An Experimental and Numerical Study on the Effect of Spacing Between Two Helmholtz Resonators
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
View a Copy of This Licence, Visit Iveco Mmons.Org/ Licen Ses/ By/4. 0/
Hashimoto and Sumita Earth, Planets and Space (2021) 73:143 https://doi.org/10.1186/s40623-021-01472-7 FULL PAPER Open Access Excitation of airwaves by bubble bursting in suspensions : regime transitions and implications for basaltic volcanic eruptions Kana Hashimoto and Ikuro Sumita* Abstract Basaltic magma becomes more viscous, solid-like (elastic), and non-Newtonian (shear-thinning, non-zero yield stress) as its crystal content increases. However, the rheological efects on bubble bursting and airwave excitation are poorly understood. Here we conduct laboratory experiments to investigate these efects by injecting a bubble of volume V into a refractive index-matched suspension consisting of non-Brownian particles (volumetric fraction φ ) and a Newtonian liquid. We show that depending on φ and V, airwaves with diverse waveforms are excited, covering a frequency band of f = O(10 − 104) Hz. In a suspension of φ ≤ 0.3 or in a suspension of φ = 0.4 with a V smaller than critical, the bubble bursts after it forms a hemispherical cap at the surface and excites a high-frequency (HF) wave (f ∼ 1 − 2 × 104 Hz) with an irregular waveform, which likely originates from flm vibration. However, in a suspension of φ = 0.4 and with a V larger than critical, the bubble bursts as soon as it protrudes above the surface, and its aper- ture opens slowly, exciting Helmholtz resonance with f = O(103) Hz. Superimposed on the waveform are an HF wave component excited upon bursting and a low-frequency (f = O(10) Hz) air fow vented from the defating bubble, which becomes dominant at a large V. -
Questions: Helmholtz Resonance
Questions: Helmholtz resonance 1 Helmholtz resonance may occur when an enclosed volume of air is connected to the atmosphere by a short exit pipe when simple harmonic oscillations of air in the pipe are driven by pressure changes in the enclosed volume. The frequency of the resonance is given by … 1/2 f = v/2[Ax/VL] … where v is the velocity of sound in air, V is the volume of air enclosed air, Ax is the cross sectional area and L is the effective length of the pipe. a Explain, in physical terms, why the effective length L in the frequency relationship is a little longer than the actual length of the exit pipe. b Explain, in physical terms, why halving the volume of the enclosed air raises the resonant frequency. c A Helmholtz resonator is completely filled with carbon dioxide. Will the resonant frequency change and if so by how much? 2 A empty coffee container is shown. The round hole in the cap has a diameter of 1.45 cm. Short lengths of plastic pipe with an internal radius of 0.65 cm convert the container into a Helmholtz resonator. Measured resonant frequencies are plotted below against frequencies 1/2 calculated with the Helmholtz relationship f = v/2[Ax/VL] for four pipe lengths. a Are calculations less satisfactory for shorter or longer pipe lengths? b Increasing the effective length of the pipe by 1.3 cm, recalculating and plotting the revised data gives the graph below. c Which additional point on the graph represents the resonance when the pipe length is zero? d The sound box on a guitar is said to behave as Helmholtz resonator with an effective pipe length. -
The Science of String Instruments
The Science of String Instruments Thomas D. Rossing Editor The Science of String Instruments Editor Thomas D. Rossing Stanford University Center for Computer Research in Music and Acoustics (CCRMA) Stanford, CA 94302-8180, USA [email protected] ISBN 978-1-4419-7109-8 e-ISBN 978-1-4419-7110-4 DOI 10.1007/978-1-4419-7110-4 Springer New York Dordrecht Heidelberg London # Springer Science+Business Media, LLC 2010 All rights reserved. This work may not be translated or copied in whole or in part without the written permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection with any form of information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed is forbidden. The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject to proprietary rights. Printed on acid-free paper Springer is part of Springer ScienceþBusiness Media (www.springer.com) Contents 1 Introduction............................................................... 1 Thomas D. Rossing 2 Plucked Strings ........................................................... 11 Thomas D. Rossing 3 Guitars and Lutes ........................................................ 19 Thomas D. Rossing and Graham Caldersmith 4 Portuguese Guitar ........................................................ 47 Octavio Inacio 5 Banjo ...................................................................... 59 James Rae 6 Mandolin Family Instruments........................................... 77 David J. Cohen and Thomas D. Rossing 7 Psalteries and Zithers .................................................... 99 Andres Peekna and Thomas D. -
Advances in Aquatic Target Localization with Passive Sonar
Portland State University PDXScholar Dissertations and Theses Dissertations and Theses Summer 7-14-2014 Advances in Aquatic Target Localization with Passive Sonar John Thomas Gebbie Portland State University Let us know how access to this document benefits ouy . Follow this and additional works at: http://pdxscholar.library.pdx.edu/open_access_etds Part of the Electrical and Computer Engineering Commons Recommended Citation Gebbie, John Thomas, "Advances in Aquatic Target Localization with Passive Sonar" (2014). Dissertations and Theses. Paper 1932. 10.15760/etd.1931 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. For more information, please contact [email protected]. Advances in Aquatic Target Localization with Passive Sonar by John Thomas Gebbie A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and Computer Engineering Dissertation Committee: T. Martin Siderius, Chair Lisa M. Zurk Richard L. Campbell John S. Allen, III Mark D. Sytsma Portland State University 2014 c 2014 John Gebbie Abstract New underwater passive sonar techniques are developed for enhancing target local- ization capabilities in shallow ocean environments. The ocean surface and the seabed act as acoustic mirrors that reflect sound created by boats or subsurface vehicles, which gives rise to echoes that can be heard by hydrophone receivers (underwater microphones). The goal of this work is to leverage this \multipath" phenomenon in new ways to determine the origin of the sound, and thus the location of the tar- get. However, this is difficult for propeller driven vehicles because the noise they produce is both random and continuous in time, which complicates its measurement and analysis. -
Analytical, Numerical and Experimental Calculation of Sound Transmission Loss Characteristics of Single Walled Muffler Shells
1 Analytical, Numerical and Experimental calculation of sound transmission loss characteristics of single walled muffler shells A thesis submitted to the Division of Graduate Studies and Research of the University of Cincinnati in partial fulfillment of the requirements for the degree of MASTER OF SCIENCE In the Department of Mechanical Engineering of the College of Engineering May 2007 by John George B. E., Regional Engineering College, Surat, India, 1995 M. E., Regional Engineering College, Trichy, India, 1997 Committee Chair: Dr. Jay Kim 2 Abstract Accurate prediction of sound radiation characteristics from muffler shells is of significant importance in automotive exhaust system design. The most commonly used parameter to evaluate the sound radiation characteristic of a structure is transmission loss (TL). Many tools are available to simulate the transmission loss characteristic of structures and they vary in terms of complexity and inherent assumptions. MATLAB based analytical models are very valuable in the early part of the design cycle to estimate design alternatives quickly, as they are very simple to use and could be used by the design engineers themselves. However the analytical models are generally limited to simple shapes and cannot handle more complex contours as the geometry evolves during the design process. Numerical models based on Finite Element Method (FEM) and Boundary Element Method (BEM) requires expert knowledge and is more suited to handle complex muffler configurations in the latter part of the design phase. The subject of this study is to simulate TL characteristics from muffler shells utilizing commercially available FEM/BEM tools (NASTRAN and SYSNOISE, in this study) and MATLAB based analytical model. -
Sound Transmission Loss Test AS-TL1765
Acoustical Surfaces, Inc. Acoustical Surfaces, Inc. We identify and SOUNDPROOFING, ACOUSTICS, NOISE & VIBRATION CONTROL SPECIALISTS 123 Columbia Court North = Suite 201 = Chaska, MN 55318 (952) 448-5300 = Fax (952) 448-2613 = (800) 448-0121 Email: [email protected] Your Noise Problems Visit our Website: www.acousticalsurfaces.com Sound Transmission Obscuring Products Soundproofing, Acoustics, Noise & Vibration Control Specialists ™ We Identify and S.T.O.P. Your Noise Problems ACOUSTIC SYSTEMS ACOUSTICAL RESEARCH FACILITY OFFICIAL LABORATORY REPORT AS-TL1765 Subject: Sound Transmission Loss Test Date: December 26, 2000 Contents: Transmission Loss Data, One-third Octave Bands Transmission Loss Data, Octave Bands Sound Transmission Class Rating Outdoor /Indoor Transmission Class Rating on Asymmetrical Staggered Metal Stud Wall Assembly w/Two Layers 5/8” FIRECODE Gypsum (Source Side), One Layer 5/8” FIRECODE Gypsum on RC-1 Channels (Receive Side), and R-19 UltraTouch Blue Insulation for Rendered by Manufacturer and released to Acoustical Surfaces 123 Columbia Court North Chaska, MN 55318 ACOUSTIC SYSTEMS ACOUSTICAL RESEARCH FACILITY is NVLAP-Accredited for this and other test procedures National Institute of Standards National Voluntary and Technology Laboratory Accreditation Program Certified copies of the Report carry a Raised Seal on every page. Reports may be reproduced freely if in full and without alteration. Results apply only to the unit tested and do not extend to other same or similar items. The NVLAP logo does not denote -
Chamber Music: an Unusual Helmholtz Resonator for Song Amplification in a Neotropical Bush-Cricket (Orthoptera, Tettigoniidae) Thorin Jonsson1,*, Benedict D
© 2017. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2017) 220, 2900-2907 doi:10.1242/jeb.160234 RESEARCH ARTICLE Chamber music: an unusual Helmholtz resonator for song amplification in a Neotropical bush-cricket (Orthoptera, Tettigoniidae) Thorin Jonsson1,*, Benedict D. Chivers1, Kate Robson Brown2, Fabio A. Sarria-S1, Matthew Walker1 and Fernando Montealegre-Z1,* ABSTRACT often a morphological challenge owing to the power and size of their Animals use sound for communication, with high-amplitude signals sound production mechanisms (Bennet-Clark, 1998; Prestwich, being selected for attracting mates or deterring rivals. High 1994). Many animals therefore produce sounds by coupling the amplitudes are attained by employing primary resonators in sound- initial sound-producing structures to mechanical resonators that producing structures to amplify the signal (e.g. avian syrinx). Some increase the amplitude of the generated sound at and around their species actively exploit acoustic properties of natural structures to resonant frequencies (Fletcher, 2007). This also serves to increase enhance signal transmission by using these as secondary resonators the sound radiating area, which increases impedance matching (e.g. tree-hole frogs). Male bush-crickets produce sound by tegminal between the structure and the surrounding medium (Bennet-Clark, stridulation and often use specialised wing areas as primary 2001). Common examples of these kinds of primary resonators are resonators. Interestingly, Acanthacara acuta, a Neotropical bush- the avian syrinx (Fletcher and Tarnopolsky, 1999) or the cicada cricket, exhibits an unusual pronotal inflation, forming a chamber tymbal (Bennet-Clark, 1999). In addition to primary resonators, covering the wings. It has been suggested that such pronotal some animals have developed morphological or behavioural chambers enhance amplitude and tuning of the signal by adaptations that act as secondary resonators, further amplifying constituting a (secondary) Helmholtz resonator. -
Investigation of Divided Helmholtz Resonator by Perforated Plate
INVESTIGATION OF DIVIDED HELMHOLTZ RESONATOR BY PERFORATED PLATE Assist.Prof. S. S. Patil1, Mr. Mithil Chavan2, Mr. Rahul Borude3, 4 5 Mr. Tejas Borate , Mr. Nilesh Giram 1,2,3,4,5Mechanical engineering, G. S.Moze college of engineering, Savitri BaiPhule Pune University, (India) ABSTRACT Now-a-days we have witnessed a great growth in noise in our surrounding .In this project we are going to investigate the performance of a Helmholtz resonator using a perforated panel. The current resonator has a drawback of low frequency bandwidth, it has simple geometry. In the proposed resonator we have attached a perforated panel in its geometry. In our new modified resonator it is expected an increase in frequency bandwidth and increase in transmission loss. In this project we have first analytically transformed the resonator into mathematical model in single degree and two degree of freedom and obtained the dimensions. We have made a CAD model from the theoretical dimensions and also programmed it in matlab for easy calculations. Theoretically the sound reduces by 2dB and experimental analysis will we done after construction of the physical model in the next semester. I.INTRODUCTION Sound is all around. Sometimes it is experienced as pleasant, sometimes as unpleasant. Unwanted sound is generally referred to as noise. Noise is a frequently encountered problem in modern society. One of the environments where the presence of noise causes a deterioration in people’s comfort is in aircraft cabins. Noise encountered in daily life can, for example, be caused by domestic appliances such as vacuum cleaners and washing machines, vehicles such as cars and aeroplanes. -
Echo Time Spreading and the Definition of Transmission Loss for Broadband Active Sonar
Paper Number 97, Proceedings of ACOUSTICS 2011 2-4 November 2011, Gold Coast, Australia Echo time spreading and the definition of transmission loss for broadband active sonar Z. Y. Zhang Defence Science and Technology Organisation P.O. Box 1500, Edinburgh, SA 5111, Australia ABSTRACT In active sonar, the echo from a target is the convolution of the source waveform with the impulse responses of the target and the propagation channel. The transmitted source waveform is generally known and replica-correlation is used to increase the signal gain. This process is also called pulse compression because for broadband pulses the re- sulting correlation functions are impulse-like. The echo after replica-correlation may be regarded as equivalent to that received by transmitting the impulsive auto-correlation function of the source waveform. The echo energy is spread out in time due to different time-delays of the multipath propagation and from the scattering process from the target. Time spreading leads to a reduction in the peak power of the echo in comparison with that which would be obtained had all multipaths overlapped in time-delay. Therefore, in contrast to passive sonar where all energies from all sig- nificant multipaths are included, the concept of transmission losses in the active sonar equation needs to be handled with care when performing sonar performance modelling. We show modelled examples of echo time spreading for a baseline case from an international benchmarking workshop. INTRODUCTION ECHO MODELLING ISSUES The performance of an active sonar system is often illustrated In a sound channel, the transmitted pulse generally splits into by the power (or energy) budget afforded by a separable form multipath arrivals with different propagation angles and of the sonar equation, such as the following, travel times that ensonify the target, which scatters and re- radiates each arrival to more multipath arrivals at the re- SE = EL – [(NL – AGN) ⊕ RL] + MG – DT (1) ceiver. -
Resonance in a Cone-Topped Tube
ISB Journal of Physics, Vol. 5, Iss. 2 June 2011 http://www.isjos.org Resonance in a Cone-Topped Tube Angus Cheng-Huan Chia and Alex Chun-Hao Fann Abstract The relationship between ratio of the upper opening diameter of a cone-topped cylinder to the cylinder diameter, and the ratio of the length of the air column to resonant period was examined. Plastic cones with upper openings ranging from 1.3 cm to 3.6 cm and tuning forks with frequencies ranging from 261.6 Hz to 523.3 Hz were used. The transition from a standing wave in a cylindrical column to a Helmholtz-type resonance in a resonant cavity with a narrow opening was observed. Introduction Tuning Fork In this investigation, a tuning fork was held over a cylindrical pipe to create resonance in Water Level the air column as shown in figure 1. Plastic cones with varying upper openings were placed on top of the pipe and tuning forks PVC Pipe with four different frequencies were used. The nature of the resonance under various situations was studied. For the situation with no cone or short cones, a quarter-wavelength standing wave may be formed in a cylindrical column of air with Figure 1 The range of situations that was investigated: one open end. Given that frequency is the from a cylindrical air column, to a cone topped tube inverse of the period and wavelength equals with a small opening. 4(L + c) (end correction) as shown in figure 2, the equation can be derived as c ! = ! ×! − ! [Equation 1] ! ! L = λ ! For situations with long cones and small upper openings, it is expected that a Figure 3 A classic Helmholtz resonance may form in the air Helmholtz resonator[1]. -
THE FUNCTION of F-HOLES in the VIOLIN (Revised and Corrected)
THE FUNCTION of F-HOLES in the VIOLIN (revised and corrected) The most noticeable thing apart from the difference in pitch, about the paper in the STRAD (April 2001, 408) was the similarity between the plots for the harmonic content of the notes played on the G and E strings respectively. This is not surprising since both sides of the central area of the top plate on which the bridge stands, are active; the centre of rotation is variable and not necessarily unique, somewhere between the two feet of the bridge and not exclusively at the right foot as many body and plate modes are activated simultaneously and to varying extents by the fundamental and harmonics of the note being played. The f-holes perform a function more complex which the paper attempted to point out, than the opening needed for the Helmholtz resonance. To consider this function first. The frequency of the Helmoltz resonance depends on the volume of air in the body of the violin and the total area of any openings. If the volume is 1945, increased the frequency goes down, 10% reduces it by about a semitone; if the f-hole area is enlarged the frequency goes up, 20% raises it about a semitone, and vice versa. So small variations in volume and f- hole area are not going to have a large effect. The area of an f-hole can be expressed in terms of an equivalent ellipse for the purpose of calculation (J.W.Strutt (Lord Rayleigh). The Theory of Sound, Dover, Vol 2, 176) as used by Helmholtz (On the Sensations of Tone, Dover, 1954 86). -
A Model to Predict Acoustic Resonant Frequencies of Distributed Helmholtz Resonators on Gas Turbine Engines
applied sciences Article A Model to Predict Acoustic Resonant Frequencies of Distributed Helmholtz Resonators on Gas Turbine Engines Jianguo Wang * , Philip Rubini *, Qin Qin and Brian Houston School of Engineering and Computer Science, University of Hull, Hull HU6 7RX, UK; [email protected] (Q.Q.); [email protected] (B.H.) * Correspondence: [email protected] (J.W.); [email protected] (P.R.); Tel.: +44(0)1482-465818 (P.R.) Received: 27 February 2019; Accepted: 2 April 2019; Published: 4 April 2019 Featured Application: Passive control devices for combustion instability and combustion noise in gas turbine engines. Abstract: Helmholtz resonators, traditionally designed as a narrow neck backed by a cavity, are widely applied to attenuate combustion instabilities in gas turbine engines. The use of multiple small holes with an equivalent open area to that of a single neck has been found to be able to significantly improve the noise damping bandwidth. This type of resonator is often referred to as “distributed Helmholtz resonator”. When multiple holes are employed, interactions between acoustic radiations from neighboring holes changes the resonance frequency of the resonator. In this work, the resonance frequencies from a series of distributed Helmholtz resonators were obtained via a series of highly resolved computational fluid dynamics simulations. A regression analysis of the resulting response surface was undertaken and validated by comparison with experimental results for a series of eighteen absorbers with geometries typically employed in gas turbine combustors. The resulting model demonstrates that the acoustic end correction length for perforations is closely related to the effective porosity of the perforated plate and will be obviously enhanced by acoustic radiation effect from the perforation area as a whole.