Assessing Environmental Contamination from Metal Emission and Relevant Regulations in Major Areas of Coal Mining and Electricity Generation in Australia

Total Page:16

File Type:pdf, Size:1020Kb

Assessing Environmental Contamination from Metal Emission and Relevant Regulations in Major Areas of Coal Mining and Electricity Generation in Australia Science of the Total Environment 728 (2020) 137398 Contents lists available at ScienceDirect Science of the Total Environment journal homepage: www.elsevier.com/locate/scitotenv Assessing environmental contamination from metal emission and relevant regulations in major areas of coal mining and electricity generation in Australia Larissa Schneider a,⁎, Neil L. Rose b, Anna Lintern c, Darren Sinclair d, Atun Zawadzki e, Cameron Holley f, Marco A. Aquino-López g, Simon Haberle a a Archaeology and Natural History, School of Culture, History and Language, College of the Asia and the Pacific, Australian National University, 2601, Acton, ACT, Canberra, Australia b Environmental Change Research Centre, Department of Geography, University College London, Gower Street, London WC1E 6BT, UK c Department of Civil Engineering, Monash University, Clayton, VIC 3800, Australia d Instituto of Governance and Policy Analysis, University of Canberra, Kirinari Street, Bruce Canberra, ACT 2617, Australia e Australian Nuclear Science and Technology Organisation, Lucas Heights 2234, NSW, Australia f Faculty of Law, UNSW, Sydney, NSW 2052, Australia g Maynooth University, Arts and Humanities Institute, Maynooth, Co. Kildare, Ireland HIGHLIGHTS GRAPHICAL ABSTRACT • Metal contamination was assessed in two major coal production centres in Australia. • Metal concentrations increased with commissioning of coal mining and power generation. • SCP appeared in sediments at the time coal fired power stations were commis- sioned. • Metal emissions are still increasing in Australia, following the trend in Asian countries. • Our results provide grounds for a review of current regulatory approaches in Australia. article info abstract Article history: The Hunter and Latrobe Valleys have two of the richest coal deposits in Australia. They also host the largest coal- Received 1 November 2019 fired power stations in the country. We reconstructed metal deposition records in lake sediments in the Hunter Received in revised form 14 February 2020 and Latrobe Valleys to determine if metal deposition in freshwater lakes have increased in the region. The current Accepted 16 February 2020 regulatory arrangement applied to metal emissions from coal-fired power stations in Australia are presented, Available online 19 February 2020 discussing their capacity to address future increases in metal deposition from these sources. Sediment records fl Editor: Filip M.G. Tack of spheroidal carbonaceous particles (SCPs), a component of y-ash, were also used as an additional line of evi- dence to identify the contribution of industrial activities related to electricity generation to metal deposition in Keywords: regions surrounding open-cut coal mines and coal-fired power stations. Sediment metal concentrations and Hunter Valley SCP counts in the sedimentary records, from the Hunter and Latrobe Valleys, both indicated that open-cut coal Latrobe Valley mining and the subsequent combustion of coal in power stations has most likely resulted in an increase in atmo- Bituminous coal spheric deposition of metals in the local region. In particular, the metalloids As and Se showed the greatest en- Lignite coal richment compared to before coal mining commenced. Although the introduction of bag filters at Liddell Metal deposition Power Station and the decommissioning of Hazelwood Power Station appear to have resulted in a decrease of ⁎ Corresponding author at: School of Culture, History and Language, College of the Asia and the Pacific, Australian National University, 2601, Acton ACT, Canberra. Australia. E-mail address: [email protected] (L. Schneider). https://doi.org/10.1016/j.scitotenv.2020.137398 0048-9697/© 2020 Elsevier B.V. All rights reserved. 2 L. Schneider et al. / Science of the Total Environment 728 (2020) 137398 metal deposition in nearby lakes, overall metal deposition in the environment is still increasing. The challenge for the years to come will be to develop better regulation policies and tools that will contribute to reduce metal emis- sions in these major electricity production centres in Australia. © 2020 Elsevier B.V. All rights reserved. 1. Introduction Little information on past levels of industrially-derived air pollution is available in Australia, and the few studies published have mainly fo- Metal contamination has markedly increased in water bodies proxi- cussed on estuaries (Lafratta et al., 2019; Schneider et al., 2014a, mal to where coal-fired power stations have been constructed and oper- 2014b, 2015b, 2015c; Serrano et al., 2016). Furthermore, we still have ated (Meij and te Winkel, 2007; Schneider et al., 2014a). Many studies little understanding of how various management practices in coal- in Europe (Barbante et al., 2004), North America (Donahue et al., fired power stations (e.g., retrofitting of pollution control devices) 2006; Ouellet and Jones, 1983)andJapan(Han et al., 2002)havedem- have affected the deposition of metals in the environment. onstrated a significant increase in metal contamination in depositional This study investigates the historical metal and metalloid contami- environments, however, little is known about how metal concentra- nation records of dams in the Hunter and Latrobe Valleys, to assess if tions have increased in the Australian environment since the commis- metal concentrations in these environments have increased since the sioning of open-cut coal mines and associated coal-fired power establishment of coal-fired power stations and associated open-cut stations. Identifying historical trends in metal concentrations in coal mining. Temporal metal contamination from both atmospheric Australia since the commissioning of coal-fired power stations is, there- and catchment sources are measured in sediment cores collected from fore, critical for informing policy for the future management of coal- dams adjacent to open-cut coal mines and power stations. Spheroidal fired power stations in the country. carbonaceous particles (SCPs), a component of fly-ash only derived Coal mining has defined Australian's economy through providing from the high combustion temperature of coal and oil fuels (Rose, a critical energy supply to Australia and other coal-dependent econ- 2001), are also measured in sediments as supporting evidence for omies, particularly in Asia (Cottle and Keys, 2014). Coal is central to metal sources. Finally, we discuss the current regulatory arrangement both Australia's domestic energy requirements (accounting for 62% applied to metal emissions from coal-fired power stations in Australia, of total electricity generated in 2016–2017 DEE, 2018)andalsoto and their capacity to address future increases in metal deposition from the national economy as it represents the largest Australian export these sources. commodity (Geoscience Australia, 2019a). Australia is currently the biggest net exporter of coal internationally with 32% of global ex- 2. Methods ports (389 Mt out of 1213 Mt total), and is the fourth-highest pro- ducer, with 6.9% of global production (503 Mt out of 7269 Mt total) In Australia, coal mining occurs mainly in Queensland, New South (IEA, 2017). Wales and Victoria (Mohr et al., 2011). The major coal deposits in The mining and subsequent combustion of coal generates significant these areas have resulted in the largest coal-fired power stations being environmental challenges. These activities release metals and metal- developed in these regions, including the Hunter and Latrobe Valleys loids (hereafter collectively referred to as metals) to the environment (Fig. 1). We selected dams that are proximal to coal-fired power stations both via the dust produced during the extraction of coal (open-cut in these two valleys to study the temporal trends in metal deposition coal mines), as well as during the combustion process (Tang et al., and the relationship between these trends and the establishment and 2012). Metal emission rates are, therefore, dependent on the total operations of coal-fired power stations (Fig. 1). amount of metal present in the coal, the amount and method of coal There are two types of coal mined in Australia. Bituminous black mined and combusted and the type of pollution control devices coal, with varying volatile matter and ash content, is about 250 million employed within power stations (Gade, 2015). years old. This type of coal is mostly mined in the state of New South Coal-fired power stations are ageing in Australia and it is rare for Wales (in the Sydney-Gunnedah Basin) (NSW Planning and modern devices to control particle (and consequently metal) emissions Environment, 2019), and supplies coal-fired power stations in the to be retrofitted (Sinclair and Schneider, 2019). By 2030, around half of Hunter Valley (Table 1). Power generation in the state of Victoria is the 24 coal-fired power stations in Australia will be over 40 years old, mainly in the Latrobe Valley, (Table 1) and uses brown coals from the with some stations having operated for nearly 60 years (Stock, 2014). Gippsland Basin (Australia Government Regional Assessment Program, The most modern metal emission control devices used in these power 2019). Lignite brown coal is about 15–50 million years old and has a stations are filter bags in New South Wales (NSW), and electrostatic high water content (Australia Government Regional Assessment Pro- precipitators in Victoria (VIC). gram, 2019; Nelson, 2007). Once metals are released to the atmosphere, they return to the sur- face environment by both wet and dry depositional processes. As soils and lake sediments
Recommended publications
  • Scone Airport Master Plan Final Report
    SCONE AIRPORT MASTER PLAN FINAL REPORT Prepared for Upper Hunter Shire Council June 2016 Scone Airport Master Plan Report Table of Contents 1 Introduction .......................................................................................................................... 2 1.1 Methodology ......................................................................................................................... 2 2 Airport Background and Regional Context ............................................................................ 4 2.1 Airport Business Model ......................................................................................................... 5 2.2 Regional Context ................................................................................................................... 6 3 Existing Airport Facilities ....................................................................................................... 8 3.1 Runway 11/29 & Runway Strip - Physical Features ............................................................... 8 3.2 Taxiways .............................................................................................................................. 10 3.3 Apron and Aircraft Parking Areas ........................................................................................ 12 3.4 Terminal Building ................................................................................................................ 12 3.5 Privately Owned Facilities ..................................................................................................
    [Show full text]
  • State Electricity Commission of Victoria Fifty-Seventh Annual Report
    1976 VICTORIA STATE ELECTRICITY COMMISSION OF VICTORIA FIFTY-SEVENTH ANNUAL REPORT FOR THE FINANCIAL YEAR ENDED 30TH JUNE, 1976 TOGETHER WITH APPENDICES PRESENTED TO PARLIAMENT PURSUANT TO SECTION 82 (b) OF STATE ELECTRICITY COMMISSION ACT No. 6377. By Authon/y: C. H. RlXON, GOVERNMENT PRINTER, ~lELBOURNE. No. 44.-1l818f76.-PRICE $1·20 ,~ ~~~~ SEC STATE ELECTRICITY COMMISSION OF VICTORIA FIFTY SEVENTH REPORT 1975-1976 CONTENTS Page Page The State Electricity Commission of Victoria 5 Brown Coal Development 18 Statement of Commission Objectives 5 Brown Coal Production 18 Summary of Activities 6 Morwell Open Cut 18 Annual Report 7 Yallourn Open Cut 18 Business Result~ 9 Lay Yang Open Cut 18 Major Capital Works 14 Review of Major Activities 19 Newport Power Station 14 Marketing and Distribution 19 Development Program 15 Yallourn Township 22 Yallourn W Power Station 15 New Legislation 22 - Lay Yang Project 15 Scientific Research 22 Dartmouth Hydro-electric Project 15 Publi c Safety and Other Regulatory Responsibilities 22 Transmission & Distribution System 16 Commissioners 23 Electricity Production 17 Personnel and Organisa tion 23 North The Loy Yang project will be the Commission·s largest development yet undertaken. Legislation to authorise the project is now before Parliament. In its Progress Report . the Parliamentary Public Works Committee which conducted a public enquiry has recommended that the Government authorise the Commission to proceed with plann ing. The project will involve the development of an open cut on the Loy Yang Brown Coal field and the construction of a 4000 MW power generating station adjacent to and south of the open cut. together with ancillary works.
    [Show full text]
  • Eraring Battery Energy Storage System Scoping Report
    Eraring Battery Energy Storage System Scoping Report IS365800_Scoping Report | Final 25 March 2021 Origin Energy Eraring Pty Limited Scoping Report Origin Energy Eraring Pty Limited Scoping Report Eraring Battery Energy Storage System Project No: IS365800 Document Title: Scoping Report Document No.: IS365800_Scoping Report Revision: Final Document Status: For Lodgement Date: 25 March 2021 Client Name: Origin Energy Eraring Pty Limited Project Manager: Thomas Muddle Author: Ada Zeng, Carys Scholefield & Thomas Muddle File Name: IS365800_Origin_ Eraring BESS_Scoping Report_Final Jacobs Group (Australia) Pty Limited ABN 37 001 024 095 Level 4, 12 Stewart Avenue Newcastle West, NSW 2302 PO Box 2147 Dangar, NSW 2309 Australia T +61 2 4979 2600 F +61 2 4979 2666 www.jacobs.com © Copyright 2019 Jacobs Group (Australia) Pty Limited. The concepts and information contained in this document are the property of Jacobs. Use or copying of this document in whole or in part without the written permission of Jacobs constitutes an infringement of copyright. Limitation: This document has been prepared on behalf of, and for the exclusive use of Jacobs’ client, and is subject to, and issued in accordance with, the provisions of the contract between Jacobs and the client. Jacobs accepts no liability or responsibility whatsoever for, or in respect of, any use of, or reliance upon, this document by any third party. Document history and status Revision Date Description Author Checked Reviewed Approved 05 25/3/2021 Final A Zeng C Scholefield T Muddle T Muddle
    [Show full text]
  • Regional Water Availability Report
    Regional water availability report Weekly edition 7 January 2019 waternsw.com.au Contents 1. Overview ................................................................................................................................................. 3 2. System risks ............................................................................................................................................. 3 3. Climatic Conditions ............................................................................................................................... 4 4. Southern valley based operational activities ..................................................................................... 6 4.1 Murray valley .................................................................................................................................................... 6 4.2 Lower darling valley ........................................................................................................................................ 9 4.3 Murrumbidgee valley ...................................................................................................................................... 9 5. Central valley based operational activities ..................................................................................... 14 5.1 Lachlan valley ................................................................................................................................................ 14 5.2 Macquarie valley ..........................................................................................................................................
    [Show full text]
  • Hunter Investment Prospectus 2016 the Hunter Region, Nsw Invest in Australia’S Largest Regional Economy
    HUNTER INVESTMENT PROSPECTUS 2016 THE HUNTER REGION, NSW INVEST IN AUSTRALIA’S LARGEST REGIONAL ECONOMY Australia’s largest Regional economy - $38.5 billion Connected internationally - airport, seaport, national motorways,rail Skilled and flexible workforce Enviable lifestyle Contact: RDA Hunter Suite 3, 24 Beaumont Street, Hamilton NSW 2303 Phone: +61 2 4940 8355 Email: [email protected] Website: www.rdahunter.org.au AN INITIATIVE OF FEDERAL AND STATE GOVERNMENT WELCOMES CONTENTS Federal and State Government Welcomes 4 FEDERAL GOVERNMENT Australia’s future depends on the strength of our regions and their ability to Introducing the Hunter progress as centres of productivity and innovation, and as vibrant places to live. 7 History and strengths The Hunter Region has great natural endowments, and a community that has shown great skill and adaptability in overcoming challenges, and in reinventing and Economic Strength and Diversification diversifying its economy. RDA Hunter has made a great contribution to these efforts, and 12 the 2016 Hunter Investment Prospectus continues this fine work. The workforce, major industries and services The prospectus sets out a clear blueprint of the Hunter’s future direction as a place to invest, do business, and to live. Infrastructure and Development 42 Major projects, transport, port, airports, utilities, industrial areas and commercial develpoment I commend RDA Hunter for a further excellent contribution to the progress of its region. Education & Training 70 The Hon Warren Truss MP Covering the extensive services available in the Hunter Deputy Prime Minister and Minister for Infrastructure and Regional Development Innovation and Creativity 74 How the Hunter is growing it’s reputation as a centre of innovation and creativity Living in the Hunter 79 STATE GOVERNMENT Community and lifestyle in the Hunter The Hunter is the biggest contributor to the NSW economy outside of Sydney and a jewel in NSW’s rich Business Organisations regional crown.
    [Show full text]
  • Interim Report: Retirement of Coal Fired Power
    Chapter 4 Options for managing the transition away from coal fired power stations 4.1 Stakeholders to the inquiry commented at length on how a phased closure of coal generators could be best managed. In particular, the need for the development of a national transition plan was highlighted, integrating energy and climate policy as well as coordinating the response to assist affected workers and communities. Need for a national transition plan 4.2 Support for a consistent, long-term national transition plan was widespread among submitters to the inquiry. Engineers Australia argued: …the Australian government needs to create a transition plan which outlines policy mechanisms to encourage the retirement of Australia's highest emitting power stations, while also providing options for affected workers and communities…Without a clear plan, Australia risks the potential to lose a large portion of its generating capacity in a short period without any alternatives in place, while at the same time undermining its 1 Paris COP21 commitments. 4.3 Engineers Australia submitted that this transition plan should outline: • how Australia will achieve its emission reduction targets through the electricity generation sector, outlining a transition from fossil fuel power plants to renewable and low carbon emission options; • a timeline for when Australia will begin the transition away from major capacity fossil-fuelled power stations, and what generation options will be used to replace them; • the obligation costs that the major fossil fuel power stations
    [Show full text]
  • Upper Hunter Economic Diversification Project
    Upper Hunter Economic Diversification Project Report 3 of 3: Strategy Report Buchan Consulting June 2011 This project is supported by: Trade & Investment Office of Environment & Heritage Department of Premier & Cabinet Final Report Table of Contents Table of Contents.................................................................................................................................................................................. 1 Executive Summary .............................................................................................................................................................................. 4 A. Regional Economy........................................................................................................................................................................ 4 B. Major Issues.................................................................................................................................................................................. 6 C. A Diversification Strategy.............................................................................................................................................................. 8 D. Opportunities .............................................................................................................................................................................. 10 E. Implementation ..........................................................................................................................................................................
    [Show full text]
  • Upper Hunter River and Dam Levels
    Upper Hunter river and dam levels UPPER Hunter river levels have risen after significant rainfall and periods of flash flooding brought on by a combination of higher than average rainfall and thunderstorms during December 2020. See river and dam levels below Although the Hunter has not been on constant flood watch compared to north coast areas, there has been enough downpour and thunderstorms to bring flash flooding to the region. The La Niña weather event brought initial widespread rainfall and more thunderstorms are predicted throughout January 2021. Level 2 water restrictions are to remain for Singleton water users, with the Glennies Creek Dam level currently sitting at 43.4 percent. Dam levels: Glennies Creek Dam: Up 0.5 percent capacity compared to last week. Now 43.4 percent full and contains 123,507 millilitres of water; Lockstock Dam: Down 3.9 percent capacity compared to last week. Now 101.5 percent full and contains 20,522 millilitres of water; Glenbawn Dam: Up 0.4 percent capacity compared to last week. Now 49.5 percent full and contains 371,620 millilitres of water River levels (metres): Hunter River (Aberdeen): 2.37 m Hunter River (Denman): 1.924 m Hunter River (Muswellbrook): 1.37 m Hunter River (Raymond Terrace): 0.528 m Hunter River (Glennies Creek): 3.121 m Hunter River (Maison Dieu): 3.436 m Hunter River (Belltrees): 0.704 m Paterson River: 1.984 m Williams River (Dungog): 2.616 m Pages River: 1.311 m Moonan Brook: 0.862 m Moonan Dam: 1.147 m Rouchel Brook:0.939 m Isis River: 0.41 m Wollombi Brook: 0.99 m Bowman River: 0.708 m Kingdon Ponds: 0.05 m Yarrandi Bridge (Dartbrook): Merriwa River: 0.693 m Bulga River: 2.11 m Chichester River: 1.712 m Carrow Brook: 0.869 m Blandford River: 1.088 m Sandy Hollow River: 2.55 m Wingen River: 0.34 m Cressfield River: 0.55 m Gundy River: 0.652 m Lockstock Dam (water level): 155.982 m Moonan Dam: 1.147 m Glenbawn Dam (water level): 258.192 m Liddell Pump Station: 6.367 m.
    [Show full text]
  • EIS 305 Salinity in the Hunter River
    EIS 305 Salinity in the Hunter River: a report on the generation, treatment and disposal of saline minewater SALINITY IN THE HUNTER RIVER A REPORT ON THE GENERATION, TREATMENTAND DISPOSAL OF SALINE MINEWATER NEW SOUTH WALES COAL ASSOCIATION SALINITY IN THE HUNTER RIVER I. r A REPORT ON THE GENERATION, TREATMENT AND DISPOSAL OF SALINE MINEWATER I PREPARED FOR: PREPARED BY: NEW SOUTH WALES COAL ASSOCIATION CROFT & ASSOCIATES PTY. LIMITED • EAGLE HOUSE 125 BULLSTREET 25 WATT STREET P.O. BOX 5131B NEWCASTLE 2300 NEWCASTLE WEST 2302 049 26118 049261828 NATIONAL MUTUAL CENTRE LEVEL 2 IL 44 MARKET STREET SYDNEY 2000 02 297 202 DECEMBER 1983 91 if tiwtsiiiui'ti 1 TABLE OF CONTENTS Page SECTION 1: INTRODUCTION 1.1 STUDY BACKGROUND 1 1.2 STUDY OBJECTIVES 2 1.3 COMPANION STUDIES 3 1.4 ACKNOWLEDGEMENTS 3 SECTION 2: THE HUNTER REGION 2.1 GEOGRAPHY 4 2.2 GEOLOGY AND SOILS 4 2.3 METEOROLOGY 5 . 2.4 LAND USE 7 2.5 SURFACE WATERS 7 2.6 GROUNDWATER 8 SECTION 3: PROPOSED DEVELOPMENTS 3.1 REGIONAL DEVELOPMENT 9 3.2 COAL DEVELOPMENT 9 3.3 POWER GENERATION 11 3.4 COAL LIQUEFACTION 11 3.5 URBAN GROWTH 11 O 3.6 AGRICULTURE 12 3.7 FUTURE WATER REQUIREMENTS 12 SECTION 4 ORIGINS OF SALINITY 4.1 HISTORY OF SALINITY 14 4.2 HYDROLOGIC PROCESSES 14 4.3 TYPES OF LAND SALINISATION 15 4.4 DRY LAND SALINISATION 16 4.5 IRRIGATION SALINITY 16 SECTION 5 SALINITY MODEL FOR THE HUNTER RIVER 5.1 MODEL SPECIFICATION 18 5.2 DATA SOURCES 18 5.3 WATER RESOURCES COMMISSION MODEL 19 5.4 LOGIC NETWORK 19 5.5 METHODOLOGY 21 5.6 MODEL OUTPUT 24 SECTION 6: COLLIERY WATER BALANCES .
    [Show full text]
  • NZMT-Energy-Report May 2021.Pdf
    Acknowledgements We would like to thank Monica Richter (World Wide Fund for Nature and the Science Based Targets Initiative), Anna Freeman (Clean Energy Council), and Ben Skinner and Rhys Thomas (Australian Energy Council) for kindly reviewing this report. We value the input from these reviewers but note the report’s findings and analysis are those of ClimateWorks Australia. We also thank the organisations listed for reviewing and providing feedback on information about their climate commitments and actions. This report is part of a series focusing on sectors within the Australian economy. Net Zero Momentum Tracker – an initiative of ClimateWorks Australia with the Monash Sustainable Development Institute – demonstrates progress towards net zero emissions in Australia. It brings together and evaluates climate action commitments made by Australian businesses, governments and other organisations across major sectors. Sector reports from the project to date include: property, banking, superannuation, local government, retail, transport, resources and energy. The companies assessed by the Net Zero Momentum Tracker represent 61 per cent of market capitalisation in the ASX200, and are accountable for 61 per cent of national emissions. Achieving net zero emissions prior to 2050 will be a key element of Australia’s obligations under the Paris Agreement on climate (UNFCCC 2015). The goal of the agreement is to limit global temperature rise to well below 2 degrees Celsius above pre-industrial levels and to strive for 1.5 degrees. 2 Overall, energy sector commitments are insufficient for Australia to achieve a Paris-aligned SUMMARY transition to net zero. Australia’s energy sector This report finds none of the companies assessed are fully aligned with the Paris climate goals, and must accelerate its pace of most fall well short of these.
    [Show full text]
  • Fast-Tracking Victoria's Clean Energy Future to Replace Hazelwood Power
    Fast-tracking Victoria’s clean energy future to replace Hazelwood Power Station A REPORT BY GREEN ENERGY MARKETS FOR ENVIRONMENT VICTORIA MAY 2010 Front cover Top: Hazelwood power station, Environment Victoria Waubra Windfarm, Acciona Left to Right: Workers preparing the foundations for a wind turbine at Waubra windfarm, Acciona Solar roof, Mont Cenis Academy, Germany Biogas co-generation, USA Solar hot water installation, Sun Force Solar Disclaimer The data, analysis and assessments included in this report are based on the best information available at the date of publication and the information is believed to be accurate at the time of writing. Green Energy Markets does not in any way guarantee the accuracy of any information or data contained in this report and accepts no responsibility for any loss, injury or inconvenience sustained by any users of this paper or in relation to any information or data contained in this report. Fast-tracking Victoria’s clean energy future to replace Hazelwood Power Station Table of Contents Executive Summary 4 1. Project Scope 7 2. Assessment of Victoria’s energy mix 8 3. Hazelwood’s operation in the National Electricity Market 10 4. Approach to replacing Hazelwood 13 5. Bringing forward gas-fired generation 14 6. Bringing forward new renewable generation 17 7. Energy efficiency options 19 8. Demand management and load shedding 22 9. Mix of clean energy options to replace Hazelwood 23 10. Policy options to support the replacement of Hazelwood with clean energy 25 11. Implications for employment 27 12.
    [Show full text]
  • Climate Variability and Water Security for Power Generation
    Hydro-climatology: Variability and change (Proceedings of symposium JH02 held during 233 IUGG2011 in Melbourne, Australia, July 2011) (IAHS Publ. 344, 2011). Climate variability and water security for power generation ADAM M. WYATT & STEWART W. FRANKS University of Newcastle, Callaghan, New South Wales 2308, Australia [email protected] Abstract A reliable supply of fresh water is a critical component of coal fired power generation. During periods when water supplies are reduced, power generation may be limited, with obvious impacts on power consumers. Using the reconstructed historical streamflow series contained in the IQQM water allocation model, and simple water balance modelling, the water supply security of the Bayswater Power Station in the Hunter Valley, Australia, is assessed. The study revealed that the supply of water to the Bayswater Power Station is sensitive to extended dry periods, with some historical periods experiencing water shortfalls so severe that the station would be shut down without alternative water supplies. Key words climate variability; water supply security; water balance modelling; IQQM; Hunter Valley, Australia INTRODUCTION The purpose of this study is to determine the impact that climate processes such as the El Nino – Southern Oscillation have on the reliability of the water supply within the Hunter Valley, Australia. Specifically this study focuses on the water supply security necessary for power generation by Macquarie Generation at the Bayswater and Lake Liddell power stations. The generation of electricity using coal fired power stations such as Bayswater and Lake Liddell is dependent on a reliable supply of fresh water to replenish losses due to the operations of the power stations.
    [Show full text]