Simultaneous Determination of Aesculin, Aesculetin, Fraxetin

Total Page:16

File Type:pdf, Size:1020Kb

Simultaneous Determination of Aesculin, Aesculetin, Fraxetin molecules Article Simultaneous Determination of Aesculin, Aesculetin, Fraxetin, Fraxin and Polydatin in Beagle Dog Plasma by UPLC-ESI-MS/MS and Its Application in a Pharmacokinetic Study after Oral Administration Extracts of Ledum palustre L. Zhibin Wang 1, Wenbo Zhu 1, Hua Liu 1, Gaosong Wu 1, Mengmeng Song 1, Bingyou Yang 1, Deqiang Yang 1, Qiuhong Wang 1,2 and Haixue Kuang 1,2,* 1 Key Laboratory of Chinese Materia Medica (Ministry of Education), Heilongjiang University of Chinese Medicine, 24 Heping Road, Xiangfang District, Harbin 150040, China; [email protected] (Z.W.); [email protected] (W.Z.); [email protected] (H.L.); [email protected] (G.W.); [email protected] (M.S.); [email protected] (B.Y.); [email protected] (D.Y.); [email protected] (Q.W.) 2 School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, 232 Outer Ring Road, University Town, Guangzhou 510006, China * Correspondence: [email protected]; Tel.: +86-451-87267188 Received: 20 August 2018; Accepted: 5 September 2018; Published: 7 September 2018 Abstract: A rapid, simple and sensitive ultra-performance liquid chromatography-electrospray- ionization-tandem mass spectrometry (UPLC-ESI-MS/MS) method was developed and validated for the simultaneous determination of aesculin, aesculetin, fraxetin, fraxin and polydatin in beagle dog plasma for the first time. Plasma samples were pretreated by protein precipitation with methanol. Chromatographic separation was performed on an Acquity UPLC HSS T3 C18 column (2.1 mm × 100 mm, 1.8 µm) with gradient elution at a flow rate of 0.4 mL/min, using a mobile phase consisting of 0.1% formic acid (A) and acetonitrile (B). The analytes and IS were detected by multiple reaction monitoring (MRM) via negative ion mode with ion transitions of m/z 339.1–m/z 176.8 for aesculin, m/z 176.8–m/z 88.9 for aesculetin, m/z 206.8–m/z 192.1 for fraxetin, m/z 369.1–m/z 206.9 for fraxin, m/z 389.1–m/z 227.0 for polydatin and m/z 415.2–m/z 295.1 for puerarin. This method was validated according to the FDA guidelines and the results met the requirements of analysis. The calibration curves of analytes were linear with correlation coefficients more than 0.9980. The intra- and inter-day precisions were less than 15% and the accuracy was within ±15%. The maximum plasma concentration (Cmax) of aesculin, aesculetin, fraxetin, fraxin and polydatin was 46.75 ± 7.46, 209.9 ± 57.65, 369.7 ± 48.87, 67.04 ± 12.09 and 47.14 ± 12.04 ng/mL, respectively. The time to reach the maximum plasma concentration (Tmax) was 1.32 ± 0.38 h for aesculin, 1.03 ± 0.27 h for aesculetin, 0.94 ± 0.23 h for fraxetin, 0.83 ± 0.18 h for fraxin and 1.15 ± 0.15 h for polydatin. The results indicated that the absorption of aesculin might be slow in beagle dog plasma. This method was successfully applied for pharmacokinetics in beagle dog plasma after oral administration of the extracts of Ledum palustre L. at a dosage of 0.27 g/kg. Keywords: Ledum palustre L.; UPLC-ESI-MS/MS; pharmacokinetics 1. Introduction Ledum palustre L. is an evergreen low shrub, which belongs to the Ericaceae family and is widely distributed in northern Europe, central Europe, northern Asia, America and the northeast of China. The ointment and decoction of L. palustre have been used to treat menxenia, infertility and gastric Molecules 2018, 23, 2285; doi:10.3390/molecules23092285 www.mdpi.com/journal/molecules Molecules 2018, 23, 2285 2 of 12 ulcers in folk for a long time. Not only that, it also plays an important role in treating insect bites, arthrosis, and rheumatism [1–3]. Previous studies have reported that L. palustre contains various types of components, such as coumarins, flavonoids, triterpenes, volatile oils and hydroxycinnamic acids [4]. The aesculin, aesculetin, fraxetin and fraxin belong to coumarins, and polydatin is an active stilbene compound. The five components isolated from L. palustre are the main active ingredients in natural herbs [5,6]. Pharmacological studies have revealed that the five components have several similar pharmacological activities, including anti-inflammatory, anti-oxidant, anti-tumor, anti-viral, and so on [7–12]. In particular, polydatin possesses extensive cardiovascular pharmacological activity, such as cardio-myocyte protection, vascular smooth muscle dilation, anti-thrombosis, etc. [13,14]. To investigate the pharmacokinetic characteristics of aesculin, aesculetin, fraxetin, fraxin and polydatin, several analytical methods based on chromatographic techniques for single or simultaneous quantification of analytes have been reported in recent years. High-performance liquid chromatography with ultraviolet (HPLC-UV), high-performance liquid chromatography quadrupole time of flight tandem mass (HPLC-QTQF-MS/MS), high-performance liquid chromatography with fluorescence detection (HPLC-FD), liquid chromatography tandem mass spectrometry (LC-MS/MS) and high-performance liquid chromatography tandem mass spectrometry (HPLC-MS/MS) methods were implemented for the determination and quantitation of aesculin, aesculetin, fraxetin, fraxin and polydatin in rat plasma and rabbit plasma [15–21]. In addition, only a single report was retrieved online which described the pharmacokinetics of polydatin in beagle dog plasma [22]. The gastric emptying time and pH value of gastric fluid in beagle dogs was similar to humans under a fasting state. The detection results of drug in beagle dog can be used to analyze change regulation in the human body. Therefore, it is important to develop a method for simultaneous determination of the five components in beagle dog plasma. A rapid, sensitive and simple ultra-performance liquid chromatography-electrospray-ionization- tandem mass spectrometry (UPLC-ESI-MS/MS) method for the simultaneous determination of aesculin, aesculetin, fraxetin, fraxin and polydatin was developed and validated in this paper. This method was successfully applied to pharmacokinetics of the five components above after oral administration of extracts of L. palustre in beagle dog for the first time. The results of this study will provide useful information for further experimental research and clinical application. 2. Results and Discussion 2.1. Optimization of UPLC-ESI-MS/MS Conditions The mobile phase was a decisive factor in the chromatographic analysis, which could affect the separation and ionization. Different solvent combinations, including water-acetonitrile and water-methanol with formic acid, were required to be tested for perfect peak shape, high response and stable retention time. It was found that the water-acetonitrile system possessed good separation efficiency with lower noise, and the retention time of the analytes was more stable than the water-methanol system. Higher signal response and sharp peaks of analytes were observed after addition of 0.1% formic acid into the mobile phase, and the sensitivity of detecting was improved. Therefore, 0.1% formic acid-acetonitrile was employed as the final mobile phase with gradient elution. The total test time was 5 min. The analytes and IS were determined in both negative and positive ion mode, the signal sensitivity and reproducibility were better in negative ionization mode than in positive mode. Therefore, the negative ion mode was selected for the quantification. On the basis of the full-scan spectra shown in Figure1, the deprotonated molecular ions [M − H]− were selected as parent ions because of their high response. The declustering potential (DP) and collision energy (CE) of analytes and IS were optimized in order to obtain product ion. In the process of optimization, the most abundant and stable fragment was m/z 176.8 for aesculin, m/z 88.9 for aesculetin, m/z 192.1 for fraxetin, m/z 206.9 for fraxin, m/z 227.0 for polydatin, and m/z 295.1 for puerarin. Therefore, the ion transitions of the analytes Molecules 2018, 23, x FOR PEER REVIEW 3 of 13 and IS were optimized in order to obtain product ion. In the process of optimization, the most Moleculesabundant2018 and, 23 ,stable 2285 fragment was m/z 176.8 for aesculin, m/z 88.9 for aesculetin, m/z 192.1 for fraxetin,3 of 12 m/z 206.9 for fraxin, m/z 227.0 for polydatin, and m/z 295.1 for puerarin. Therefore, the ion transitions wereof them analytes/z 339.1– werem/z m176.8/z 339.1– for aesculin,m/z 176.8 mfor/ zaesculin,176.8–m /mz/z88.9 176.8– form aesculetin,/z 88.9 for aesculetin,m/z 206.8– mm//zz 206.8–192.1m for/z fraxetin,192.1 for mfraxetin,/z 369.1– mm/z/ 369.1–z 206.9m for/z 206.9 fraxin, form fraxin,/z 389.1– m/zm 389.1–/z 227.0m/z for 227.0 polydatin for polydatin and m/ andz 415.2– m/z 415.2–m/z 295.1m/z for295.1 puerarin. for puerarin. The optimized The optimized parameters parameters and MRM and MRM transitions transitions of the of analytes the analytes and IS and can IS be can found be infound Table in1 .Table 1. Figure 1. ChemicalChemical structures structures and and product product ion ion mass mass spectra spectra of analytes of analytes and andIS. ( IS.A): (aesculin;A): aesculin; (B): (aesculetin;B): aesculetin; (C): (fraxetin;C): fraxetin; (D): (fraxin;D): fraxin; (E): (polydatin;E): polydatin; (F): (puerarin.F): puerarin. Table 1. Optimized mass spectrometric parameters for analytes and IS. Table 1. Optimized mass spectrometric parameters for analytes and IS. Precursor Ion Product Ion Declustering Collision Analytes Precursor Product Collision Polarity Analytes (m/z) (mDeclustering/z) Potential Potential (V) (V) Energy (V) Polarity Ion (m/z) Ion (m/z) Energy (V) aesculinaesculin 339.1 339.1176.8 176.8103.1 103.1 40.740.7 negativenegative aesculetin 176.8 88.9 69.3 34.9 negative aesculetinfraxetin 176.8 206.888.9 192.169.3 64.9 22.634.9 negativenegative fraxetinfraxin 206.8 369.1192.1 206.964.9 75.8 30.822.6 negativenegative fraxinpolydatin 369.1 389.1206.9 227.075.8 85.6 22.030.8 negativenegative polydatinpuerarin 389.1 415.2227.0 295.185.6 92.9 34.422.0 negativenegative puerarin 415.2 295.1 92.9 34.4 negative 2.2.
Recommended publications
  • Integrating Complementary Medicine Into Cardiovascular Medicine
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Journal of the American College of Cardiology Vol. 46, No. 1, 2005 © 2005 by the American College of Cardiology Foundation ISSN 0735-1097/05/$30.00 Published by Elsevier Inc. doi:10.1016/j.jacc.2005.05.031 ACCF COMPLEMENTARY MEDICINE EXPERT CONSENSUS DOCUMENT Integrating Complementary Medicine Into Cardiovascular Medicine A Report of the American College of Cardiology Foundation Task Force on Clinical Expert Consensus Documents (Writing Committee to Develop an Expert Consensus Document on Complementary and Integrative Medicine) WRITING COMMITTEE MEMBERS JOHN H. K. VOGEL, MD, MACC, Chair STEVEN F. BOLLING, MD, FACC BRIAN OLSHANSKY, MD, FACC REBECCA B. COSTELLO, PHD KENNETH R. PELLETIER, MD(HC), PHD ERMINIA M. GUARNERI, MD, FACC CYNTHIA M. TRACY, MD, FACC MITCHELL W. KRUCOFF, MD, FACC, FCCP ROBERT A. VOGEL, MD, FACC JOHN C. LONGHURST, MD, PHD, FACC TASK FORCE MEMBERS ROBERT A. VOGEL, MD, FACC, Chair JONATHAN ABRAMS, MD, FACC SANJIV KAUL, MBBS, FACC JEFFREY L. ANDERSON, MD, FACC ROBERT C. LICHTENBERG, MD, FACC ERIC R. BATES, MD, FACC JONATHAN R. LINDNER, MD, FACC BRUCE R. BRODIE, MD, FACC* ROBERT A. O’ROURKE, MD, FACC† CINDY L. GRINES, MD, FACC GERALD M. POHOST, MD, FACC PETER G. DANIAS, MD, PHD, FACC* RICHARD S. SCHOFIELD, MD, FACC GABRIEL GREGORATOS, MD, FACC* SAMUEL J. SHUBROOKS, MD, FACC MARK A. HLATKY, MD, FACC CYNTHIA M. TRACY, MD, FACC* JUDITH S. HOCHMAN, MD, FACC* WILLIAM L. WINTERS, JR, MD, MACC* *Former members of Task Force; †Former chair of Task Force The recommendations set forth in this report are those of the Writing Committee and do not necessarily reflect the official position of the American College of Cardiology Foundation.
    [Show full text]
  • Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity
    toxins Article Suspect and Target Screening of Natural Toxins in the Ter River Catchment Area in NE Spain and Prioritisation by Their Toxicity Massimo Picardo 1 , Oscar Núñez 2,3 and Marinella Farré 1,* 1 Department of Environmental Chemistry, IDAEA-CSIC, 08034 Barcelona, Spain; [email protected] 2 Department of Chemical Engineering and Analytical Chemistry, University of Barcelona, 08034 Barcelona, Spain; [email protected] 3 Serra Húnter Professor, Generalitat de Catalunya, 08034 Barcelona, Spain * Correspondence: [email protected] Received: 5 October 2020; Accepted: 26 November 2020; Published: 28 November 2020 Abstract: This study presents the application of a suspect screening approach to screen a wide range of natural toxins, including mycotoxins, bacterial toxins, and plant toxins, in surface waters. The method is based on a generic solid-phase extraction procedure, using three sorbent phases in two cartridges that are connected in series, hence covering a wide range of polarities, followed by liquid chromatography coupled to high-resolution mass spectrometry. The acquisition was performed in the full-scan and data-dependent modes while working under positive and negative ionisation conditions. This method was applied in order to assess the natural toxins in the Ter River water reservoirs, which are used to produce drinking water for Barcelona city (Spain). The study was carried out during a period of seven months, covering the expected prior, during, and post-peak blooming periods of the natural toxins. Fifty-three (53) compounds were tentatively identified, and nine of these were confirmed and quantified. Phytotoxins were identified as the most frequent group of natural toxins in the water, particularly the alkaloids group.
    [Show full text]
  • Scopoletin 8-Hydroxylase: a Novel Enzyme Involved in Coumarin
    bioRxiv preprint doi: https://doi.org/10.1101/197806; this version posted October 4, 2017. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Scopoletin 8-hydroxylase: a novel enzyme involved in coumarin biosynthesis and iron- 2 deficiency responses in Arabidopsis 3 4 Running title: At3g12900 encodes a scopoletin 8-hydroxylase 5 6 Joanna Siwinska1, Kinga Wcisla1, Alexandre Olry2,3, Jeremy Grosjean2,3, Alain Hehn2,3, 7 Frederic Bourgaud2,3, Andrew A. Meharg4, Manus Carey4, Ewa Lojkowska1, Anna 8 Ihnatowicz1,* 9 10 1Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of 11 Gdansk, Abrahama 58, 80-307 Gdansk, Poland 12 2Université de Lorraine, UMR 1121 Laboratoire Agronomie et Environnement Nancy- 13 Colmar, 2 avenue de la forêt de Haye 54518 Vandœuvre-lès-Nancy, France; 3INRA, UMR 14 1121 Laboratoire Agronomie et Environnement Nancy-Colmar, 2 avenue de la forêt de Haye 15 54518 Vandœuvre-lès-Nancy, France; 16 4Institute for Global Food Security, Queen’s University Belfast, David Keir Building, Malone 17 Road, Belfast, UK; 18 19 [email protected] 20 [email protected] 21 [email protected] 22 [email protected] 23 [email protected] 24 [email protected] 25 [email protected] 26 [email protected] 27 [email protected] 28 *Correspondence: [email protected], +48 58 523 63 30 29 30 The date of submission: 02.10.2017 31 The number of figures: 9 (Fig.
    [Show full text]
  • NINDS Custom Collection II
    ACACETIN ACEBUTOLOL HYDROCHLORIDE ACECLIDINE HYDROCHLORIDE ACEMETACIN ACETAMINOPHEN ACETAMINOSALOL ACETANILIDE ACETARSOL ACETAZOLAMIDE ACETOHYDROXAMIC ACID ACETRIAZOIC ACID ACETYL TYROSINE ETHYL ESTER ACETYLCARNITINE ACETYLCHOLINE ACETYLCYSTEINE ACETYLGLUCOSAMINE ACETYLGLUTAMIC ACID ACETYL-L-LEUCINE ACETYLPHENYLALANINE ACETYLSEROTONIN ACETYLTRYPTOPHAN ACEXAMIC ACID ACIVICIN ACLACINOMYCIN A1 ACONITINE ACRIFLAVINIUM HYDROCHLORIDE ACRISORCIN ACTINONIN ACYCLOVIR ADENOSINE PHOSPHATE ADENOSINE ADRENALINE BITARTRATE AESCULIN AJMALINE AKLAVINE HYDROCHLORIDE ALANYL-dl-LEUCINE ALANYL-dl-PHENYLALANINE ALAPROCLATE ALBENDAZOLE ALBUTEROL ALEXIDINE HYDROCHLORIDE ALLANTOIN ALLOPURINOL ALMOTRIPTAN ALOIN ALPRENOLOL ALTRETAMINE ALVERINE CITRATE AMANTADINE HYDROCHLORIDE AMBROXOL HYDROCHLORIDE AMCINONIDE AMIKACIN SULFATE AMILORIDE HYDROCHLORIDE 3-AMINOBENZAMIDE gamma-AMINOBUTYRIC ACID AMINOCAPROIC ACID N- (2-AMINOETHYL)-4-CHLOROBENZAMIDE (RO-16-6491) AMINOGLUTETHIMIDE AMINOHIPPURIC ACID AMINOHYDROXYBUTYRIC ACID AMINOLEVULINIC ACID HYDROCHLORIDE AMINOPHENAZONE 3-AMINOPROPANESULPHONIC ACID AMINOPYRIDINE 9-AMINO-1,2,3,4-TETRAHYDROACRIDINE HYDROCHLORIDE AMINOTHIAZOLE AMIODARONE HYDROCHLORIDE AMIPRILOSE AMITRIPTYLINE HYDROCHLORIDE AMLODIPINE BESYLATE AMODIAQUINE DIHYDROCHLORIDE AMOXEPINE AMOXICILLIN AMPICILLIN SODIUM AMPROLIUM AMRINONE AMYGDALIN ANABASAMINE HYDROCHLORIDE ANABASINE HYDROCHLORIDE ANCITABINE HYDROCHLORIDE ANDROSTERONE SODIUM SULFATE ANIRACETAM ANISINDIONE ANISODAMINE ANISOMYCIN ANTAZOLINE PHOSPHATE ANTHRALIN ANTIMYCIN A (A1 shown) ANTIPYRINE APHYLLIC
    [Show full text]
  • Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 BR 111 / 2017 The Minister responsible for health, in exercise of the power conferred by section 48A(1) of the Pharmacy and Poisons Act 1979, makes the following Order: Citation 1 This Order may be cited as the Pharmacy and Poisons (Third and Fourth Schedule Amendment) Order 2017. Repeals and replaces the Third and Fourth Schedule of the Pharmacy and Poisons Act 1979 2 The Third and Fourth Schedules to the Pharmacy and Poisons Act 1979 are repealed and replaced with— “THIRD SCHEDULE (Sections 25(6); 27(1))) DRUGS OBTAINABLE ONLY ON PRESCRIPTION EXCEPT WHERE SPECIFIED IN THE FOURTH SCHEDULE (PART I AND PART II) Note: The following annotations used in this Schedule have the following meanings: md (maximum dose) i.e. the maximum quantity of the substance contained in the amount of a medicinal product which is recommended to be taken or administered at any one time. 1 PHARMACY AND POISONS (THIRD AND FOURTH SCHEDULE AMENDMENT) ORDER 2017 mdd (maximum daily dose) i.e. the maximum quantity of the substance that is contained in the amount of a medicinal product which is recommended to be taken or administered in any period of 24 hours. mg milligram ms (maximum strength) i.e. either or, if so specified, both of the following: (a) the maximum quantity of the substance by weight or volume that is contained in the dosage unit of a medicinal product; or (b) the maximum percentage of the substance contained in a medicinal product calculated in terms of w/w, w/v, v/w, or v/v, as appropriate.
    [Show full text]
  • Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency
    Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Abadia, Frederic Gaymard, Javier Abadia, Ana Alvarez-Fernandez To cite this version: Patricia Siso-Terraza, Adrian Luis-Villarroya, Pierre Fourcroy, Jean-Francois Briat, Anunciacion Aba- dia, et al.. Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH. Frontiers in Plant Science, Frontiers, 2016, 7, pp.1711. 10.3389/fpls.2016.01711. hal-01417731 HAL Id: hal-01417731 https://hal.archives-ouvertes.fr/hal-01417731 Submitted on 15 Dec 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at
    [Show full text]
  • Pharmacy and Poisons Act 1979
    Q UO N T FA R U T A F E BERMUDA PHARMACY AND POISONS ACT 1979 1979 : 26 TABLE OF CONTENTS PART I PRELIMINARY 1 Short title 2 Interpretation PART II THE PHARMACY COUNCIL 3 The Pharmacy Council 4 Membership of the Council 4A Functions of the Council 4B Protection from personal liability 4C Annual Report 5 Proceedings of the Council, etc PART III REGISTRATION OF PHARMACISTS 6 Offence to practise pharmacy if not registered 7 Registration as a pharmacist 7A Re-registration as non-practising member 7AA Period of validity of registration 8 Code of Conduct 9 Pharmacy Profession Complaints Committee 10 Investigation of complaint by Committee 10A Inquiry into complaint by Council 10B Inquiry by Council of its own initiative 11 Surrender of registration 12 Restoration of name to register 1 PHARMACY AND POISONS ACT 1979 13 Proof of registration 14 Appeals 14A Fees 14B Amendment of Seventh Schedule 15 Regulations for this part PART IV REGISTRATION OF PHARMACIES 16 Register of pharmacies 17 Registration of premises as registered pharmacies 18 Unfit premises: new applications 19 Unfit premises: registered pharmacies 20 Appeals 21 When certificates of unfitness take effect 22 Regulations for this Part PART V CONTROL OF PRESCRIPTIONS AND IMPORTATION 23 Prescriptions to be in a certain form 23A Validity of a prescription 24 Supply by registered pharmacist of equivalent medicines 25 Restrictions on the importation of medicines 26 Declaration relating to imported medicines [repealed] PART VI CONTROL OF DRUGS 27 Certain substances to be sold on prescription
    [Show full text]
  • Identification and Functional Characterization of the First Two
    Identification and functional characterization of the first two aromatic prenyltransferases implicated in the biosynthesis of furanocoumarins and prenylated coumarins in two plant families: Rutaceae and Apiaceae Fazeelat Karamat To cite this version: Fazeelat Karamat. Identification and functional characterization of the first two aromatic prenyl- transferases implicated in the biosynthesis of furanocoumarins and prenylated coumarins in two plant families: Rutaceae and Apiaceae. Agronomy. Université de Lorraine, 2013. English. NNT : 2013LORR0029. tel-01749560 HAL Id: tel-01749560 https://hal.univ-lorraine.fr/tel-01749560 Submitted on 29 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat,
    [Show full text]
  • Natural Compounds, Fraxin and Chemicals Structurally Related to Fraxin Protect Cells from Oxidative Stress
    EXPERIMENTAL and MOLECULAR MEDICINE, Vol. 37, No. 5, 436-446, October 2005 Natural compounds, fraxin and chemicals structurally related to fraxin protect cells from oxidative stress Wan Kyunn Whang1, Hyung Soon Park2, genes expressed differentially by fraxin and to InHye Ham1, Mihyun Oh1, compare antioxidative effect of fraxin with its struc- Hong Namkoong3, Hyun Kee Kim3, turally related chemicals. Of the coumarins, protective 2 4 effects of fraxin against cytotoxicity induced by H2O2 Dong Whi Hwang , Soo Young Hur , were examined in human umbilical vein endothelial 4 5 Tae Eung Kim , Yong Gyu Park , cells (HUVECs). Fraxin showed free radical scavenging Jae-Ryong Kim6 and Jin Woo Kim3,4,7 effect at high concentration (0.5 mM) and cell protective effect against H2O2-mediated oxidative stress. Fraxin 1 College of Pharmacy, Chung-Ang University recovered viability of HUVECs damaged by H2O2- 221, Heukseok-dong, Dongjak-gu treatment and reduced the lipid peroxidation and the Seoul 156-861, Korea internal reactive oxygen species level elevated by H2O2 2KeyGene Life Science Institute treatment. Differential display reverse transcrip- KeyGene Science, Corp. tion-PCR revealed that fraxin upregulated antiapo- Ansan, Gyeonggido 425-791, Korea ptotic genes (clusterin and apoptosis inhibitor 5) and 3Molecular Genetic Laboratory tumor suppressor gene (ST13). Based on structural Research Institute of Medical Science similarity comparing with fraxin, seven chemicals, 4Department of Obstetrics and Gynecology fraxidin methyl ether (29.4% enhancement of viability), 5Department of Biostatistics prenyletin (26.4%), methoxsalen (20.8 %), diffratic acid College of Medicine (19.9%), rutoside (19.1%), xanthyletin (18.4%), and The Catholic University of Korea kuhlmannin (18.2%), enhanced more potent cell via- Seoul 137-040, Korea bility in the order in comparison with fraxin, which 6Department of Biochemistry and Molecular Biology showed only 9.3% enhancement of cell viability.
    [Show full text]
  • Accumulation and Secretion of Coumarinolignans and Other Coumarins in Arabidopsis Thaliana Roots in Response to Iron Deficiency at High Ph
    fpls-07-01711 November 21, 2016 Time: 15:23 # 1 ORIGINAL RESEARCH published: 23 November 2016 doi: 10.3389/fpls.2016.01711 Accumulation and Secretion of Coumarinolignans and other Coumarins in Arabidopsis thaliana Roots in Response to Iron Deficiency at High pH Patricia Sisó-Terraza1†, Adrián Luis-Villarroya1†, Pierre Fourcroy2‡, Jean-François Briat2, Anunciación Abadía1, Frédéric Gaymard2, Javier Abadía1 and Ana Álvarez-Fernández1* 1 Plant Stress Physiology Group, Department of Plant Nutrition, Aula Dei Experimental Station, Consejo Superior de Investigaciones Científicas, Zaragoza, Spain, 2 Biochimie et Physiologie Moléculaire des Plantes, Centre National de la Edited by: Recherche Scientifique, Institut National de la Recherche Agronomique, Université Montpellier, Montpellier, France Janin Riedelsberger, University of Talca, Chile Root secretion of coumarin-phenolic type compounds has been recently shown to Reviewed by: Stefano Cesco, be related to Arabidopsis thaliana tolerance to Fe deficiency at high pH. Previous Free University of Bozen-Bolzano, Italy studies revealed the identity of a few simple coumarins occurring in roots and exudates Dierk Scheel, of Fe-deficient A. thaliana plants, and left open the possible existence of other Leibniz Institute of Plant Biochemistry, Germany unknown phenolics. We used HPLC-UV/VIS/ESI-MS(TOF), HPLC/ESI-MS(ion trap) and *Correspondence: HPLC/ESI-MS(Q-TOF) to characterize (identify and quantify) phenolic-type compounds Ana Álvarez-Fernández accumulated in roots or secreted into the nutrient solution of A. thaliana plants in [email protected] response to Fe deficiency. Plants grown with or without Fe and using nutrient solutions †These authors have contributed equally to this work. buffered at pH 5.5 or 7.5 enabled to identify an array of phenolics.
    [Show full text]
  • Scopoletin 8-Hydroxylase a Novel Enzyme Involved in Coumarin Biosynthesis and Iron-Deficiency Responses in Arabidopsis
    Scopoletin 8-hydroxylase a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis Siwinska, J., Siatkowska, K., Olry, A., Grosjean, J., Hehn, A., Bourgaud, F., Meharg, A. A., Carey, M., Lojkowska, E., & Ihnatowicz, A. (2018). Scopoletin 8-hydroxylase a novel enzyme involved in coumarin biosynthesis and iron-deficiency responses in Arabidopsis. Journal of experimental botany, 69(7), 1735-1748. https://doi.org/10.1093/jxb/ery005 Published in: Journal of experimental botany Document Version: Publisher's PDF, also known as Version of record Queen's University Belfast - Research Portal: Link to publication record in Queen's University Belfast Research Portal Publisher rights Copyright the authors 2018. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. General rights Copyright for the publications made accessible via the Queen's University Belfast Research Portal is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The Research Portal is Queen's institutional repository that provides access to Queen's research output. Every effort has been made to ensure that content in the Research Portal does not infringe any person's rights, or applicable UK laws. If you discover content in the Research Portal that you believe breaches copyright or violates any law, please contact [email protected].
    [Show full text]
  • Picrotoxin (Also Known As Cocculin)
    Biosynthesis of coumarins 100 Khellin It is a furanochromone, an organic compound which is a derivative of chromone (1,4-benzopyrone) and furan. It has lipophilic properties and causes vasodilation (widening of blood vessels). It is found in the plant Ammi visnaga (Family: Apiaceae) which has been used in Egyptian folk medicine. It has activity as a spasmolytic and vasodilator. OCH O 3 O O CH3 OCH3 Khellin 101 In Egypt, the plant "Khella" was used for renal colic. The incidence of renal colic was due mostly to schistosomiasis (bilharzia, snail fever) infections and stone formation. The plant mixture had diuretic properties that were seen to relieve renal colic in Egyptian folk medicine. After the chemical compound khellin was identified, people began to study its properties. It was found to relax the ureter and coronary arteries. It is not used as a systemic medication because: 1. It is difficult to absorb. 2. It causes a range of undesirable side effects such as dizziness, headache, gastrointestinal disorders and nausea. However, it has been used successfully to treat vitiligo by topical application. 102 In the early 20th century, researchers searched for khellin analogs with lower toxicity and better efficacy. A number of drugs were discovered through this research and amiodarone and cromolyn sodium are khellin analogs used in current medical practice. Cromolyn sodium Amiodarone 103 Bergapten (5-methoxypsoralen) Is a furocoumarin found in: Bergamot essential oil (Citrus bergamia, the bergamot orange is a fragrant fruit having the size of an orange, with a yellow color similar to a lemon) Other citrus essential oils.
    [Show full text]