North Atlantic Coastal Plain Brackish/Fresh & Oligohaline Tidal

Total Page:16

File Type:pdf, Size:1020Kb

North Atlantic Coastal Plain Brackish/Fresh & Oligohaline Tidal North Atlantic Coastal Plain Brackish/Fresh & Oligohaline Tidal Marsh Macrogroup: Tidal Marsh yourStateNatural Heritage Ecologist for more information about this habitat. This is modeledmap a distributiononbased current and is data nota substitute for field inventory. based Contact © Gary P. Fleming (Virginia Department of Conservation & Recreation Natural Heritage Program) Description: A graminoid-dominated wetland of fresh to slightly brackish zones along tidal rivers in very southeast Virginia and the southern shores of the James River. Water salinity varies from nearly fresh (oligohaline) in the drowned creeks and inland estuaries to saltier brackish water near the coast and on or near barrier island inlets. These marshes typically occur as complexes dominated by large graminoids such as salt hay, bulrushes, cattails, and rushes, sometimes with species-rich associations of shorter graminoids, forbs, and floating or submerged aquatics. Brackish marshes tend to be low diversity communities of intertidal flats cut off from direct oceanic influence by protective barrier islands. State Distribution: VA Total Habitat Acreage: 17,021 Ecological Setting and Natural Processes: Percent Conserved: 14.6% These marshes are associated with extensive brackish State State GAP 1&2 GAP 3 Unsecured water and both lunar and wind tidal flooding. The tidal State Habitat % Acreage (acres) (acres) (acres) freshwater marshes are driven by irregular wind tides, with VA 100% 17,021 240 2,252 14,529 minimal lunar tidal influence. Irregular flooding, fire, and sea- level rise are important drivers of ecological change. Similar Habitat Types: This system is mapped in extreme southeastern Virginia only, while the North Atlantic Coastal Plain Tidal Salt Marsh system is mapped from Chesapeake Bay north to southern Maine. In addition, it represents only brackish and fresh marshes; all salinity levels, salt, brackish, and oligohaline/fresh, are lumped together and mapped in the northern salt marsh system. Crosswalk to State Wildlife Action Plans: Crosswalk to State Name Examples: Places to Visit this Habitat: Habitat Patch Distribution Chippokes Plantation State Park | VA 7,000 First Landing State Park | VA 6,000 Nansemond National Wildlife Refuge | VA 5,000 4,000 Ragged Island Wildlife Management Area | VA 3,000 Acres 2,000 1,000 0 Associated Species: Appendix lists scientific names 0 to 1 1 to 5 5 to 10 1000+ BIRDS: american goldfinch, common yellowthroat, least bittern, 10 to 100 marsh wren, red-winged blackbird, song sparrow, swamp 100 to 1000 sparrow, virginia rail, willow flycatcher, yellow warbler Patch Size Classes The average patch size for this habitat is 5 acres and the largest single patch is MAMMALS: big brown bat, eastern pipistrelle, little brown 1,237 acres. This chart shows the proportion of the habitat that is in each patch-size myotis, northern long-eared bat, red bat, silver-haired bat class. PLANTS: Sandpaper Vervain (Verbena scabra) Age Class Distribution 100 80 60 40 20 0 Percent of Habitat 1 to 20 20 to 40 40 to 60 60 to 80 80 to 100100 to 140 Age (Years) This chart shows the average age of trees associated with this habitat based on forest Inventory data. For non-forested systems or small habitats the average age is Species of Concern (G1-G4): Appendix lists scientific names influenced by the surroundings. INSECTS: rare skipper Predicted Habitat Loss to Development 20,000 15,000 10,000 Acreage 5,000 0 2010 2020 2030 2040 2050 2060 Decade This chart shows the predicted loss of habitat over the next five decades (2,700 acres) if loss continues at the same rate as 1990-2000. The average rate of loss is 54 acres per year. Habitat Connectedness Index 60 40 20 0 Percent of Habitat 0 to 25 25 to 50 50 to 75 75 to 100 Degree of Fragmentation (0=Highly Fragmented & 100= Highly Connected) This metric measures how connected or fragmented the land directly surrounding (18 © Gary P. Fleming (Virginia Department of Conservation & Recreation Natural square miles) the habitat is, this the chart shows the proportion of the habitat in each Heritage Program) connectedness class. North Atlantic Coastal Plain Brackish/Fresh & Oligohaline Tidal Marsh http://nature.ly/HabitatGuide.
Recommended publications
  • Brodhead Watershed Conservation Plan
    Brodhead Watershed Conservation Plan January, 2002 Prepared by: Brodhead Watershed Association With: BLOSS Associates Brodhead Watershed Conservation Plan Acknowledgements The Watershed Partners were the backbone of this planning process. Their commitment to preserving and protecting the watershed underlies this entire plan. Watershed Partners / Conservation Plan Steering Committee Monroe County Commissioners – Mario Scavello, Donna Asure, James Cadue, Former Commissioner Janet Weidensaul Monroe County Conservation District – Craig Todd, Darryl Speicher Monroe County Planning Commission – John Woodling, Eric Bartolacci Monroe County Historical Association – Candace McGreevey Monroe County Office of Emergency Management – Harry Robidoux Monroe County Open Space Advisory Board – Tom O’Keefe Monroe County Recreation & Park Commission – Kara Derry Monroe 2020 Executive Committee – Charles Vogt PA Department of Environmental Protection – Bill Manner Pennsylvania State University – Jay Stauffer Penn State Cooperative Extension – Peter Wulfhurst Stroudsburg Municipal Authority – Ken Brown Mount Pocono Borough – Nancy Golowich Pocono/Hamilton/Jackson Open Space Committee – Cherie Morris Stroud Township – Ross Ruschman, Ed Cramer Smithfield Township – John Yetter Delaware River Basin Commission – Pamela V’Combe, Carol Collier U.S. Environmental Protection Agency – Susan McDowell Delaware Water Gap National Recreation Area – Denise Cook National Park Service, Rivers & Trails Office – David Lange National Institute for Environmental Renewal (no longer
    [Show full text]
  • Short Nosed Sturgeon
    Connecticut River Coordinator's Office: Fish Facts - Shortnose Sturgeon Page 1 of 3 Skip navigation links Fish Facts - Shortnose Sturgeon z Description z Life History z Distribution z Status z Restoration Efforts Download a Fact Sheet (85 KB Adobe pdf file) You will need Adobe Acrobat Reader software to open the document above. If you do not have this software, you may obtain it free of charge by following this link. Description The shortnose sturgeon (Acipenser brevirostrum) is one of two sturgeon species in the Connecticut River; the other is the Atlantic sturgeon. The shortnose is the smaller of the two, growing to be 2 to 3 feet in length and about 14 pounds in weight. Sturgeons are an ancient species with fossils dating back 65 million years. They are very distinctive, looking like a prehistoric cross between a shark and a catfish. Sturgeons lack teeth and scales but have a unique body armor of diamond-shaped bony plates called scutes. Some have been found to be over 60 years old. Life History Shortnose sturgeon are typically anadromous, migrating from the ocean to fresh water specifically to reproduce. However, of the two populations in the Connecticut River system (formed by the construction of dams), one is considered to be partially landlocked and the other is likely to be http://www.fws.gov/r5crc/Fish/zf_acbr.html 1/3/2007 Connecticut River Coordinator's Office: Fish Facts - Shortnose Sturgeon Page 2 of 3 amphidromous, moving between fresh and salt water. Shortnose reproduce in the spring. They broadcast their eggs in areas with rubble substrate.
    [Show full text]
  • Comparison of Swamp Forest and Phragmites Australis
    COMPARISON OF SWAMP FOREST AND PHRAGMITES AUSTRALIS COMMUNITIES AT MENTOR MARSH, MENTOR, OHIO A Thesis Presented in Partial Fulfillment of the Requirements for The Degree Master of Science in the Graduate School of the Ohio State University By Jenica Poznik, B. S. ***** The Ohio State University 2003 Master's Examination Committee: Approved by Dr. Craig Davis, Advisor Dr. Peter Curtis Dr. Jeffery Reutter School of Natural Resources ABSTRACT Two intermixed plant communities within a single wetland were studied. The plant community of Mentor Marsh changed over a period of years beginning in the late 1950’s from an ash-elm-maple swamp forest to a wetland dominated by Phragmites australis (Cav.) Trin. ex Steudel. Causes cited for the dieback of the forest include salt intrusion from a salt fill near the marsh, influence of nutrient runoff from the upland community, and initially higher water levels in the marsh. The area studied contains a mixture of swamp forest and P. australis-dominated communities. Canopy cover was examined as a factor limiting the dominance of P. australis within the marsh. It was found that canopy openness below 7% posed a limitation to the dominance of P. australis where a continuous tree canopy was present. P. australis was also shown to reduce diversity at sites were it dominated, and canopy openness did not fully explain this reduction in diversity. Canopy cover, disturbance history, and other environmental factors play a role in the community composition and diversity. Possible factors to consider in restoring the marsh are discussed. KEYWORDS: Phragmites australis, invasive species, canopy cover, Mentor Marsh ACKNOWLEDGEMENTS A project like this is only possible in a community, and more people have contributed to me than I can remember.
    [Show full text]
  • Alternative Stable States of Tidal Marsh Vegetation Patterns and Channel Complexity
    ECOHYDROLOGY Ecohydrol. (2016) Published online in Wiley Online Library (wileyonlinelibrary.com) DOI: 10.1002/eco.1755 Alternative stable states of tidal marsh vegetation patterns and channel complexity K. B. Moffett1* and S. M. Gorelick2 1 School of the Environment, Washington State University Vancouver, Vancouver, WA, USA 2 Department of Earth System Science, Stanford University, Stanford, CA, USA ABSTRACT Intertidal marshes develop between uplands and mudflats, and develop vegetation zonation, via biogeomorphic feedbacks. Is the spatial configuration of vegetation and channels also biogeomorphically organized at the intermediate, marsh-scale? We used high-resolution aerial photographs and a decision-tree procedure to categorize marsh vegetation patterns and channel geometries for 113 tidal marshes in San Francisco Bay estuary and assessed these patterns’ relations to site characteristics. Interpretation was further informed by generalized linear mixed models using pattern-quantifying metrics from object-based image analysis to predict vegetation and channel pattern complexity. Vegetation pattern complexity was significantly related to marsh salinity but independent of marsh age and elevation. Channel complexity was significantly related to marsh age but independent of salinity and elevation. Vegetation pattern complexity and channel complexity were significantly related, forming two prevalent biogeomorphic states: complex versus simple vegetation-and-channel configurations. That this correspondence held across marsh ages (decades to millennia)
    [Show full text]
  • Coastal and Marine Ecological Classification Standard (2012)
    FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard Marine and Coastal Spatial Data Subcommittee Federal Geographic Data Committee June, 2012 Federal Geographic Data Committee FGDC-STD-018-2012 Coastal and Marine Ecological Classification Standard, June 2012 ______________________________________________________________________________________ CONTENTS PAGE 1. Introduction ..................................................................................................................... 1 1.1 Objectives ................................................................................................................ 1 1.2 Need ......................................................................................................................... 2 1.3 Scope ........................................................................................................................ 2 1.4 Application ............................................................................................................... 3 1.5 Relationship to Previous FGDC Standards .............................................................. 4 1.6 Development Procedures ......................................................................................... 5 1.7 Guiding Principles ................................................................................................... 7 1.7.1 Build a Scientifically Sound Ecological Classification .................................... 7 1.7.2 Meet the Needs of a Wide Range of Users ......................................................
    [Show full text]
  • James T. Kirby, Jr
    James T. Kirby, Jr. Edward C. Davis Professor of Civil Engineering Center for Applied Coastal Research Department of Civil and Environmental Engineering University of Delaware Newark, Delaware 19716 USA Phone: 1-(302) 831-2438 Fax: 1-(302) 831-1228 [email protected] http://www.udel.edu/kirby/ Updated September 12, 2020 Education • University of Delaware, Newark, Delaware. Ph.D., Applied Sciences (Civil Engineering), 1983 • Brown University, Providence, Rhode Island. Sc.B.(magna cum laude), Environmental Engineering, 1975. Sc.M., Engineering Mechanics, 1976. Professional Experience • Edward C. Davis Professor of Civil Engineering, Department of Civil and Environmental Engineering, University of Delaware, 2003-present. • Visiting Professor, Grupo de Dinamica´ de Flujos Ambientales, CEAMA, Universidad de Granada, 2010, 2012. • Professor of Civil and Environmental Engineering, Department of Civil and Environmental Engineering, University of Delaware, 1994-2002. Secondary appointment in College of Earth, Ocean and the Environ- ment, University of Delaware, 1994-present. • Associate Professor of Civil Engineering, Department of Civil Engineering, University of Delaware, 1989- 1994. Secondary appointment in College of Marine Studies, University of Delaware, as Associate Professor, 1989-1994. • Associate Professor, Coastal and Oceanographic Engineering Department, University of Florida, 1988. • Assistant Professor, Coastal and Oceanographic Engineering Department, University of Florida, 1984- 1988. • Assistant Professor, Marine Sciences Research Center, State University of New York at Stony Brook, 1983- 1984. • Graduate Research Assistant, Department of Civil Engineering, University of Delaware, 1979-1983. • Principle Research Engineer, Alden Research Laboratory, Worcester Polytechnic Institute, 1979. • Research Engineer, Alden Research Laboratory, Worcester Polytechnic Institute, 1977-1979. 1 Technical Societies • American Society of Civil Engineers (ASCE) – Waterway, Port, Coastal and Ocean Engineering Division.
    [Show full text]
  • And Brackish Water Environments What Is Brackish Water Brackish Water Is Water Which Contains More Sea Salts Than Freshwater but Less Than the Open Sea
    http://www.unaab.edu.ng COURSE CODE: FIS316 COURSE TITLE: Marine and Brackishwater Economic Resources NUMBER OF UNITS: 2 Units COURSE DURATION: Two hours per week COURSECOURSE DETAILS:DETAILS: Course Coordinator: Prof. Yemi Akegbejo‐Samsons Email: [email protected] Office Location: Room D210, COLERM Other Lecturers: Dr. D.O. Odulate COURSE CONTENT: Study of major marine and brackish water fin and shell fish species in relation to their development for culture, food and industrial uses. Methods of harvesting e.g. electro‐ fishing. COURSE REQUIREMENTS: This is a compulsory course for all students in Department of Aquaculture & Fisheries Management. In view of this, students are expected to participate in all the course activities and have minimum of 75% attendance to be eligible to write the final examination. READING LIST: E LECTURE NOTES 1. Study of major marine and brackish water fin and shell fish species in relation to their development for culture, food and industrial uses. 2. Methods of harvesting e.g. electro-fishing. This course is taught by Prof Yemi Akegbejo-Samsons and Dr D O Odulate. The venue for the interaction with students is on the ground floor of the College of Environmental Resources Management. Topic 1 Marine and Brackish water environments What is Brackish Water Brackish water is water which contains more sea salts than freshwater but less than the open sea. http://www.unaab.edu.ng Moreover, brackish water environments are also fluctuating environments. The salinity is variable depending on the tide, the amount of freshwater entering from rivers or as rain, and the rate of evaporation.
    [Show full text]
  • Marsh-Pond-Marsh Constructed Wetland Design Analysis for Swine Lagoon Wastewater Treatment
    Ecological Engineering 23 (2004) 127–133 Marsh-pond-marsh constructed wetland design analysis for swine lagoon wastewater treatment K.C. Stonea,∗, M.E. Poacha, P.G. Hunta, G.B. Reddyb a USDA-ARS, 2611 West Lucas Street, Florence, SC 29501, USA b North Carolina A&T State University, Greensboro, NC, USA. Received 29 March 2004; received in revised form 23 July 2004; accepted 26 July 2004 Abstract Constructed wetlands have been identified as a potentially important component of animal wastewater treatment systems. Continuous marsh constructed wetlands have been shown to be effective in treating swine lagoon effluent and reducing the land needed for terminal application. Constructed wetlands have also been used widely in polishing wastewater from municipal systems. Constructed wetland design for animal wastewater treatment has largely been based on that of municipal systems. The objective of this research was to determine if a marsh-pond-marsh wetland system could be described using existing design approaches used for constructed wetland design. The marsh-pond-marsh wetlands investigated in this study were constructed in 1995 at the North Carolina A&T University research farm near Greensboro, NC. There were six wetland systems (11 m × 40 m). The first 10-m was a marsh followed by a 20-m pond section followed by a 10-m marsh planted with bulrushes and cattails. The wetlands were effective in treating nitrogen with mean total nitrogen and ammonia-N concentration reductions of approximately 30%; however, they were not as effective in the treatment of phosphorus (8%). Outflow concentrations were reasonably correlated (r2 ≥ 0.86 and r2 ≥ 0.83, respectively) to inflow concentrations and hydraulic loading rates for both total N and ammonia-N.
    [Show full text]
  • Exploring Our Wonderful Wetlands Publication
    Exploring Our Wonderful Wetlands Student Publication Grades 4–7 Dear Wetland Students: Are you ready to explore our wonderful wetlands? We hope so! To help you learn about several types of wetlands in our area, we are taking you on a series of explorations. As you move through the publication, be sure to test your wetland wit and write about wetlands before moving on to the next exploration. By exploring our wonderful wetlands, we hope that you will appreciate where you live and encourage others to help protect our precious natural resources. Let’s begin our exploration now! Southwest Florida Water Management District Exploring Our Wonderful Wetlands Exploration 1 Wading Into Our Wetlands ................................................Page 3 Exploration 2 Searching Our Saltwater Wetlands .................................Page 5 Exploration 3 Finding Out About Our Freshwater Wetlands .............Page 7 Exploration 4 Discovering What Wetlands Do .................................... Page 10 Exploration 5 Becoming Protectors of Our Wetlands ........................Page 14 Wetlands Activities .............................................................Page 17 Websites ................................................................................Page 20 Visit the Southwest Florida Water Management District’s website at WaterMatters.org. Exploration 1 Wading Into Our Wetlands What exactly is a wetland? The scientific and legal definitions of wetlands differ. In 1984, when the Florida Legislature passed a Wetlands Protection Act, they decided to use a plant list containing plants usually found in wetlands. We are very fortunate to have a lot of wetlands in Florida. In fact, Florida has the third largest wetland acreage in the United States. The term wetlands includes a wide variety of aquatic habitats. Wetland ecosystems include swamps, marshes, wet meadows, bogs and fens. Essentially, wetlands are transitional areas between dry uplands and aquatic systems such as lakes, rivers or oceans.
    [Show full text]
  • MUD CREATURE STUDY Overview: the Mudflats Support a Tremendous Amount of Life
    MUD CREATURE STUDY Overview: The mudflats support a tremendous amount of life. In this activity, students will search for and study the creatures that live in bay mud. Content Standards Correlations: Science p. 307 Grades: K-6 TIME FRAME fOR TEACHING THIS ACTIVITY Key Concepts: Mud creatures live in high abundance in the Recommended Time: 30 minutes mudflats, providing food for Mud Creature Banner (7 minutes) migratory ducks and shorebirds • use the Mud Creature Banner to introduce students to mudflat and the endangered California habitat clapper rail. When the tide is out, Mudflat Food Pyramid (3 minutes) the mudflats are revealed and birds land on the mudflats to feed. • discuss the mudflat food pyramid, using poster Mud Creature Study (20 minutes) Objectives: • sieve mud in sieve set, using slough water Students will be able to: • distribute small samples of mud to petri dishes • name and describe two to three • look for mud creatures using hand lenses mud creatures • describe the mudflat food • use the microscopes for a closer view of mud creatures pyramid • if data sheets and pencils are provided, students can draw what • explain the importance of the they find mudflat habitat for migratory birds and endangered species Materials: How THIS ACTIVITY RELATES TO THE REFUGE'S RESOURCES Provided by the Refuge: What are the Refuge's resources? • 1 set mud creature ID cards • significant wildlife habitat • 1 mud creature flannel banner • endangered species • 1 mudflat food pyramid poster • 1 mud creature ID book • rhigratory birds • 1 four-layered sieve set What makes it necessary to manage the resources? • 1 dish of mud and trowel • Pollution, such as oil, paint, and household cleaners, when • 1 bucket of slough water dumped down storm drains enters the slough and mudflats and • 1 pitcher of slough water travels through the food chain, harming animals.
    [Show full text]
  • Caspian Sea, Estuarine, Zooplankton, Diversity, Physicochemical
    Advances in Life Sciences 2014, 4(3): 135-139 DOI: 10.5923/j.als.20140403.07 The Influence of Salinity Variations on Zooplankton Community Structure in South Caspian Sea Basin Estuary Maryam Shapoori1,*, Mansoure Gholami2 1Department of Fishery, College of Natural resources, Savadkooh Branch, Islamic Azad University, Savadkooh, Iran 2Department of Fishery, College of Natural resources, Sanandaj Branch, Islamic Azad University, Sanandaj, Iran Abstract In order to better understanding the impact of changes in salinity on zooplankton community structure, investigations on the physicochemical characteristics, phytoplankton, and zooplankton component of an estuarine zone in South-Eastern Caspian Sea was carried out for one year between March, 2011 and July, 2012. The study showed notable seasonal variation in the components investigated. Salinity and water flow rate regime seemed a major determinant of the composition, abundance and seasonal variation of encountered estuarine biota. Rain events associated with reducing salinities and inflow associated with decreasing salinities may be key hydro-meteorological forcing operating in the estuary. The collection of juvenile forms (Zooplankton) recorded probably points to the suitability of the estuary characteristics to serve as breeding ground and place of refuge for diverse aquatic species. Keywords Caspian Sea, Estuarine, Zooplankton, Diversity, Physicochemical levels within coastal aquatic ecosystems in south Caspian 1. Introduction Sea region. Salinity is amongst the most important environmental factors with the potential to significantly River mouths are common hydrological features of South- influence estuarine communities [11]. Therefore, Eastern features of Caspian Sea and form part of the fluctuations in salinity and other environmental factors (e.g. numerous ecological niches associated with the Caspian temperature, pH, nutrients and pigments) on both spatial and coastal environment.
    [Show full text]
  • Ecosystem Element Conceptual Model Tidal Marsh
    Sacramento-San Joaquin Delta Regional Ecosystem Restoration Implementation Plan Ecosystem Element Conceptual Model Tidal Marsh Prepared by: Ronald T. Kneib, University of Georgia Marine Institute [email protected] and • Charles A. Simenstad, School of Aquatic & Fisheries Sciences, University of Washington • Matt L. Nobriga, CALFED Science Program • Drew M. Talley, San Francisco Bay National Estuarine Research Reserve, San Francisco State University, Romberg Tiburon Center Date of Model: October 2008 Status of Peer Review: Completed peer review on October 2008. Model content and format are suitable and model is ready for use in identifying and evaluating restoration actions. Suggested Citation: Kneib R, Simenstad C, Nobriga M, Talley D. 2008. Tidal marsh conceptual model. Sacramento (CA): Delta Regional Ecosystem Restoration Implementation Plan. For further inquiries on the DRERIP conceptual models, please contact Brad Burkholder at [email protected] or Steve Detwiler at [email protected]. PREFACE This Conceptual Model is part of a suite of conceptual models which collectively articulate the current scientific understanding of important aspects of the Sacramento-San Joaquin River Delta ecosystem. The conceptual models are designed to aid in the identification and evaluation of ecosystem restoration actions in the Delta. These models are designed to structure scientific information such that it can be used to inform sound public policy. The Delta Conceptual Models include both ecosystem element models (including process, habitat, and stressor models) and species life history models. The models were prepared by teams of experts using common guidance documents developed to promote consistency in the format and terminology of the models http://www.delta.dfg.ca.gov/erpdeltaplan/science_process.asp .
    [Show full text]