New Choices for Urban Islands
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) Patent Application Publication (10) Pub. No.: US 2014/0161919 A1 Thangavel Et Al
US 2014O161919A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2014/0161919 A1 Thangavel et al. (43) Pub. Date: Jun. 12, 2014 (54) PLANT PARTS AND EXTRACTS HAVING Publication Classification ANTICOCCDAL ACTIVITY (51) Int. C. (71) Applicant: Kemin Industries, Inc., Des Moines, IA A61E36/49 (2006.01) (US) A61E36/85 (2006.01) A61E36/22 (2006.01) (72) Inventors: Gokila Thangavel, Hosur (IN); (52) U.S. C. Rajalekshmi Mukkalil, Cochin (IN); CPC ................. A61K 36/49 (2013.01); A61K 36/22 Haridasan Chirakkal, Nolambur (IN); (2013.01); A61K 36/185 (2013.01) Hannah Kurian, Benson Town (IN) USPC ........................................... 424/769; 424/725 (21) Appl. No.: 13/928,504 (57) ABSTRACT (22) Filed: Jun. 27, 2013 Natural plant parts and extracts of plants selected from the Related U.S. Application Data group consisting of Quercus infectoria, Rhus chinensis and (60) Provisional application No. 61/664,795, filed on Jun. Terminalia chebula containing compounds such as gallic 27, 2012. acid, derivative of gallic acid, gallotannins and hydrolysable tannins have been found to control coccidiosis in poultry and, (30) Foreign Application Priority Data more specifically, coccidiosis caused by Eimeria spp. The plant parts and natural extracts result in a reduction of lesion Jan. 23, 2013 (IN) ............................. 177/DELA2013 score, oocysts per gram of fecal matter and mortality. Patent Application Publication Jun. 12, 2014 Sheet 1 of 14 US 2014/O161919 A1 Positive control S Negative control Positive Control Quercus infectoria Patent Application Publication Jun. 12, 2014 Sheet 2 of 14 US 2014/O161919 A1 as a 3. Q3 is niecifia FIG. 3 3 9. -
The Importance of Geographic and Biological Variables in Predicting
Horticulture Publications Horticulture 6-2013 The mpI ortance of Geographic and Biological Variables in Predicting the Naturalization of Non- Native Woody Plants in the Upper Midwest Mark P. Widrlechner Iowa State University, [email protected] Emily J. Kapler Iowa State University, [email protected] Philip M. Dixon Iowa State University, [email protected] Janette R. Thompson Iowa State University, [email protected] Follow this and additional works at: https://lib.dr.iastate.edu/hort_pubs Part of the Ecology and Evolutionary Biology Commons, Forest Management Commons, Horticulture Commons, and the Statistical Models Commons The ompc lete bibliographic information for this item can be found at https://lib.dr.iastate.edu/ hort_pubs/33. For information on how to cite this item, please visit http://lib.dr.iastate.edu/ howtocite.html. This Article is brought to you for free and open access by the Horticulture at Iowa State University Digital Repository. It has been accepted for inclusion in Horticulture Publications by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. The mpI ortance of Geographic and Biological Variables in Predicting the Naturalization of Non-Native Woody Plants in the Upper Midwest Abstract The es lection, introduction, and cultivation of non-native woody plants beyond their native ranges can have great benefits, but also unintended consequences. Among these consequences is the tendency for some species to naturalize and become invasive pests in new environments to which they were introduced. In lieu of lengthy and costly field trials, risk-assessment models can be used to predict the likelihood of naturalization. -
Native Plants for Your Backyard
U.S. Fish & Wildlife Service Native Plants for Your Backyard Native plants of the Southeastern United States are more diverse in number and kind than in most other countries, prized for their beauty worldwide. Our native plants are an integral part of a healthy ecosystem, providing the energy that sustains our forests and wildlife, including important pollinators and migratory birds. By “growing native” you can help support native wildlife. This helps sustain the natural connections that have developed between plants and animals over thousands of years. Consider turning your lawn into a native garden. You’ll help the local environment and often use less water and spend less time and money maintaining your yard if the plants are properly planted. The plants listed are appealing to many species of wildlife and will look attractive in your yard. To maximize your success with these plants, match the right plants with the right site conditions (soil, pH, sun, and moisture). Check out the resources on the back of this factsheet for assistance or contact your local extension office for soil testing and more information about these plants. Shrubs Trees Vines Wildflowers Grasses American beautyberry Serviceberry Trumpet creeper Bee balm Big bluestem Callicarpa americana Amelanchier arborea Campsis radicans Monarda didyma Andropogon gerardii Sweetshrub Redbud Carolina jasmine Fire pink Little bluestem Calycanthus floridus Cercis canadensis Gelsemium sempervirens Silene virginica Schizachyrium scoparium Blueberry Red buckeye Crossvine Cardinal flower -
Medicinal Practices of Sacred Natural Sites: a Socio-Religious Approach for Successful Implementation of Primary
Medicinal practices of sacred natural sites: a socio-religious approach for successful implementation of primary healthcare services Rajasri Ray and Avik Ray Review Correspondence Abstract Rajasri Ray*, Avik Ray Centre for studies in Ethnobiology, Biodiversity and Background: Sacred groves are model systems that Sustainability (CEiBa), Malda - 732103, West have the potential to contribute to rural healthcare Bengal, India owing to their medicinal floral diversity and strong social acceptance. *Corresponding Author: Rajasri Ray; [email protected] Methods: We examined this idea employing ethnomedicinal plants and their application Ethnobotany Research & Applications documented from sacred groves across India. A total 20:34 (2020) of 65 published documents were shortlisted for the Key words: AYUSH; Ethnomedicine; Medicinal plant; preparation of database and statistical analysis. Sacred grove; Spatial fidelity; Tropical diseases Standard ethnobotanical indices and mapping were used to capture the current trend. Background Results: A total of 1247 species from 152 families Human-nature interaction has been long entwined in has been documented for use against eighteen the history of humanity. Apart from deriving natural categories of diseases common in tropical and sub- resources, humans have a deep rooted tradition of tropical landscapes. Though the reported species venerating nature which is extensively observed are clustered around a few widely distributed across continents (Verschuuren 2010). The tradition families, 71% of them are uniquely represented from has attracted attention of researchers and policy- any single biogeographic region. The use of multiple makers for its impact on local ecological and socio- species in treating an ailment, high use value of the economic dynamics. Ethnomedicine that emanated popular plants, and cross-community similarity in from this tradition, deals health issues with nature- disease treatment reflects rich community wisdom to derived resources. -
Gallnuts: a Potential Treasure in Anticancer Drug Discovery
Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2018, Article ID 4930371, 9 pages https://doi.org/10.1155/2018/4930371 Review Article Gallnuts: A Potential Treasure in Anticancer Drug Discovery Jiayu Gao ,1 Xiao Yang ,2 Weiping Yin ,1 and Ming Li3 1 School of Chemical and Pharmaceutical Engineering, Henan University of Scientifc and Technology, Henan, China 2School of Clinical Medicine, Henan University of Scientifc and Technology, Henan, China 3Luoyang Traditional Chinese Medicine Association, Luoyang, Henan, China Correspondence should be addressed to Jiayu Gao; [email protected] Received 8 September 2017; Revised 17 February 2018; Accepted 21 February 2018; Published 29 March 2018 Academic Editor: Chris Zaslawski Copyright © 2018 Jiayu Gao et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Introduction. In the discovery of more potent and selective anticancer drugs, the research continually expands and explores new bioactive metabolites coming from diferent natural sources. Gallnuts are a group of very special natural products formed through parasitic interaction between plants and insects. Tough it has been traditionally used as a source of drugs for the treatment of cancerous diseases in traditional and folk medicinal systems through centuries, the anticancer properties of gallnuts are barely systematically reviewed. Objective. To evidence the traditional uses and phytochemicals and pharmacological mechanisms in anticancer aspects of gallnuts, a literature review was performed. Materials and Methods. Te systematic review approach consisted of searching web-based scientifc databases including PubMed, Web of Science, and Science Direct. -
State of New York City's Plants 2018
STATE OF NEW YORK CITY’S PLANTS 2018 Daniel Atha & Brian Boom © 2018 The New York Botanical Garden All rights reserved ISBN 978-0-89327-955-4 Center for Conservation Strategy The New York Botanical Garden 2900 Southern Boulevard Bronx, NY 10458 All photos NYBG staff Citation: Atha, D. and B. Boom. 2018. State of New York City’s Plants 2018. Center for Conservation Strategy. The New York Botanical Garden, Bronx, NY. 132 pp. STATE OF NEW YORK CITY’S PLANTS 2018 4 EXECUTIVE SUMMARY 6 INTRODUCTION 10 DOCUMENTING THE CITY’S PLANTS 10 The Flora of New York City 11 Rare Species 14 Focus on Specific Area 16 Botanical Spectacle: Summer Snow 18 CITIZEN SCIENCE 20 THREATS TO THE CITY’S PLANTS 24 NEW YORK STATE PROHIBITED AND REGULATED INVASIVE SPECIES FOUND IN NEW YORK CITY 26 LOOKING AHEAD 27 CONTRIBUTORS AND ACKNOWLEGMENTS 30 LITERATURE CITED 31 APPENDIX Checklist of the Spontaneous Vascular Plants of New York City 32 Ferns and Fern Allies 35 Gymnosperms 36 Nymphaeales and Magnoliids 37 Monocots 67 Dicots 3 EXECUTIVE SUMMARY This report, State of New York City’s Plants 2018, is the first rankings of rare, threatened, endangered, and extinct species of what is envisioned by the Center for Conservation Strategy known from New York City, and based on this compilation of The New York Botanical Garden as annual updates thirteen percent of the City’s flora is imperiled or extinct in New summarizing the status of the spontaneous plant species of the York City. five boroughs of New York City. This year’s report deals with the City’s vascular plants (ferns and fern allies, gymnosperms, We have begun the process of assessing conservation status and flowering plants), but in the future it is planned to phase in at the local level for all species. -
Large-Scale Screening of 239 Traditional Chinese Medicinal Plant Extracts for Their Antibacterial Activities Against Multidrug-R
pathogens Article Large-Scale Screening of 239 Traditional Chinese Medicinal Plant Extracts for Their Antibacterial Activities against Multidrug-Resistant Staphylococcus aureus and Cytotoxic Activities Gowoon Kim 1, Ren-You Gan 1,2,* , Dan Zhang 1, Arakkaveettil Kabeer Farha 1, Olivier Habimana 3, Vuyo Mavumengwana 4 , Hua-Bin Li 5 , Xiao-Hong Wang 6 and Harold Corke 1,* 1 Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China; [email protected] (G.K.); [email protected] (D.Z.); [email protected] (A.K.F.) 2 Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu 610213, China 3 School of Biological Sciences, The University of Hong Kong, Hong Kong 999077, China; [email protected] 4 DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, US/SAMRC Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town 8000, South Africa; [email protected] 5 Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-Sen University, Guangzhou 510080, China; [email protected] 6 College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; [email protected] * Correspondence: [email protected] (R.-Y.G.); [email protected] (H.C.) Received: 3 February 2020; Accepted: 29 February 2020; Published: 4 March 2020 Abstract: Novel alternative antibacterial compounds have been persistently explored from plants as natural sources to overcome antibiotic resistance leading to serious foodborne bacterial illnesses. -
Macro- and Microscopic Analyses of Anatomical Structures of Chinese
www.nature.com/scientificreports OPEN Macro- and Microscopic Analyses of Anatomical Structures of Chinese Gallnuts and Their Functional Received: 11 September 2018 Accepted: 14 March 2019 Adaptation Published: xx xx xxxx Qin Lu1, Hang Chen 1,2, Chao Wang1,3, Zi-xiang Yang1, Pin Lü1, Ming-shun Chen4 & Xiao-ming Chen1,2 The galls induced by Schlechtendaia chinensis, Schlechtendaia peitan and Nurudea shiraii on Rhus chinensis and gall induced by Kaburagia rhusicola rhusicola on Rhus potaninii Maxim. are the largest plant galls and have great economic and medical values. We examined the structures of galls and their functional adaptation using various macro- and microscopic techniques. The highly adapted structures include a stalk at the base that is specialized for mechanical support and transport of nutrients for aphids, and a network of vascular bundles which accompanying schizogenous ducts arranged in a way to best support aphid feeding and population growth. There are many circular and semicircular xylems traces in an ensiform gall in cross sectional views, which would provide more nutrition and occupy less space. We infer the evolution trail was fower-like gall, horned gall, circular gall and ensiform gall. And the possible evolutionary trend of the gall was bigger chamber, more stable mechanical supporting, easier for exchanging substance and transporting nutrients. Galls are abnormal outgrowths of plant tissues induced by gall-inducing organisms, which included various par- asitic insects and mites. It is estimated that there are ~4700 diferent species that can induce gall formation under certain conditions1. Te induction of galls is believed to be a result of plant manipulation by gall-inducing agents, and because of this, galls are generally considered as extended structures of the gallicolous organisms2–5. -
Phylogeny of Maleae (Rosaceae) Based on Multiple Chloroplast Regions: Implications to Genera Circumscription
Hindawi BioMed Research International Volume 2018, Article ID 7627191, 10 pages https://doi.org/10.1155/2018/7627191 Research Article Phylogeny of Maleae (Rosaceae) Based on Multiple Chloroplast Regions: Implications to Genera Circumscription Jiahui Sun ,1,2 Shuo Shi ,1,2,3 Jinlu Li,1,4 Jing Yu,1 Ling Wang,4 Xueying Yang,5 Ling Guo ,6 and Shiliang Zhou 1,2 1 State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China 2University of the Chinese Academy of Sciences, Beijing 100043, China 3College of Life Science, Hebei Normal University, Shijiazhuang 050024, China 4Te Department of Landscape Architecture, Northeast Forestry University, Harbin 150040, China 5Key Laboratory of Forensic Genetics, Institute of Forensic Science, Ministry of Public Security, Beijing 100038, China 6Beijing Botanical Garden, Beijing 100093, China Correspondence should be addressed to Ling Guo; [email protected] and Shiliang Zhou; [email protected] Received 21 September 2017; Revised 11 December 2017; Accepted 2 January 2018; Published 19 March 2018 Academic Editor: Fengjie Sun Copyright © 2018 Jiahui Sun et al. Tis is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Maleae consists of economically and ecologically important plants. However, there are considerable disputes on generic circumscription due to the lack of a reliable phylogeny at generic level. In this study, molecular phylogeny of 35 generally accepted genera in Maleae is established using 15 chloroplast regions. Gillenia isthemostbasalcladeofMaleae,followedbyKageneckia + Lindleya, Vauquelinia, and a typical radiation clade, the core Maleae, suggesting that the proposal of four subtribes is reasonable. -
Native Shrubs Are Backbone of Landscapes
used in small groupings. Spicebush NATIVE SHRUBS thrives in full sun but is acceptable in partial sun. It is a good compan- ion to pine or at the edge of a beech- maple-oak woods. It has been re- ARE BACKBONE ported to be difficult to transplant because of the coarse roots but we have had 98% success when plant- OF LANDSCAPES ing in moist, well-drained, sandy loam. During the spring the light green leaves are oblong, 3 to 5 inches in length. This lime-green Allspice, Spicebush, Bayberry, and Snowberry foliage of summer is transformed into a rich yellow during fall. This fall color is spectacular. Spicebush BY DOUGLAS CHAPMAN, "Horticulturist, Dow Gardens, Midland, Ml" flowers very early in the season (late April in Central Michigan). Native shrubs should provide the spring. It grows in a wide range of These thread-like flowers, borne in backbone for home and commer- soil conditions, thriving in moist, clusters near the terminal, are cial landscapes. Four native shrubs well-drained loamy soils but yellowish-green in color. The fruit which thrive when grown in full adapts to well-drained, almost which is scarlet and shaped some- sun or light shade which provide a droughty conditions. It has darker what like raspberries can be spec- real diversity to the landscape in- green leaves during the summer tacular along with the fall foliar clude Carolina Allspice, Spice- months, becoming a pale yellow- color. This native is underused and bush, Northern Bayberry, and green in the fall but does not de- should be grown more in the trade. -
Wood Anatomy of Calycanthaceae Sherwin Carlquist
Aliso: A Journal of Systematic and Evolutionary Botany Volume 10 | Issue 3 Article 6 1983 Wood Anatomy of Calycanthaceae Sherwin Carlquist Follow this and additional works at: http://scholarship.claremont.edu/aliso Part of the Botany Commons Recommended Citation Carlquist, Sherwin (1983) "Wood Anatomy of Calycanthaceae," Aliso: A Journal of Systematic and Evolutionary Botany: Vol. 10: Iss. 3, Article 6. Available at: http://scholarship.claremont.edu/aliso/vol10/iss3/6 ALISO 10(3), 1983, pp. 427-441 WOOD ANATOMY OF CALYCANTHACEAE: ECOLOGICAL AND SYSTEMATIC IMPLICATIONS Sherwin Carlquist INTRODUCTION Wood anatomy of Calycanthaceae has not been studied as a unit. Wood features ofthe family have been summarized by Metcalfe and Chalk (1950); various authors have mentioned one or more traits in studies dealing with Calycanthaceae (e.g., Wilson 1979) or other families (e.g., Garratt 1934). In view of recent interest in Idiospermum australiense (Diels) Blake, a new comparative study is needed. One goal of the present study is clarification of relationships of Idiospermum to Calycanthus and Chimonanthus. Wood anatomy of Idiospermum was described by Blake ( 1972) and Wilson ( 1979); a new description is offered here to provide more quantitative data. De scriptions of the wood of Calycanthus and Chimonanthus provided here incorporate such quantitative data, but also modify earlier descriptions with respect to some important qualitative features. Material of the recently de scribed genus Sinocalycanthus (Cheng and Chan 1964) was not available, although the description of that genus suggests it is not strongly different from Calycanthus or Chimonanthus. The present study incorporates material of Calycanthus floridus L. var. floridus, C. -
Eastern North American Plants in Cultivation
Eastern North American Plants in Cultivation Many indigenous North American plants are in cultivation, but many equally worthy ones are seldom grown. It often ap- pears that familiar native plants are taken for granted, while more exotic ones - those with the glamor of coming from some- where else - are more commonly cultivated. Perhaps this is what happens everywhere, but perhaps this attitude is a hand- me-down from the time when immigrants to the New World brought with them plants that tied them to the Old. At any rate, in the eastern United States some of the most commonly culti- vated plants are exotic species such as Forsythia species and hy- brids, various species of Ligustrum, Syringa vulgaris, Ilex cre- nata, Magnolia X soulangiana, Malus species and hybrids, Acer platanoides, Asiatic rhododendrons (both evergreen and decidu- ous) and their hybrids, Berberis thunbergii, Abelia X grandi- flora, Vinca minor, and Pachysandra procumbens, to mention only a few examples. This is not to imply, however, that there are few indigenous plants that have "made the grade," horticulturally speaking, for there are many obvious successes. Some plants, such as Cornus florida, have been adopted immediately and widely, but others, such as Phlox stolonifera ’Blue Ridge’ have had to re- ceive an award in Europe before drawing the attention they de- serve here, much as American singers used to have to acquire a foreign reputation before being accepted as worthwhile artists. Examples among the widely grown eastern American trees are Tsuga canadensis; Thuja occidentalis; Pinus strobus (and other species); Quercus rubra, Q. palustris, and Q.