; X is a base. f; g (iii) For , topologised as before, the set of bounded open intervals is a base.Q 1 (iv) Let X = 0; 1; 2 f g Let = (0; 1); (1; 2); (0; 12) . -
Thermodynamic Derivation of Scaling at the Liquid–Vapor Critical Point
entropy Article Thermodynamic Derivation of Scaling at the Liquid–Vapor Critical Point Juan Carlos Obeso-Jureidini , Daniela Olascoaga and Victor Romero-Rochín * Instituto de Física, Universidad Nacional Autónoma de México, Apartado Postal 20-364, Ciudad de México 01000, Mexico; [email protected] (J.C.O.-J.); [email protected] (D.O.) * Correspondence: romero@fisica.unam.mx; Tel.: +52-55-5622-5096 Abstract: With the use of thermodynamics and general equilibrium conditions only, we study the entropy of a fluid in the vicinity of the critical point of the liquid–vapor phase transition. By assuming a general form for the coexistence curve in the vicinity of the critical point, we show that the functional dependence of the entropy as a function of energy and particle densities necessarily obeys the scaling form hypothesized by Widom. Our analysis allows for a discussion of the properties of the corresponding scaling function, with the interesting prediction that the critical isotherm has the same functional dependence, between the energy and the number of particles densities, as the coexistence curve. In addition to the derivation of the expected equalities of the critical exponents, the conditions that lead to scaling also imply that, while the specific heat at constant volume can diverge at the critical point, the isothermal compressibility must do so. Keywords: liquid–vapor critical point; scaling hypothesis; critical exponents Citation: Obeso-Jureidini, J.C.; 1. Introduction Olascoaga, D.; Romero-Rochín, V. The full thermodynamic description of critical phenomena in the liquid–vapor phase Thermodynamic Derivation of transition of pure substances has remained as a theoretical challenge for a long time [1]. -
Hyperbolic Geometry of Riemann Surfaces
3 Hyperbolic geometry of Riemann surfaces By Theorem 1.8.8, all hyperbolic Riemann surfaces inherit the geometry of the hyperbolic plane. How this geometry interacts with the topology of a Riemann surface is a complicated business, and beginning with Section 3.2, the material will become more demanding. Since this book is largely devoted to the study of Riemann surfaces, a careful study of this interaction is of central interest and underlies most of the remainder of the book. 3.1 Fuchsian groups We saw in Proposition 1.8.14 that torsion-free Fuchsian groups and hyper- bolic Riemann surfaces are essentially the same subject. Most such groups and most such surfaces are complicated objects: usually, a Fuchsian group is at least as complicated as a free group on two generators. However, in a few exceptional cases Fuchsian groups are not complicated, whether they have torsion or not. Such groups are called elementary;we classify them in parts 1–3 of Proposition 3.1.2. Part 4 concerns the com- plicated case – the one that really interests us. Notationin 3.1.1 If A is a subset of a group G, we denote by hAi the subgroup generated by A. Propositionin 3.1.2 (Fuchsian groups) Let be a Fuchsian group. 1. If is nite, it is a cyclic group generated by a rotation about a point by 2/n radians, for some positive integer n. 2. If is innite but consists entirely of elliptic and parabolic ele- ments, then it is innite cyclic, is generated by a single parabolic element, and contains no elliptic elements.