Multisync EA271Q/EA271U USB-C Compatibility
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Download Speeds Performance and Optimized for Long Battery Life
® QUALCOMM FEATURING THE LATEST IN MOBILE TECHNOLOGY. TM SNAPDRAGON Capture sharper, higher-quality images, in challenging lighting situations Qualcomm’s Spectra 14-bit dual image signal processors tap into the enhanced performance and feature enhancements that Hexagon 680 DSP’s HVX 820MOBILE PROCESSOR performance adds with amazing features like Low Light Photo and Video and Touch-to-Track where ISP and DSP work intelligently together to enhance imaging as well as track movements and improve zoom. Enabling a more immersive, intuitive and Immersive, life-like connected experience. virtual reality The Snapdragon 820 mobile processor Experience realistic, visual and audio immersion and offers many advantages: smooth VR action enabled by Snapdragon 820’s • New X12 LTE: Industry leading Heterogeneous compute platform, designed for high connectivity with LTE download speeds performance and optimized for long battery life. of up to 600 Mbps and multi-gigabit 802.11ad Wi-Fi • New Qualcomm® Kryo CPU: Delivering Next-generation maximum performance and low power consumption Kryo is QTI’s first custom computer vision 64-bit quad-core CPU, manufactured Drive more safely with object detection and enhanced in advanced 14nm FinFET LPP process navigation and enhance your smartphone camera • New Qualcomm® Adreno 530: Up to capability with features that can track faces and 40% better graphics and compute objects for a more intelligent mobile experience. performance with the Adreno 530 GPU • Qualcomm Spectra™ 14-bit dual image signal processors (ISPs) deliver high Deeply immersive resolution DSLR-quality images using heterogeneous compute for advanced 3D gaming processing and additional power The combination of Snapdragon 820’s Adreno 530 GPU savings and Kryo CPU creates enough compute performance • New Hexagon 680 DSP includes to enable console quality games and exciting, next Hexagon Vector eXtensions and Sensor generation virtual reality applications. -
GPU Developments 2018
GPU Developments 2018 2018 GPU Developments 2018 © Copyright Jon Peddie Research 2019. All rights reserved. Reproduction in whole or in part is prohibited without written permission from Jon Peddie Research. This report is the property of Jon Peddie Research (JPR) and made available to a restricted number of clients only upon these terms and conditions. Agreement not to copy or disclose. This report and all future reports or other materials provided by JPR pursuant to this subscription (collectively, “Reports”) are protected by: (i) federal copyright, pursuant to the Copyright Act of 1976; and (ii) the nondisclosure provisions set forth immediately following. License, exclusive use, and agreement not to disclose. Reports are the trade secret property exclusively of JPR and are made available to a restricted number of clients, for their exclusive use and only upon the following terms and conditions. JPR grants site-wide license to read and utilize the information in the Reports, exclusively to the initial subscriber to the Reports, its subsidiaries, divisions, and employees (collectively, “Subscriber”). The Reports shall, at all times, be treated by Subscriber as proprietary and confidential documents, for internal use only. Subscriber agrees that it will not reproduce for or share any of the material in the Reports (“Material”) with any entity or individual other than Subscriber (“Shared Third Party”) (collectively, “Share” or “Sharing”), without the advance written permission of JPR. Subscriber shall be liable for any breach of this agreement and shall be subject to cancellation of its subscription to Reports. Without limiting this liability, Subscriber shall be liable for any damages suffered by JPR as a result of any Sharing of any Material, without advance written permission of JPR. -
An Evolution of Mobile Graphics
AN EVOLUTION OF MOBILE GRAPHICS Michael C. Shebanow Vice President, Advanced Processor Lab Samsung Electronics July 20, 20131 DISCLAIMER • The views herein are my own • They do not represent Samsung’s vision nor product plans 2 • The Mobile Market • Review of GPU Tech • GPU Efficiency • User Experience • Tech Challenges • Summary 3 The Rise of the Mobile GPU & Connectivity A NEW WORLD COMING? 4 DISCRETE GPU MARKET Flattening 5 MOBILE GPU MARKET Smart • In 2012, an estimated 800+ Phones million mobile GPUs shipped “Phablets” • ~123M tablets • ~712M smart phones Tablets • Will easily exceed 1B in the coming years • Trend: • Discrete GPU relatively flat • Mobile is growing rapidly 6 WW INTERNET TRAFFIC • Source: Cisco VNI Mobile INET IP Traffic growth Traffic • Internet traffic growth Year (TB/sec) rate (TB/sec) rate is staggering 2005 0.9 0.00 2006 1.5 65% 0.00 • 2012 total traffic is 2007 2.5 61% 0.01 13.7 GB per person 2008 3.8 54% 0.01 per month 2009 5.6 45% 0.04 2010 7.8 40% 0.10 • 2012 smart phone 2011 10.6 36% 0.23 traffic at 2012 12.4 17% 0.34 0.342 GB per person per month • 2017 smart phone traffic expected at 2.7 GB per person per month 7 WHERE ARE WE HEADED?… • Enormous quantity of GPUs • Large amount of interconnectivity • Better I/O 8 GPU Pipelines A BRIEF REVIEW OF GPU TECH 9 MOBILE GPU PIPELINE ARCHITECTURES Tile-based immediate mode rendering IA VS CCV RS PS ROP (TBIMR) Tile-based deferred IA VS CCV scene rendering (TBDR) RS PS ROP IA = input assembler VS = vertex shader CCV = cull, clip, viewport transform RS = rasterization, -
Macbook Pro (15-Inch, 2019) - Technical Specifications
MacBook Pro (15-inch, 2019) - Technical Specifications Touch Bar Touch Bar with integrated Touch ID sensor Finish Silver Space Gray Display Retina display 15.4-inch (diagonal) LED-backlit display with IPS technology; 2880- by-1800 native resolution at 220 pixels per inch with support for millions of colors Supported scaled resolutions: 1920 by 1200 1680 by 1050 1280 by 800 1024 by 640 500 nits brightness Wide color (P3) True Tone technology Processor 2.6GHz 2.6GHz 6-core Intel Core i7, Turbo Boost up to 4.5GHz, with 12MB shared L3 cache Configurable to 2.4GHz 8-core Intel Core i9, Turbo Boost up to 5.0GHz, with 16MB shared L3 cache 2.3GHz 2.3GHz 8-core Intel Core i9, Turbo Boost up to 4.8GHz, with 16MB shared L3 cache Configurable to 2.4GHz 8-core Intel Core i9, Turbo Boost up to 5.0GHz, with 16MB shared L3 cache Storage MacBook Pro (15-inch, 2019) - Technical Specifications 256GB 256GB SSD Configurable to 512GB, 1TB, 2TB, or 4TB SSD 512GB 512GB SSD Configurable to 1TB, 2TB, or 4TB SSD Memory 16GB of 2400MHz DDR4 onboard memory Configurable to 32GB of memory Graphics 2.6GHz Radeon Pro 555X with 4GB of GDDR5 memory and automatic graphics switching Intel UHD Graphics 630 Configurable to Radeon Pro 560X with 4GB of GDDR5 memory 2.3GHz Radeon Pro 560X with 4GB of GDDR5 memory and automatic graphics switching Intel UHD Graphics 630 Configurable to Radeon Pro Vega 16 with 4GB of HBM2 memory or Radeon Pro Vega 20 with 4GB of HBM2 memory Charging and Expansion Four Thunderbolt 3 (USB-C) ports with support for: Charging DisplayPort Thunderbolt -
Apple Products and Pricing List
Follow us on Facebook and Twitter!! www.illutechstore.com www.facebook.com/LLUcomputerstore (909) 558-4129 www.twitter/iLLUTechStore MacBook Pro 13” 1.4GHz Intel i5 quad-core 8th-gen Processor, iMac Touch Bar & ID, 8GB 2133MHz Memory, Intel MacBook Air Iris Plus Graphics 640, 128GB SSD Storage 21.5” 2.3GHz i5 dual–core Processor, MUHN2LL/A or MUHQ2LL/A Education $1199 8GB 2133MHz Memory, 1TB Hard Drive, Intel Iris Plus Graphics 640 13” 1.6GHz i5 dual-core , (New Model) 1.4GHz Intel i5 quad-core 8th-gen Processor, MMQA2LL/A Education $1049 8GB 2133MHz Memory, 128GB SSD Storage, Touch Bar and ID, 8GB 2133MHz Memory, Intel UHD 617 Graphics Intel Iris Plus Graphics 640, 256GB SSD Stor- 21.5” 3.6GHz quad–core Intel core i3, MVFK2LL/A / MVFM2LL/A age Retina 4K Display, (New Model) MVFHLL/A Education $999 MUHP2LL/A or MUHR2LL/A Education $1399 8GB 2666MHz DDR4 Memory, 1TB Hard Drive, Radeon Pro 555X with 2GB Memory 13” 1.6GHz i5 dual-core , (New Model) 2.4GHz quad-core 8th-generation Intel core i5 MRT32LL/A Education $1249 8GB 2133MHz Memory, 256GB SSD Storage, Processor, Touch Bar and Touch ID, Intel UHD 617 Graphics 8GB 2133MHz LPDDR3 Memory, Intel Iris Plus 21.5” 3.0GHz 6-core Intel Core i5 Turbo MVFL2LL/A / MVFN2LL/A Graphics 655, 256GB SSD Storage MVFJ2LL/A Education $1199 MV962LL/A or MV992LL/A Education $1699 Boost up to 4.1GHz, (New Model) Retina 4K Display, 2.4GHz quad-core 8th-generation Intel core i5 8GB 2666MHz Memory, 1TB Fusion Drive, Processor, Touch Bar & ID, Radeon Pro 560X with 4GB Memory 8GB 2133MHz LPDDR3 Memory, Intel Iris -
Amd Mobile Gpu
1 / 2 Amd Mobile Gpu The partnership will see Samsung use ultra-low power high-performance mobile graphics IP based on AMD Radeon graphics technologies for .... The power pairing of the new eight-core AMD Ryzen 9 5900HS processor in the laptop and Nvidia GeForce RTX 3080 mobile GPU in the .... AMD says gaming laptops featuring GPUs based on its new RDNA 2 ... To showcase the performance of its mobile GPUs, Su showed off Dirt 5 .... The interesting question is whether the GPU pipeline will evolve to perform more ... AMD's Fusion and Intel's Nehalem projects [1222]. ... However, it seems aimed more at the mobile market, where small size and lower wattage matter more.. I attended several keynotes and press conferences including AMD's CES keynote where they announced its Ryzen 4000 Series Mobile Processors, code-named “ .... The new AMD Radeon Pro 5600M paves the way for desktop-class graphics performance with superb efficiency on mobile computing .... This is all 9XX series Mobile GPUs. 1 external ... Frame Pacing Enhancements for AMD Dual Graphics. Both of ... 60 or newer version of the mobile driver (347.. This points to an AMD GPU inside 2022's Galaxy S flagship line. Samsung and AMD announced a partnership to develop a mobile GPU back in .... This ensures that all AMD's Radeon Pro Duo is a beast of a dual GPU graphics card ... The Radeon Pro 5500M is a professional mobile graphics chip by AMD, ... Both NVidia's GeForce & AMD's Radeon have fantastic Graphics Cards ... While both companies are interested in the mobile and console markets, Nvidia has ... -
Videocard Benchmarks
Software Hardware Benchmarks Services Store Support About Us Forums 0 CPU Benchmarks Video Card Benchmarks Hard Drive Benchmarks RAM PC Systems Android iOS / iPhone Videocard Benchmarks Over 1,000,000 Video Cards Benchmarked Video Card List Below is an alphabetical list of all Video Card types that appear in the charts. Clicking on a specific Video Card will take you to the chart it appears in and will highlight it for you. Find Videocard VIDEO CARD Single Video Card Passmark G3D Rank Videocard Value Price Videocard Name Mark (lower is better) (higher is better) (USD) High End (higher is better) 3DP Edition 826 822 NA NA High Mid Range Low Mid Range 9xx Soldiers sans frontiers Sigma 2 21 1926 NA NA Low End 15FF 8229 114 NA NA 64MB DDR GeForce3 Ti 200 5 2004 NA NA Best Value Common 64MB GeForce2 MX with TV Out 2 2103 NA NA Market Share (30 Days) 128 DDR Radeon 9700 TX w/TV-Out 44 1825 NA NA 128 DDR Radeon 9800 Pro 62 1768 NA NA 0 Compare 128MB DDR Radeon 9800 Pro 66 1757 NA NA 128MB RADEON X600 SE 49 1809 NA NA Video Card Mega List 256MB DDR Radeon 9800 XT 37 1853 NA NA Search Model 256MB RADEON X600 67 1751 NA NA GPU Compute 7900 MOD - Radeon HD 6520G 610 1040 NA NA Video Card Chart 7900 MOD - Radeon HD 6550D 892 775 NA NA A6 Micro-6500T Quad-Core APU with RadeonR4 220 1421 NA NA A10-8700P 513 1150 NA NA ABIT Siluro T400 3 2059 NA NA ALL-IN-WONDER 9000 4 2024 NA NA ALL-IN-WONDER 9800 23 1918 NA NA ALL-IN-WONDER RADEON 8500DV 5 2009 NA NA ALL-IN-WONDER X800 GT 84 1686 NA NA All-in-Wonder X1800XL 30 1889 NA NA All-in-Wonder X1900 127 1552 -
Case 6:19-Cv-00474-ADA Document 46 Filed 05/05/20 Page 1 of 208
Case 6:19-cv-00474-ADA Document 46 Filed 05/05/20 Page 1 of 208 IN THE UNITED STATES DISTRICT COURT FOR THE WESTERN DISTRICT OF TEXAS WACO DIVISION GPU++, LLC, ) ) Plaintiff, ) ) v. ) ) Civil Action No. W-19-CV-00474-ADA QUALCOMM INCORPORATED; ) QUALCOMM TECHNOLOGIES, INC., ) JURY TRIAL DEMANDED SAMSUNG ELECTRONICS CO., LTD.; ) SAMSUNG ELECTRONICS AMERICA, INC.; ) U.S. Dist. Ct. Judge: Hon. Alan. D. Albright SAMSUNG SEMICONDUCTOR, INC.; ) SAMSUNG AUSTIN SEMICONDUCTOR, ) LLC, ) ) Defendants. ) FIRST AMENDED COMPLAINT Plaintiff GPU++, LLC (“Plaintiff”), by its attorneys, demands a trial by jury on all issues so triable and for its complaint against Qualcomm Incorporated and Qualcomm Technologies, Inc. (collectively, “Qualcomm”) and Samsung Electronics Co., Ltd., Samsung Electronics America, Inc., Samsung Semiconductor, Inc., and Samsung Austin Semiconductor, LLC (collectively, “Samsung”) (Qualcomm and Samsung collectively, “Defendants”), and alleges as follows: NATURE OF THE ACTION 1. This is a civil action for patent infringement under the patent laws of the United States, Title 35, United States Code, Section 271, et seq., involving United States Patent No. 8,988,441 (Exhibit A, “’441 patent”) and seeking damages and injunctive relief as provided in 35 U.S.C. §§ 281 and 283-285. THE PARTIES 2. Plaintiff is a California limited liability company with a principal place of business Case 6:19-cv-00474-ADA Document 46 Filed 05/05/20 Page 2 of 208 at 650-B Fremont Avenue #137, Los Altos, CA 94024. Plaintiff is the owner by assignment of the ʼ441 patent. 3. On information and belief, Qualcomm Incorporated is a corporation organized and existing under the laws of the State of Delaware, having a principal place of business at 5775 Morehouse Dr., San Diego, California, 92121. -
Arxiv:1910.06663V1 [Cs.PF] 15 Oct 2019
AI Benchmark: All About Deep Learning on Smartphones in 2019 Andrey Ignatov Radu Timofte Andrei Kulik ETH Zurich ETH Zurich Google Research [email protected] [email protected] [email protected] Seungsoo Yang Ke Wang Felix Baum Max Wu Samsung, Inc. Huawei, Inc. Qualcomm, Inc. MediaTek, Inc. [email protected] [email protected] [email protected] [email protected] Lirong Xu Luc Van Gool∗ Unisoc, Inc. ETH Zurich [email protected] [email protected] Abstract compact models as they were running at best on devices with a single-core 600 MHz Arm CPU and 8-128 MB of The performance of mobile AI accelerators has been evolv- RAM. The situation changed after 2010, when mobile de- ing rapidly in the past two years, nearly doubling with each vices started to get multi-core processors, as well as power- new generation of SoCs. The current 4th generation of mo- ful GPUs, DSPs and NPUs, well suitable for machine and bile NPUs is already approaching the results of CUDA- deep learning tasks. At the same time, there was a fast de- compatible Nvidia graphics cards presented not long ago, velopment of the deep learning field, with numerous novel which together with the increased capabilities of mobile approaches and models that were achieving a fundamentally deep learning frameworks makes it possible to run com- new level of performance for many practical tasks, such as plex and deep AI models on mobile devices. In this pa- image classification, photo and speech processing, neural per, we evaluate the performance and compare the results of language understanding, etc. -
Michael Doggett Department of Computer Science Lund University Overview
Graphics Architectures and OpenCL Michael Doggett Department of Computer Science Lund university Overview • Parallelism • Radeon 5870 • Tiled Graphics Architectures • Important when Memory and Bandwidth limited • Different to Tiled Rasterization! • Tessellation • OpenCL • Programming the GPU without Graphics © mmxii mcd “Only 10% of our pixels require lots of samples for soft shadows, but determining which 10% is slower than always doing the samples. ” by ID_AA_Carmack, Twitter, 111017 Parallelism • GPUs do a lot of work in parallel • Pipelining, SIMD and MIMD • What work are they doing? © mmxii mcd What’s running on 16 unifed shaders? 128 fragments in parallel 16 cores = 128 ALUs MIMD 16 simultaneous instruction streams 5 Slide courtesy Kayvon Fatahalian vertices/fragments primitives 128 [ OpenCL work items ] in parallel CUDA threads vertices primitives fragments 6 Slide courtesy Kayvon Fatahalian Unified Shader Architecture • Let’s take the ATI Radeon 5870 • From 2009 • What are the components of the modern graphics hardware pipeline? © mmxii mcd Unified Shader Architecture Grouper Rasterizer Unified shader Texture Z & Alpha FrameBuffer © mmxii mcd Unified Shader Architecture Grouper Rasterizer Unified Shader Texture Z & Alpha FrameBuffer ATI Radeon 5870 © mmxii mcd Shader Inputs Vertex Grouper Tessellator Geometry Grouper Rasterizer Unified Shader Thread Scheduler 64 KB GDS SIMD 32 KB LDS Shader Processor 5 32bit FP MulAdd Texture Sampler Texture 16 Shader Processors 256 KB GPRs 8 KB L1 Tex Cache 20 SIMD Engines Shader Export Z & Alpha 4 -
Gables: a Roofline Model for Mobile Socs
2019 IEEE International Symposium on High Performance Computer Architecture (HPCA) Gables: A Roofline Model for Mobile SoCs Mark D. Hill∗ Vijay Janapa Reddi∗ Computer Sciences Department School Of Engineering And Applied Sciences University of Wisconsin—Madison Harvard University [email protected] [email protected] Abstract—Over a billion mobile consumer system-on-chip systems with multiple cores, GPUs, and many accelerators— (SoC) chipsets ship each year. Of these, the mobile consumer often called intellectual property (IP) blocks, driven by the market undoubtedly involving smartphones has a significant need for performance. These cores and IPs interact via rich market share. Most modern smartphones comprise of advanced interconnection networks, caches, coherence, 64-bit address SoC architectures that are made up of multiple cores, GPS, and many different programmable and fixed-function accelerators spaces, virtual memory, and virtualization. Therefore, con- connected via a complex hierarchy of interconnects with the goal sumer SoCs deserve the architecture community’s attention. of running a dozen or more critical software usecases under strict Consumer SoCs have long thrived on tight integration and power, thermal and energy constraints. The steadily growing extreme heterogeneity, driven by the need for high perfor- complexity of a modern SoC challenges hardware computer mance in severely constrained battery and thermal power architects on how best to do early stage ideation. Late SoC design typically relies on detailed full-system simulation once envelopes, and all-day battery life. A typical mobile SoC in- the hardware is specified and accelerator software is written cludes a camera image signal processor (ISP) for high-frame- or ported. -
Qualcomm Snapdragon Technology Leadership
THE RISE OF MOBILE GAMING ON ANDROID: QUALCOMM® SNAPDRAGON™ TECHNOLOGY LEADERSHIP © 2014 Qualcomm Technologies, Inc. All Rights Reserved. Qualcomm Technologies, Inc. Qualcomm, Snapdragon, Adreno, FlexRender, Trepn, Vuforia, Brew and Hexagon are trademarks of Qualcomm Incorporated, registered in the United States and other countries. TruPalette, ecoPix, Krait and Smart Terrain are trademarks of Qualcomm Incorporated. All Qualcomm Incorporated trademarks are used with permission. AllJoyn is a trademark of Qualcomm Innovation Center, Inc., registered in the United States and other countries, used with permission. Other products and brand names may be trademarks or registered trademarks of their respective owners. Qualcomm Snapdragon, Qualcomm Adreno, Qualcomm TruPalette, Qualcomm ecoPix, FlexRender, Trepn, Brew, Hexagon and Krait are products of Qualcomm Technologies, Inc. Qualcomm Vuforia is a product of Qualcomm Connected Experiences, Inc. Smart Terrain is a feature of the Qualcomm Vuforia SDK. AllJoyn open source project is hosted by the Allseen Alliance. Qualcomm Technologies, Inc. 5775 Morehouse Drive San Diego, CA 92121 U.S.A. © 2014 Qualcomm Technologies, Inc. All Rights Reserved. © 2014 Qualcomm Technologies, Inc. All Rights Reserved. Table of Contents 1 Executive summary ......................................................................................................................... 1 2 The rise of mobile gaming on Android ........................................................................................... 1 3 Immersive