Moons of the Jovian Planets: Satellites of Ice and Rock

Total Page:16

File Type:pdf, Size:1020Kb

Moons of the Jovian Planets: Satellites of Ice and Rock Moons of the Jovian Planets: Satellites of Ice and Rock · What kinds of moons orbit the jovian planets? · What makes Jupiter's Galilean moons unusual? · What makes Saturn©s moon Titan different from other moons? · Why are small icy moons more geologically active than small rocky planets? What kind of moons orbit the jovian planets? · Two kinds: Medium and large moons: mostly formed at the same time as their planets (nearly circular orbits, all in the same direction). Small moons: mostly captured asteroids and comets (mildly to extremely elliptical orbits, even retrograde ones). Medium & large moons · L o ts o f ic e · Active resurfacing in the past (some moons even today) · Enough self- gravity to be spherical: young, Ámolten© moon rock and ice ran Ádownhill© [like water on Earth] until it made a sphere [on which there is no more Ádownhill©] What makes Jupiter's Galilean moons unusual? IO EUROPA Ganymede Callisto Io's Volcanoes Io is the solar system©s most volcanic world. Tidal stress cracks Europa's surface ice, which floats to new positions on a subsurface ocean of water or slush. Interiors of Io & Europa are warmed by tidal heating. What makes Saturn©s moon Titan different from other moons? What makes Saturn©s moon Titan different from other moons? · Only moon with an atmosphere: 90% nitrogen, plus argon, methane, hydrocarbons (smog!). · Methane & ethane are greenhouse gases. · Still cold: 93 K (-180 degrees C) · Chemical reactions on Titan produce organic, chemicals (hydrocarbons, etc.) · Cassini spacecraft images show a young surface (few craters) but with evidence of hydrocarbon lakes only at the poles. · Possibly a captured Neptune's Moon Triton K u i p e r b e l t o b j e c t : orbiting Neptune opposite Neptune's direction of rotation · Neptune©s tidal bulges (caused by Triton) are pulling backwards on Triton, slowing it down into a future crash into Neptune. · Smaller than Earth's Moon, yet has recent geological activity (nitrogen geysers). Uranus' small moon Miranda shows huge cliffs & tectonic activity, and few craters. Why are small icy moons more geologically active than small rocky planets? · Hot interiors needed for geological activity. · Ice deforms more easily than solid rock ± Less internal heat is required ± Smaller objects can be geologically active. · Tidal heating important for some icy moons, but not for rocky planets (example: the Moon©s tides are slowing down the Earth, but not heating it up by any significant amount). What have we learned? · What kinds of moons orbit the jovian planets? · We can categorize the more than 100 known moons as small, medium-size, or large. · Most medium-size and large moons probably formed with their planet in the disks of gas that surrounded the young jovian planets. · Small moons are most often captured asteroids or comets. · What makes Jupiter's Galilean moons unusual? What have we learned? · Io is the most volcanically active object in the solar system. Europa may have a deep, liquid water ocean under its icy crust. Ganymede also thought to have a subsurface ocean. · What makes Titan different from other moons? · Titan is the only moon in our solar system with a thick atmosphere. It has a young surface with lots of contrasting features, but we don©t yet know what they are. What have we learned? · Why are small icy moons more geologically active than small rocky planets? · Ices deform and melt at much lower temperatures than rock, allowing icy volcanism and tectonics at surprisingly low temperatures. .
Recommended publications
  • Lab 7: Gravity and Jupiter's Moons
    Lab 7: Gravity and Jupiter's Moons Image of Galileo Spacecraft Gravity is the force that binds all astronomical structures. Clusters of galaxies are gravitationally bound into the largest structures in the Universe, Galactic Superclusters. The galaxies themselves are held together by gravity, as are all of the star systems within them. Our own Solar System is a collection of bodies gravitationally bound to our star, Sol. Cutting edge science requires the use of Einstein's General Theory of Relativity to explain gravity. But the interactions of the bodies in our Solar System were understood long before Einstein's time. In chapter two of Chaisson McMillan's Astronomy Today, you went over Kepler's Laws. These laws of gravity were made to describe the interactions in our Solar System. P2=a3/M Where 'P' is the orbital period in Earth years, the time for the body to make one full orbit. 'a' is the length of the orbit's semi-major axis, for nearly circular orbits the orbital radius. 'M' is the total mass of the system in units of Solar Masses. Jupiter System Montage picture from NASA ID = PIA01481 Jupiter has over 60 moons at the last count, most of which are asteroids and comets captured from Written by Meagan White and Paul Lewis Page 1 the Asteroid Belt. When Galileo viewed Jupiter through his early telescope, he noticed only four moons: Io, Europa, Ganymede, and Callisto. The Jupiter System can be thought of as a miniature Solar System, with Jupiter in place of the Sun, and the Galilean moons like planets.
    [Show full text]
  • Galileo and the Telescope
    Galileo and the Telescope A Discussion of Galileo Galilei and the Beginning of Modern Observational Astronomy ___________________________ Billy Teets, Ph.D. Acting Director and Outreach Astronomer, Vanderbilt University Dyer Observatory Tuesday, October 20, 2020 Image Credit: Giuseppe Bertini General Outline • Telescopes/Galileo’s Telescopes • Observations of the Moon • Observations of Jupiter • Observations of Other Planets • The Milky Way • Sunspots Brief History of the Telescope – Hans Lippershey • Dutch Spectacle Maker • Invention credited to Hans Lippershey (c. 1608 - refracting telescope) • Late 1608 – Dutch gov’t: “ a device by means of which all things at a very great distance can be seen as if they were nearby” • Is said he observed two children playing with lenses • Patent not awarded Image Source: Wikipedia Galileo and the Telescope • Created his own – 3x magnification. • Similar to what was peddled in Europe. • Learned magnification depended on the ratio of lens focal lengths. • Had to learn to grind his own lenses. Image Source: Britannica.com Image Source: Wikipedia Refracting Telescopes Bend Light Refracting Telescopes Chromatic Aberration Chromatic aberration limits ability to distinguish details Dealing with Chromatic Aberration - Stop Down Aperture Galileo used cardboard rings to limit aperture – Results were dimmer views but less chromatic aberration Galileo and the Telescope • Created his own (3x, 8-9x, 20x, etc.) • Noted by many for its military advantages August 1609 Galileo and the Telescope • First observed the
    [Show full text]
  • Dwarf Planet Ceres
    Dwarf Planet Ceres drishtiias.com/printpdf/dwarf-planet-ceres Why in News As per the data collected by NASA’s Dawn spacecraft, dwarf planet Ceres reportedly has salty water underground. Dawn (2007-18) was a mission to the two most massive bodies in the main asteroid belt - Vesta and Ceres. Key Points 1/3 Latest Findings: The scientists have given Ceres the status of an “ocean world” as it has a big reservoir of salty water underneath its frigid surface. This has led to an increased interest of scientists that the dwarf planet was maybe habitable or has the potential to be. Ocean Worlds is a term for ‘Water in the Solar System and Beyond’. The salty water originated in a brine reservoir spread hundreds of miles and about 40 km beneath the surface of the Ceres. Further, there is an evidence that Ceres remains geologically active with cryovolcanism - volcanoes oozing icy material. Instead of molten rock, cryovolcanoes or salty-mud volcanoes release frigid, salty water sometimes mixed with mud. Subsurface Oceans on other Celestial Bodies: Jupiter’s moon Europa, Saturn’s moon Enceladus, Neptune’s moon Triton, and the dwarf planet Pluto. This provides scientists a means to understand the history of the solar system. Ceres: It is the largest object in the asteroid belt between Mars and Jupiter. It was the first member of the asteroid belt to be discovered when Giuseppe Piazzi spotted it in 1801. It is the only dwarf planet located in the inner solar system (includes planets Mercury, Venus, Earth and Mars). Scientists classified it as a dwarf planet in 2006.
    [Show full text]
  • Should Earth Get Demoted from Planet Status Just Like Pluto?
    IOSR Journal of Applied Physics (IOSR-JAP) e-ISSN: 2278-4861.Volume 10, Issue 3 Ver. I (May. – June. 2018), PP 15-19 www.iosrjournals.org Should Earth Get Demoted From Planet Status Just Like Pluto? Dipak Nath Assistant Professor, HOD, Department of Physics, Sao Chang Govt College, Tuensang;Nagaland, India. Corresponding Author: Dipak Nath Abstract: Clyde.W. Tombough discovered Pluto on march13, 1930. From its discovery in 1930 until 2006, Pluto was classified as Planet. In the late 20th and early 21st century, many objects similar to Pluto were discovered in the outer solar system, notably the scattered disc object Eris in 2005, which is 27% more massive than Pluto. On august-24, 2006, the International Astronomical Union (IAU) defined what it means to be a Planet within the solar system. This definition excluded Pluto as a Planet added it as a member of the new category “Dwarf Planet” along with Eris and Ceres. There were many reasons why Pluto got demoted to dwarf planet status, one of which was that it couldn't clear its orbit of asteroids and other debris. But Earth's orbit is also crowded...too crowded for Earth to be a planet? Earth is indeed in a very crowded orbit, surrounded by tens of thousands of asteroids and other objects. The presence of so many asteroids seems like a serious problem for Earth's claim that it has cleared its neighborhood. And Earth isn't alone in this problem - Jupiter is surrounded by some 100,000 Trojan asteroids, and there's similar clutter around Mars and Neptune.
    [Show full text]
  • The Solar System Cause Impact Craters
    ASTRONOMY 161 Introduction to Solar System Astronomy Class 12 Solar System Survey Monday, February 5 Key Concepts (1) The terrestrial planets are made primarily of rock and metal. (2) The Jovian planets are made primarily of hydrogen and helium. (3) Moons (a.k.a. satellites) orbit the planets; some moons are large. (4) Asteroids, meteoroids, comets, and Kuiper Belt objects orbit the Sun. (5) Collision between objects in the Solar System cause impact craters. Family portrait of the Solar System: Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, (Eris, Ceres, Pluto): My Very Excellent Mother Just Served Us Nine (Extra Cheese Pizzas). The Solar System: List of Ingredients Ingredient Percent of total mass Sun 99.8% Jupiter 0.1% other planets 0.05% everything else 0.05% The Sun dominates the Solar System Jupiter dominates the planets Object Mass Object Mass 1) Sun 330,000 2) Jupiter 320 10) Ganymede 0.025 3) Saturn 95 11) Titan 0.023 4) Neptune 17 12) Callisto 0.018 5) Uranus 15 13) Io 0.015 6) Earth 1.0 14) Moon 0.012 7) Venus 0.82 15) Europa 0.008 8) Mars 0.11 16) Triton 0.004 9) Mercury 0.055 17) Pluto 0.002 A few words about the Sun. The Sun is a large sphere of gas (mostly H, He – hydrogen and helium). The Sun shines because it is hot (T = 5,800 K). The Sun remains hot because it is powered by fusion of hydrogen to helium (H-bomb). (1) The terrestrial planets are made primarily of rock and metal.
    [Show full text]
  • Download Student Activities Objects from the Area Around Its Orbit, Called Its Orbital Zone; at Amnh.Org/Worlds-Beyond-Earth-Educators
    INSIDE Essential Questions Synopsis Missions Come Prepared Checklist Correlation to Standards Connections to Other Halls Glossary ONLINE Student Activities Additional Resources amnh.org/worlds-beyond-earth-educators EssentialEssential Questions Questions What is the solar system? In the 20th century, humans began leaving Earth. NASA’s Our solar system consists of our star—the Sun—and all the Apollo space program was the first to land humans on billions of objects that orbit it. These objects, which are bound another world, carrying 12 human astronauts to the Moon’s to the Sun by gravity, include the eight planets—Mercury, surface. Since then we’ve sent our proxies—robots—on Venus, Earth, Mars, Jupiter, Saturn, Uranus, and Neptune; missions near and far across our solar system. Flyby several dwarf planets, including Ceres and Pluto; hundreds missions allow limited glimpses; orbiters survey surfaces; of moons orbiting the planets and other bodies, including landers get a close-up understanding of their landing Jupiter’s four major moons and Saturn’s seven, and, of course, location; and rovers, like human explorers, set off across the Earth’s own moon, the Moon; thousands of comets; millions surface to see what they can find and analyze. of asteroids; and billions of icy objects beyond Neptune. The solar system is shaped like a gigantic disk with the Sun at The results of these explorations are often surprising. With its center. Everywhere we look throughout the universe we the Moon as our only reference, we expected other worlds see similar disk-shaped systems bound together by gravity. to be cold, dry, dead places, but exploration has revealed Examples include faraway galaxies, planetary systems astonishing variety in our solar system.
    [Show full text]
  • Io Observer SDT to Steer a Comprehensive Mission Concept Study for the Next Decadal Survey
    Io as a Target for Future Exploration Rosaly Lopes1, Alfred McEwen2, Catherine Elder1, Julie Rathbun3, Karl Mitchell1, William Smythe1, Laszlo Kestay4 1 Jet Propulsion Laboratory, California Institute of Technology 2 University of Arizona 3 Planetary Science Institute 4 US Geological Survey Io: the most volcanically active body is solar system • Best example of tidal heating in solar system; linchpin for understanding thermal evolution of Europa • Effects reach far beyond Io: material from Io feeds torus around Jupiter, implants material on Europa, causes aurorae on Jupiter • Analog for some exoplanets – some have been suggested to be volcanically active OPAG recommendation #8 (2016): OPAG urges NASA PSD to convene an Io Observer SDT to steer a comprehensive mission concept study for the next Decadal Survey • An Io Observer mission was listed in NF-3, Decadal Survey 2003, the NOSSE report (2008), Visions and Voyages Decadal Survey 2013 (for inclusion in the NF-5 AO) • Io Observer is a high OPAG priority for inclusion in the next Decadal Survey and a mission study is an important first step • This study should be conducted before next Decadal and NF-5 AO and should include: o recent advances in technology provided by Europa and Juno missions o advances in ground-based techniques for observing Io o new resources to study Io in future, including JWST, small sats, miniaturized instruments, JUICE Most recent study: Decadal Survey Io Observer (2010) (Turtle, Spencer, Khurana, Nimmo) • A mission to explore Io’s active volcanism and interior structure (including determining whether Io has a magma ocean) and implications for the tidal evolution of the Jupiter-Io-Europa- Ganymede system and ancient volcanic processes on the terrestrial planets.
    [Show full text]
  • Quantitive Analysis of Caldera Shapes on Earth, Mars, and Io
    52nd Lunar and Planetary Science Conference 2021 (LPI Contrib. No. 2548) 2596.pdf QUANTITIVE ANALYSIS OF CALDERA SHAPES ON EARTH, MARS, AND IO. Rowan Huang1, Jani Radebaugh1, Eric H. Christiansen1,1Department of Geological Sciences, Brigham Young University, Provo, UT, 84602 ([email protected]). Introduction: Calderas are volcanic craters that calderas, and 10 ionian paterae [7]. This study expands typically form when overlying rock collapses into a these selections and reveals the effect of increasing the magma chamber voided by eruption [1,2]. Wood [3] sample size on classification, including 56 terrestrial defines three classes based on magma composition, calderas (18 ash flow, 19 basaltic shield, 19 eruption style, and tectonic setting: basaltic shield, ash stratocones), 16 martian basaltic shields, and 51 ionian flow, and stratocone. On Earth, Wood’s classifications paterae. ArcGIS Pro was used to map individual are straightforward, and it is relatively easy to classify a volcanic craters by tracing their topographic rims. volcano as such. However, on extraterrestrial bodies, in- Convex hulls and bounding rectangles were generated situ data is not available, so it is more difficult to classify for each crater along with area, perimeter, and these volcanic features based on composition and maximum feret diameter. eruption style. This is especially true of paterae on Jupiter’s moon Io, as they exhibit ambiguous magmatic associations, large sizes, and irregular shapes [4]. Given that the three terrestrial caldera groups can be classified based on morphological characteristics, shape could be used to inform the origins of other planetary volcanic craters. These classifications could then predict composition and eruption style for these craters, augmenting our understanding of the geologic history of planets.
    [Show full text]
  • Stellium Handbook Part
    2 Donna Cunningham’s Books on the Outer Planets If you’re dealing with a stellium that contains one or more outer planets, these ebooks will help you understand their role in your chart and explore ways to change difficult patterns they represent. Since The Stellium Handbook can’t cover them in the depth they deserve, you’ll gain a greater perspective through these ebooks that devote entire chapters to the meanings of Uranus, Neptune, or Pluto in a variety of contexts. The Outer Planets and Inner Life volumes are $15 each if purchased separately, or $35 for all three—a $10 savings. To order, go to PayPal.com and tell them which books you want, Donna’s email address ([email protected]), and the amount. The ebooks arrive on separate emails. If you want them sent to an email address other than the one you used, let her know. The Outer Planets and Inner Life, V.1: The Outer Planets as Career Indicators. If your stellium has outer planets in the career houses (2nd, 6th, or 10th), or if it relates to your chosen career, this book can give you helpful insights. There’s an otherworldly element when the outer planets are career markers, a sense of serving a greater purpose in human history. Each chapter of this e-book explores one of these planets in depth. See an excerpt here. The Outer Planets and Inner Life, v.2: Outer Planet Aspects to Venus and Mars. Learn about the love lives of people who have the outer planets woven in with the primary relationship planets, Venus and Mars, or in the relationship houses—the 7th, 8th, and 5th.
    [Show full text]
  • Resonant Moons of Neptune
    EPSC Abstracts Vol. 13, EPSC-DPS2019-901-1, 2019 EPSC-DPS Joint Meeting 2019 c Author(s) 2019. CC Attribution 4.0 license. Resonant moons of Neptune Marina Brozović (1), Mark R. Showalter (2), Robert A. Jacobson (1), Robert S. French (2), Jack L. Lissauer (3), Imke de Pater (4) (1) Jet Propulsion Laboratory, California Institute of Technology, California, USA, (2) SETI Institute, California, USA, (3) NASA Ames Research Center, California, USA, (4) University of California Berkeley, California, USA Abstract We used integrated orbits to fit astrometric data of the 2. Methods regular moons of Neptune. We found a 73:69 inclination resonance between Naiad and Thalassa, the 2.1 Observations two innermost moons. Their resonant argument librates around 180° with an average amplitude of The astrometric data cover the period from 1981-2016, ~66° and a period of ~1.9 years. This is the first fourth- with the most significant amount of data originating order resonance discovered between the moons of the from the Voyager 2 spacecraft and HST. Voyager 2 outer planets. The resonance enabled an estimate of imaged all regular satellites except Hippocamp the GMs for Naiad and Thalassa, GMN= between 1989 June 7 and 1989 August 24. The follow- 3 -2 3 0.0080±0.0043 km s and GMT=0.0236±0.0064 km up observations originated from several Earth-based s-2. More high-precision astrometry of Naiad and telescopes, but the majority were still obtained by HST. Thalassa will help better constrain their masses. The [4] published the latest set of the HST astrometry GMs of Despina, Galatea, and Larissa are more including the discovery and follow up observations of difficult to measure because they are not in any direct Hippocamp.
    [Show full text]
  • Background Heatflow on Hotspot Planets Io and Venus
    G~OPHYSICAL RESEARCH LETTERS, VOL. 15, NO. 13, PAGES 1455-1458, DECEMBER 1988 BACKGROUND HEATFLOW ON HOTSPOT PLANETS: 10 AND VENUS David J. Stevenson and Sean C. McNamara Division of Geological and Planetary Sciences, California Institute of Technology Abstract. On planets where most of the heat is trans­ the global heatflow of lo have expressed the view that ported to the surface by igneous activity (extrusive vol­ the total background heatflow is less (perhaps much less) canism or near-surface intrusions), the surface heat flow than the hotspot component (e.g., Gaskell et a!. [1988]). at localities well away from regions of current igneous The purpose of this paper is to challenge this assump­ activity need not be even approximately the conductive tion. The potential fallacy in the assumption is easily heatflow through the entire lithosphere but may instead understood: Consider a planet for which the volcanic be dominated by the residual heat leaking out from the activity is large enough that every point on the surface last igneous event in that locality. On lo, it is likely that has been within a volcanically active region many times (~tr) 1 1 2 <t:: lithosphere thickness (~t = thermal diffusiv­ in the past. If the recurrence time r (the time between ity, r = typical time between "resurfacing" events} and epochs of activity at any location) is short enough that the background heatflow may be very large, comparable (~tr) 1/ 2 < ~. where K is the thermal diffusivity, and or even larger than the current observational heat flow, if the amount of volcanic material is sufficient then the which is associated with the hotspots alone.
    [Show full text]
  • EXPLORATION of JUPITER. F. Bagenal, Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder CO 80302 ([email protected])
    50th Lunar and Planetary Science Conference 2019 (LPI Contrib. No. 2132) 1352.pdf EXPLORATION OF JUPITER. F. Bagenal, Laboratory for Atmospheric & Space Physics, University of Colorado, Boulder CO 80302 ([email protected]) Introduction: Jupiter reigns supreme amongst plan- zones, hinting at convective motions but images were ets in our solar system: the largest, the most massive, the insufficient to allow tracking of features. fastest rotating, the strongest magnetic field, the greatest • Infrared emissions from Jupiter’s nightside com- number of satellites, and its moon Europa is the most pared to the dayside, confirming that the planet radiates likely place to find extraterrestrial life. Moreover, we 1.9 times the heat received from the Sun with the poles now know of thousands of Jupiter-type planets that orbit being close to equatorial temperatures. other stars. Our understanding of the various compo- • Accurately tracking of the Doppler shift of the nents of the Jupiter system has increased immensely spacecraft’s radio signal refined the gravitational field with recent spacecraft missions. But the knowledge that of Jupiter, constraining models of the deep interior. we are studying just the local example of what may be • Similarly, the masses of the Galilean satellites ubiquitous throughout the universe has changed our per- were corrected by up to 10%, establishing a decline in spective and studies of the jovian system have ramifica- their density with distance from Jupiter. tions that extend well beyond our solar system. • Magnetic field measurements confirmed the strong The purpose of this talk is to document our scientific magnetic field of Jupiter, putting tighter constraints on understanding of the jovian system after six spacecraft the higher order components.
    [Show full text]