Region 2 Africa and Red
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Lava Lake Eruptive Processes Quantified with Infrasound and Video at Mount Erebus, Antarctica
LAVA LAKE ERUPTIVE PROCESSES QUANTIFIED WITH INFRASOUND AND VIDEO AT MOUNT EREBUS, ANTARCTICA by Alexander Miller A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Geophysics Boise State University August 2016 © 2016 Alexander Miller ALL RIGHTS RESERVED BOISE STATE UNIVERSITY GRADUATE COLLEGE DEFENSE COMMITTEE AND FINAL READING APPROVALS of the thesis submitted by Alexander Miller Thesis Title: Lava Lake Eruptive Processes Quantified with Infrasound and Video at Mount Erebus, Antarctica Date of Final Oral Examination: 04 March 2016 The following individuals read and discussed the thesis submitted by student Alexander Miller, and they evaluated the presentation and response to questions during the final oral examination. They found that the student passed the final oral examination. Jeffrey B. Johnson, Ph.D. Chair, Supervisory Committee Brittany Brand, Ph.D. Member, Supervisory Committee Paul Michaels, Ph.D. Member, Supervisory Committee The final reading approval of the thesis was granted by Jeffrey B. Johnson, Ph.D., Chair of the Supervisory Committee. The thesis was approved for the Graduate College by Jodi Chilson, M.F.A., Coordinator of Theses and Dissertations. The truth is out there. iv ACKNOWLEDGMENTS The author wishes to express gratitude to the Mount Erebus Volcano Observa- tory, efforts of Dr. Philip Kyle, Dr. Richard Aster, Dr. William McIntosh, Jake Anderson, Hugo Ortiz, and the McMurdo personnel. v ABSTRACT A natural laboratory exists at Mount Erebus where strombolian activity from the lava lake is directly observed from the crater rim. Lava lake eruptions occur when pressurized bubble slugs distend the lake surface before bursting within a few tenths of a second. -
Outcomes of the EU Horizon 2020 DAFNE PROJECT the Omo
POLICY BRIEF October 2020 Outcomes of the EU Horizon 2020 DAFNE PROJECT The Omo-Turkana River Basin Progress towards cooperative frameworks KEY POLICY MESSAGES The OTB has reached a stage of pivotal importance for future development; the time to establish a cooperative framework on water governance is now. Transparency and accountability must be improved in order to facilitate the sharing of data and information, increasing trust and reducing the perception of risk. Benefit-sharing which extends beyond energy could enhance regional integration and improve sustainable development within the basin . THE OMO-TURKANA RIVER BASIN potential for hydropower and irrigation schemes that are, if scientifically and equitably managed, crucial to lift millions within and outside the basin out of extreme poverty; this has led to transboundary cooperation in recent years. This policy brief is derived from research conducted under the €5.5M four-year EU Horizon 2020 and Swiss funded ‘DAFNE’ project which concerns the promotion of integrated and adaptive water resources management, explicitly addressing the WEF Nexus and aiming to promote a sustainable economy in regions where new infrastructure and expanding The Omo-Turkana River Basin (OTB) – for the agriculture has to be balanced with social, purposes of the DAFNE Project – comprises of economic and environmental needs. The project two main water bodies: the Omo River in takes a multi- and interdisciplinary approach to Ethiopia and Lake Turkana which it drains into. the formation of a decision analytical While the Omo River lies entirely within Ethiopian territory, Lake Turkana is shared by framework (DAF) for participatory and both Kenya and Ethiopia, with the majority of integrated planning, to allow the evaluation of Lake Turkana residing within Kenya. -
Los Morados Scoria Cone, Mendoza, Argentina
Cent. Eur. J. Geosci. • 3(2) • 2011 • 102-118 DOI: 10.2478/s13533-011-0008-4 Central European Journal of Geosciences The role of collapsing and cone rafting on eruption style changes and final cone morphology: Los Morados scoria cone, Mendoza, Argentina Research Article Karoly Németh1, Corina Risso2, Francisco Nullo3, Gabor Kereszturi1,4 1 Volcanic Risk Solutions, Massey University, Private Bag 11 222, Palmerston North, New Zealand 2 Departamento de Geología , Area Riesgo Volcánico, FCEyN-Universidad de Buenos Aires, Argentina 3 CONICET-SEGEMAR, Buenos Aires, Argentina 4 Geological Institute of Hungary, Stefánia út 14, Budapest, 1143, Hungary Received 30 November 2010; accepted 31 January 2011 Abstract: Payún Matru Volcanic Field is a Quaternary monogenetic volcanic field that hosts scoria cones with perfect to breached morphologies. Los Morados complex is a group of at least four closely spaced scoria cones (Los Morados main cone and the older Cones A, B, and C). Los Morados main cone was formed by a long lived eruption of months to years. After an initial Hawaiian-style stage, the eruption changed to a normal Strombolian, cone- building style, forming a cone over 150 metres high on a northward dipping (∼4˚) surface. An initial cone gradually grew until a lava flow breached the cone’s base and rafted an estimated 10% of the total volume. A sudden sector collapse initiated a dramatic decompression in the upper part of the feeding conduit and triggered violent a Strombolian style eruptive stage. Subsequently, the eruption became more stable, and changed to a regular Strombolian style that partially rebuilt the cone. -
Bamenda Volcano, Cameroon Line)
International Journal of Geosciences, 2014, 5, 1300-1314 Published Online October 2014 in SciRes. http://www.scirp.org/journal/ijg http://dx.doi.org/10.4236/ijg.2014.511107 Study of Multi-Origin Hazards and Assessment of Associated Risks in the Lefo Caldera (Bamenda Volcano, Cameroon Line) Zangmo Tefogoum Ghislain1,2, Nkouathio David Guimolaire2, Kagou Dongmo Armand2, Gountie Dedzo Merlin3, Kamgang Pierre4 1Department of Earth Sciences, Faculty of Sciences, University of Maroua, Maroua, Cameroon 2Department of Earth Sciences, Faculty of Sciences, University of Dschang, Dschang, Cameroon 3Department of Life and Earth Science, High Teacher Training College, University of Maroua, Maroua, Cameroon 4Department of Earth Sciences, Faculty of Science, University of Yaounde 1, Yaounde, Cameroon Email: [email protected] Received 18 August 2014; revised 15 September 2014; accepted 8 October 2014 Copyright © 2014 by authors and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY). http://creativecommons.org/licenses/by/4.0/ Abstract The Bamenda Volcano (BV) (2621 m) is a stratovolcano situated in the Cameroon Line (CL). BV in- cludes Mount Lefo (2534 m) which is situated on its southern slopes and contains one elliptical caldera (3 × 4 km). This caldera is propitious to farming and breeding activity. Despite these prof- itable assets, Lefo caldera (LC) is an amphitheater of the occurrence of multi-origin hazards that have direct or indirect impacts on the biodiversity and human patrimony. The most present haz- ards are those of meteorological origin. Numerous combined factors (steepest slopes, heavy rain- falls, weathered state of volcanic products…) rule these hazards. -
Volcanic Eruption Impacts Student Worksheet
Volcanic Eruption Impacts Student Worksheet Explosive and Effusive Volcanoes The type of volcanic eruption is largely determined by magma composition. Flux-mediated melting at subduction zones creates a felsic magma with high levels of carbon dioxide and water. These dissolved gases explode during eruption. Effusive volcanoes have a hotter, more mafic magma with lower levels of dissolved gas, allowing them to erupt more calmly (effusive eruption). Sinabung (Indonesia) Mount Sinabung is a stratovolcano located 40 km from the Lake Toba supervolcano in North Sumatra. It lies along the Sunda Arc, where the Indo-Australian plate subducts beneath the Sunda and Burma plates. After 1200 years of dormancy, Sinabung began erupting intermittently in 2010. Major eruptions have occurred regularly since November 2013. In November and December 2015, ash plumes reached 6 – 11 km in height on multiple occasions. Pyroclastic flows and ashfall blanketed the region in January 2014 and lava flows travelled down the south flank, advancing 2.5 km by April 2014. Pyroclastic flows in February 2014 killed 17 people in a town 3 km from the vent. In June 2015, ash falls affected areas 10 – 15 km from the summit on many occasions. A lahar in May 2016, caused fatalities in a village 20 km from Sinabung. Pyroclastic flows occurred frequently throughout 2016 and 2017 Eruption of Sinabung 6 October 2016 Major eruptions occurred in 2018 and 2019. In (Y Ginsu, public domain) February 2018, an eruption destroyed a lava dome of 1.6 million cubic metres. At least 10 pyroclastic flows extended up to 4.9 km and an ash plume rose more than 16 km in altitude. -
Lake Turkana National Parks - 2017 Conservation Outlook Assessment (Archived)
IUCN World Heritage Outlook: https://worldheritageoutlook.iucn.org/ Lake Turkana National Parks - 2017 Conservation Outlook Assessment (archived) IUCN Conservation Outlook Assessment 2017 (archived) Finalised on 26 October 2017 Please note: this is an archived Conservation Outlook Assessment for Lake Turkana National Parks. To access the most up-to-date Conservation Outlook Assessment for this site, please visit https://www.worldheritageoutlook.iucn.org. Lake Turkana National Parks عقوملا تامولعم Country: Kenya Inscribed in: 1997 Criteria: (viii) (x) The most saline of Africa's large lakes, Turkana is an outstanding laboratory for the study of plant and animal communities. The three National Parks serve as a stopover for migrant waterfowl and are major breeding grounds for the Nile crocodile, hippopotamus and a variety of venomous snakes. The Koobi Fora deposits, rich in mammalian, molluscan and other fossil remains, have contributed more to the understanding of paleo-environments than any other site on the continent. © UNESCO صخلملا 2017 Conservation Outlook Critical Lake Turkana’s unique qualities as a large lake in a desert environment are under threat as the demands for water for development escalate and the financial capital to build major dams becomes available. Historically, the lake’s level has been subject to natural fluctuations in response to the vicissitudes of climate, with the inflow of water broadly matching the amount lost through evaporation (as the lake basin has no outflow). The lake’s major source of water, Ethiopia’s Omo River is being developed with a series of major hydropower dams and irrigated agricultural schemes, in particular sugar and other crop plantations. -
ELRP-Integrated Pest Management Plan – IPMP-Component 1 1
Page | ELRP-Integrated Pest Management Plan – IPMP-Component 1 1 TABLE OF CONTENTS EXECUTIVE SUMMARY .............................................................................................. 6 1 INTRODUCTION................................................................................................... 20 1.1 Emergency Locust Response Program ............................................................... 20 1.2 Project Development Objective ......................................................................... 20 1.3 ELRP Project Components ................................................................................ 20 1.4 Selected Pesticides ............................................................................................. 21 1.5 Project Activities ................................................................................................ 22 1.6 Project Beneficiaries .......................................................................................... 23 1.7 Aims and Objectives of IPMP ............................................................................ 23 1.8 Component 1 Implementation Arrangements .................................................... 24 2 STAKEHOLDER ENGAGEMENT ..................................................................... 25 2.1 Stakeholder Identification .................................................................................. 25 2.2 Stakeholder Engagement .................................................................................... 25 2.3 IPMP Disclosure -
Petrogenesis of Natrocarbonatite at Oldoinyo Lengai, East Africa— Evidence from Fe and U Isotope Variations
PETROGENESIS OF NATROCARBONATITE AT OLDOINYO LENGAI, EAST AFRICA— EVIDENCE FROM FE AND U ISOTOPE VARIATIONS BY ZHENHAO ZHOU THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Geology in the Graduate College of the University of Illinois at Urbana-Champaign, 2017 Urbana, Illinois Adviser: Professor Craig C. Lundstrom Abstract Ol Doinyo Lengai (ODL), Tanzania, is the only active carbonatite volcano on earth. Cyclical activity that consists of quiescent natrocarbonatite lava flow, explosive silicate eruption and dormancy has been observed throughout the 20th century at ODL. From 2007 to 2008, ODL explosively erupted coexisting natrocarbonatites and nephelinites. Numerous studies have been aimed at understanding how ODL natrocarbonatite forms. Liquid immiscibility is a favored hypothesis although condensate fluid separation is an alternative model. However, the exact mechanism that forms the ODL natrocarbonatite remains unresolved. We carried out Fe and U isotope analyses among a variety of ODL samples. Our sample set includes natrocarbonatite that erupted in 2005, 2 comingled tephras (mixture of natrocarbonatite and nephelinite) and a sequence of 8 nephelinite tephras that erupted in 2007- 2008; as well as magnetites separated from 2005 natrocarbontite; Ti-andradites and clinopyroxenes that were separated from one of the nephelinite tephras. Our results show a lighter Fe isotope composition of natrocarbonatite (!56Fe of -0.08‰ relative to IRMM-14) compared to nephelinite tephras (-0.06 to 0.20 ‰ relative to IRMM-14). Magnetites yield heavier Fe isotope composition (0.03‰) than natrocarbonatite; Ti-andradite has the heaviest Fe isotope composition among all analyzed samples due to its enrichment in Fe3+. -
TCHAD : Carte De Référence Du Tibesti (Février 2018)
TCHAD : Carte de référence du Tibesti (février 2018) 13°0'0"E 14°0'0"E 15°0'0"E 16°0'0"E 17°0'0"E 18°0'0"E 19°0'0"E 20°0'0"E 21°0'0"E 22°0'0"E 23°0'0"E Curni Ebredaa Al Malaqi Gara Kourni Guelta Mouri Idie Mezafeh Eringi Kourini Ehi Ebesoua Askinoa Biligay 23°0'0"N Tourki Dao 23°0'0"N Bissan Ehi- Bardi Kidi Sigurian Fokiri Tehia Hamadat Mouri Idie Tega Askinoa Manghini Ehi Bissoa Eke Rhoan Fokioure Garako-Karamo Fokiri Tenere Gara Mezora Ehi Mozorki Ehi Fokiri Mali Dourdoura Bir el War Tanoa Odorloptina Domasaka Gara Dohonia ⛜ Oloseri Ehi Yohobe Tiri Ennedi Sanaka Yourokali Gege Kourini Kourina Ouadoi Ennri Sanaka Nangara Ehi Kourina Ziri Goubou Ehi Araye Ehi Aray Passe de Sidi Aidao Ehi Ehi Kourizo Korizo Agala Enneri Aray Dafora Ehi Agalla Tara Oske Enneri Ehi Loga Bai Darda-Morkena Talagoum Abou Ehi Tchouhi Enneri Ache Yebige Enneri Aozou Tuzugu Tioumi-Ahinoa Enneri Kakeron Lama-Kora Gara Lakor Ehi Tchoui Ehi Doma Dougouli Tebidi Tiohodoma Tirke Enneri Sogoyi L I B YE Lemakora Ehi Chilii Bordaa Ehi Chili Koundie Ehi Tihodoma Ennedi Gudu Ennedi Gadu Eoj Wahs Yourgor-Gara Afafi Plateau Col de Mechi Taba Enneri Taar Gebel Afafi Touside-Fosma Enneri Meche Dobious Looteni Koysono Ehi Sohayi Ehi Tekoukoue Enneri Ehi Madoa Ehi Nangara Soo Ehi Ehi Dogolaga Oudji-Emi Yedri Mine Morogue Koui Ergida Elliguemi Ehi Enneri Enneri Kasa Kourea Mamadou Enneri Arabi Sao Yedri Enneri Yedri Ehi Tchedona Ehi Domor Eligemi Dogologa Chedenemia Ehi Kourea-Momodoy Asaserde Oualasena Aray Yedri Tega Taar Fodogoroa Orda Afafi Galliema Enneri Enneri Enneri Fodogoroum -
Forestry Department Food and Agriculture Organization of the United Nations
Forestry Department Food and Agriculture Organization of the United Nations Forest Management Working Paper Conservation and sustainable management of tropical moist forest ecosystems in Central Africa Case study of exemplary forest management in Central Africa: Community forest management at the Kilum-Ijim mountain forest region Cameroon By Christian Asanga October 2002 Forest Resources Development Service Working Paper FM/11 Forest Resources Division FAO, Rome (Italy) Forestry Department DISCLAIMER The Forest Management Working Papers report on issues addressed in the work programme of FAO. These working papers do not reflect any official position of FAO. Please refer to the FAO website (www.fao.org/fo) for official information. The purpose of these papers is to provide early information on on-going activities and programmes, to facilitate dialogue, and to stimulate discussion. Comments and feedback are welcome. For further information please contact: Ms. Mette Løyche Wilkie, Forestry Officer (Forest Management) Forest Resources Development Service Forest Resources Division Forestry Department FAO Viale delle Terme di Caracalla I-00100 Rome (Italy) e-mail: [email protected] Or FAO Publications and Information Coordinator: [email protected] For quotation: FAO (2002). Case study of exemplary forest management in Central Africa: community forest management at the kilum-Ijim mountain forest region, Cameroon. By Christian Asanga, October 2002. Forest Management Working Papers, Working Paper FM/11. Forest Resources Development -
Working Paper Or Information Paper
APIRG/19 WP/14 Appendix 3.2J INTERNATIONAL CIVIL AVIATION ORGANIZATION VOLCANIC ASH CONTINGENCY PLAN AFI REGION First Edition - October 2012 THIS DOCUMENT IS ISSUED BY THE DAKAR AND NAIROBI ICAO REGIONAL OFFICES UNDER THE AUTHORITY OF THE APIRG 1 Page 2 of 32 Volcanic Ash Contingency Plan – AFI Region FOREWARD Within and adjacent to the Africa and Indian Ocean (AFI) Region there are areas of volcanic activities which are likely to affect flight in the AFI Region. The major volcanoes in the region are located in the following States: Algeria, Cameroon, Cape Verde Islands, Chad, Comoros Island, Democratic Republic of Congo, Djibouti, Eritrea, Ethiopia, France (Reunion Island), Kenya, Madagascar, Mali, Niger, Nigeria, Rwanda, Sao Tome and Principe, Spain (Canary Islands, Madeira), Sudan, Tanzania and Uganda. The names of the concerned volcano are listed in APPENDIX K (source: Smithsonian Institution). This document is the AFI Air Traffic Management (ATM) Volcanic Ash Contingency Plan which sets out standardised guidelines and procedures for the provision of information to airlines and en-route aircraft before and during a volcanic eruption. Volcanic contamination, of which volcanic ash is the most serious, is a hazard for safe flight operations. Mitigating the hazards posed by volcanic ash in the atmosphere and/or at the aerodrome cannot be resolved in isolation but through collaborative decision-making (CDM) involving all stakeholders concerned. During an eruption volcanic contamination can reach and exceed the cruising altitudes of turbine-powered -
The Sirte Basin Province of Libya—Sirte-Zelten Total Petroleum System
The Sirte Basin Province of Libya—Sirte-Zelten Total Petroleum System By Thomas S. Ahlbrandt U.S. Geological Survey Bulletin 2202–F U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior Gale A. Norton, Secretary U.S. Geological Survey Charles G. Groat, Director Version 1.0, 2001 This publication is only available online at: http://geology.cr.usgs.gov/pub/bulletins/b2202-f/ Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Manuscript approved for publication May 8, 2001 Published in the Central Region, Denver, Colorado Graphics by Susan M. Walden, Margarita V. Zyrianova Photocomposition by William Sowers Edited by L.M. Carter Contents Foreword ............................................................................................................................................... 1 Abstract................................................................................................................................................. 1 Introduction .......................................................................................................................................... 2 Acknowledgments............................................................................................................................... 2 Province Geology................................................................................................................................. 2 Province Boundary....................................................................................................................