Classical Pituitary Apoplexy Is High, Whereas the Results of Expedient
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
30Th Annual Meeting “Rapid Evolution in the Healthcare Ecosystem: Become Frontiers”
2020 FINAL PROGRAM North American Skull Base Society 30th Annual Meeting “Rapid Evolution in the Healthcare Ecosystem: Become Frontiers” February 7-9, 2020 La Cantera Resort & Spa, San Antonio, TX Pre-Meeting Dissection Course: February 5-6, 2020 PRESIDENT: Ricardo Carrau, MD, MBA PROGRAM CHAIRS: Adam Zanation, MD & Daniel Prevedello, MD PRE-MEETING COURSE CHAIRS: Paul Gardner, MD & Arturo Solares, MD SCIENTIFIC PROGRAM COMMITTEE: Ricardo Carrau, MD, MBA, President, Adam Zanation, MD, MBA, Program Co-Chair, Daniel Prevedello, MD, Program Co-Chair, Paul Gardner, MD, Arturo Solares, MD, FACS, James Evans, MD, FACS, FAANS, Shaan Raza, MD, Brian Thorp, MD, Deanna Sasaki-Adams, MD, Chris Rassekh, MD, Christine Klatt-Cromwell, MD, Tonya Stefko, MD, Moises Arriaga, MD, Jamie Van Gompel, MD, Kibwei McKinney, MD, Derrick Lin, MD, FACS, Carlos Pinheiro-Neto, MD, PhD Dear friends and colleagues, Welcome to the 30th Annual Meeting of the North American Skull Base Society! This event will be held at La Cantera Resort in San Antonio, Texas; February 7-9, 2020 with a pre-meeting hands-on dissection course February 5-6, 2020. La Cantera is a beautiful resort, full of family- oriented amenities, located just 20 minutes from San Antonio’s downtown, The Alamo historical site and the world renowned Riverwalk. The meeting theme, Rapid Evolution in the Healthcare Ecosystem: Ricardo Carrau, MD, MBA Becoming Frontiers, will present the opportunity to discuss technological, technical, societal and economic changes affecting the way we deliver care to our patients and how our frontier horizon changes faster than our ability to adapt to these changes (“becoming frontiers”). -
Pituitary Pathology in Traumatic Brain Injury: a Review
Pituitary (2019) 22:201–211 https://doi.org/10.1007/s11102-019-00958-8 Pituitary pathology in traumatic brain injury: a review Aydin Sav1 · Fabio Rotondo2 · Luis V. Syro3 · Carlos A. Serna4 · Kalman Kovacs2 Published online: 29 March 2019 © Springer Science+Business Media, LLC, part of Springer Nature 2019 Abstract Purpose Traumatic brain injury most commonly afects young adults under the age of 35 and frequently results in reduced quality of life, disability, and death. In long-term survivors, hypopituitarism is a common complication. Results Pituitary dysfunction occurs in approximately 20–40% of patients diagnosed with moderate and severe traumatic brain injury giving rise to growth hormone defciency, hypogonadism, hypothyroidism, hypocortisolism, and central diabe- tes insipidus. Varying degrees of hypopituitarism have been identifed in patients during both the acute and chronic phase. Anterior pituitary hormone defciency has been shown to cause morbidity and increase mortality in TBI patients, already encumbered by other complications. Hypopituitarism after childhood traumatic brain injury may cause treatable morbidity in those survivors. Prospective studies indicate that the incidence rate of hypopituitarism may be ten-fold higher than assumed; factors altering reports include case defnition, geographic location, variable hospital coding, and lost notes. While the precise pathophysiology of post traumatic hypopituitarism has not yet been elucidated, it has been hypothesized that, apart from the primary mechanical event, secondary insults such as hypotension, hypoxia, increased intracranial pressure, as well as changes in cerebral fow and metabolism may contribute to hypothalamic-pituitary damage. A number of mechanisms have been proposed to clarify the causes of primary mechanical events giving rise to ischemic adenohypophysial infarction and the ensuing development of hypopituitarism. -
Study Guide Medical Terminology by Thea Liza Batan About the Author
Study Guide Medical Terminology By Thea Liza Batan About the Author Thea Liza Batan earned a Master of Science in Nursing Administration in 2007 from Xavier University in Cincinnati, Ohio. She has worked as a staff nurse, nurse instructor, and level department head. She currently works as a simulation coordinator and a free- lance writer specializing in nursing and healthcare. All terms mentioned in this text that are known to be trademarks or service marks have been appropriately capitalized. Use of a term in this text shouldn’t be regarded as affecting the validity of any trademark or service mark. Copyright © 2017 by Penn Foster, Inc. All rights reserved. No part of the material protected by this copyright may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the copyright owner. Requests for permission to make copies of any part of the work should be mailed to Copyright Permissions, Penn Foster, 925 Oak Street, Scranton, Pennsylvania 18515. Printed in the United States of America CONTENTS INSTRUCTIONS 1 READING ASSIGNMENTS 3 LESSON 1: THE FUNDAMENTALS OF MEDICAL TERMINOLOGY 5 LESSON 2: DIAGNOSIS, INTERVENTION, AND HUMAN BODY TERMS 28 LESSON 3: MUSCULOSKELETAL, CIRCULATORY, AND RESPIRATORY SYSTEM TERMS 44 LESSON 4: DIGESTIVE, URINARY, AND REPRODUCTIVE SYSTEM TERMS 69 LESSON 5: INTEGUMENTARY, NERVOUS, AND ENDOCRINE S YSTEM TERMS 96 SELF-CHECK ANSWERS 134 © PENN FOSTER, INC. 2017 MEDICAL TERMINOLOGY PAGE III Contents INSTRUCTIONS INTRODUCTION Welcome to your course on medical terminology. You’re taking this course because you’re most likely interested in pursuing a health and science career, which entails proficiencyincommunicatingwithhealthcareprofessionalssuchasphysicians,nurses, or dentists. -
Cerebral Vasospasms Following Endoscopic Endonasal Surgery for Pituitary Adenoma Resection in the Absence of Post-Operative Subarachnoid Hemorrhage
Journal of Neurology & Stroke Cerebral Vasospasms Following Endoscopic Endonasal Surgery for Pituitary Adenoma Resection in the Absence of Post-Operative Subarachnoid Hemorrhage Case Report Abstract Volume 4 Issue 3 - 2016 The endoscopic endonasal approach (EEA) is a widely accepted and commonly 1 1 utilized approach for the resection of various pituitary tumors. While Paul S Page , Daniel D Kim , Graham C complications commonly include diabetes insipidus, cerebrospinal fluid leaks, Hall2 and Maria Koutourousiou2* and anterior lobe insufficiency cerebral vasospasm may also rarely occur. 1University of Louisville School of Medicine, Louisville, USA 2 Herein, we report the unique case of a 44-year-old female who underwent Department of Neurosurgery, University of Louisville, Louisville, USA uncomplicated endoscopic endonasal surgery for resection of a giant pituitary adenoma. Subsequent cerebral vasospasms were identified on postoperative day *Corresponding author: Maria Koutourousiou, 220 3 and 19 resulting in ischemic strokes with neurological consequence. In the Abraham Flexner Way, Suite 1500, Department of postoperative period, imaging at no point revealed any evidence of subarachnoid Neurosurgery, University of Louisville, Louisville, KY hemorrhage or hematoma formation in the subarachnoid space. Risk factors for 40202, USA, Fax: 502-582-7477; Tel: 502-582-7624; cerebral vasospasm are discussed and the potential for subsequent vasospasm Email: events is addressed. Received: August 07, 2015 | Published: March 08, 2016 Keywords: Stroke; Neurosurgery; Subarachnoid Hemorrhage; Pituitary Adenoma; Vasospasm; Endoscopic Endonasal Surgery Abbreviations: EES: Endoscopic Endonasal Surgery; CSF: [5]. Symptoms may present as a variety of neurological changes Cerebral Spinal Fluid; SAH: Subarachnoid Hemorrhage; aSAH: occurring as early as a few hours to 13 days after hemorrhage Aneurysmal Subarachnoid Hemorrhage; MRI: Magnetic onset [6]. -
CSW Dysnatremia Pathway
Dysnatremia v2.2: Table of Contents Approval & Citation Summary of Version Changes Explanation of Evidence Ratings Patients At Risk for High or Low Sodium Postop Neurosurgery At Risk for Hyponatremia Periop Neurosurgery At Risk for Diabetes Insipidus Postop Neurosurgery At Risk for Diabetes Insipidus Patients with Diabetes Insipidus Periop Known Diabetes Insipidus ED or Acute Care Known Diabetes Insipidus Background How Dysnatremia Occurs For questions concerning this pathway, Last Updated: May 2021 contact: [email protected] Next Expected Review: October 2023 © 2021 Seattle Children’s Hospital, all rights reserved, Medical Disclaimer Dysnatremia v2.2: Postop Neurosurgery At Risk for Hyponatremia Approval & Citation Summary of Version Changes Explanation of Evidence Ratings Return to Table of Contents Monitoring Procedures at High Risk Orders for Low Sodium • Serum sodium and serum osmolality qam x 3 days Inclusion Criteria • Daily weight • Craniotomy • Patients with procedure • Strict intake and output • Craniosynostosis repair/ at high risk for low • If no void over 8 hours, bladder scan or ask patient to cranial vault expansion/frontal sodium void orbital advancement Call Contact Provider for • Hemispherectomy/lobectomy Exclusion Criteria • Placement of Grid and strip • Sodium <135 • Age <1 year • Tumor resection/biopsy • Endoscopic 3rd ventriculostomy • Intake and output positive > 40 ml/kg over 8 hours (ETV) • Insertion of lumbar drain • Urine output <0.5 ml/kg/hr or no void over 8 hours • Laser ablation • Subgaleal -
Advanced Imaging
CLINICAL APPROPRIATENESS GUIDELINES ADVANCED IMAGING Appropriate Use Criteria: Imaging of the Brain ARCHIVED SEPTEMBER 28, 2019 These documents have been archived because they have outdated information. They are for historical information only and should not be consulted for clinical use. Current versions of guidelines are available on the AIM Specialty Health website at http://www.aimspecialtyhealth.com/ EFFECTIVE MARCH 9, 2019 Proprietary Approval and implementation dates for specific health plans may vary. Please consult the applicable health plan for more details. AIM Specialty Health disclaims any responsibility for the completeness or accuracy of the information contained herein. 8600 West Bryn Mawr Avenue Appropriate.Safe.Affordable South Tower – Suite 800 Chicago, IL 60631 © 2017 ©©©© 2019 AIM Specialty Health www.aimspecialtyhealth.com 2057-0319 Imaging of the Brain Table of Contents Description and Application of the Guidelines .......................................................................................................... 4 General Clinical Guideline ........................................................................................................................................... 5 Clinical Appropriateness Framework .................................................................................................................... 5 Simultaneous Ordering of Multiple Diagnostic or Therapeutic Interventions .................................................... 5 Repeat Diagnostic Intervention ............................................................................................................................. -
Aesculap® Neuroendoscopy
Aesculap® Neuroendoscopy Intraventricular, Endoscope-Assisted, Transnasal/Transsphenoidal Neuroendoscopic Equipment With comments from international experts in the field of neuroendoscopy and minimally-invasive neurosurgery. Aesculap Neurosurgery Aesculap Neuroendoscopy Michael Fritsch Jeremy Greenlee André Grotenhuis Nikolai Hopf Neubrandenburg, Germany Iowa City, USA Nijmegen, Netherlands Stuttgart, Germany 2 Aesculap Neurosurgery Intraventricular „ In 1924, the famous general and neurological achieve deep seated regions without approach surgeon William Halsted expressed his belief “… related traumatization of sensitive neurovascular that the tendency will always be in the direction structures. of exercising greater care and refinement in oper- The endoscopic image allows illumination and ating”. Today, within the third millennium this fun- inspection of angles in hidden parts of the surgical damental philosophy of minimally invasive therapy field with the and clear depiction of anatomical should be emphasized more than ever before, details. In addition, due to the enormous optical operating with a minimum of iatrogenic trauma depth of field of modern endoscopes, endoscopes while achieving maximum surgical efficiency. provide a three dimensional aspect of anatomic Recent improvements in preoperative imaging and structures. Recently, the intraoperative use of full surgical instrumentation allow neurosurgeons to high definition (HD) image quality offers a new treat more complex pathologies through custom- area in endoscopic neurosurgery -
L.G. Kempe . Operative Neurosurgery Operative Neurosurgery
L.G. KEMPE . OPERATIVE NEUROSURGERY OPERATIVE NEUROSURGERY Volume 1 Cranial, Cerebral, and Intracranial Vascular Disease By Ludwig G. Kempe Col., M.e., u.s.A. Fourth Printing With 335 Partly Colored Figures Springer-Verlag Berlin Heidelberg GmbH 1985 LUDWIG G. KEMPE, Col., M.C., U.S.A. Chief, Neurosurgery Service Walter Reed General Hospital Washington, D.C. Consultant in Neurosurgery to The Surgeon General, U.S. Army Associate Clin. Professor in Neurosurgery George Washington University Washington, D.C. First printing 1968 Second printing 1976 Third printing 1981 Fourth printing 1984 ISBN 978-3-662-12636-3 ISBN 978-3-662-12634-9 (eBook) DOI 10.1007/978-3-662-12634-9 This work is subject to copyright. Ali rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher. © by Springer-Verlag Berlin Heidelberg 1968 Originally published by Springer-Verlag Berlin Heidelberg New York in 1968 Softcover reprint ofthe hardcover lst edition 1968 Library of Congress Catalog Card Number 68-22982. The use of general descriptive names, trade names, trade marks, etc. in this publication, even if the former are not especially identified is not to be taken as a sign that such names, as understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely by anyone. -
The Assessment of Headaches on the Acute Medical Unit: Is It Adequate and How Could It Be Improved?
ORIGINAL RESEARCH Clinical Medicine 2017 Vol 17, No 2: 114–20 The assessment of headaches on the acute medical unit: is it adequate and how could it be improved? Authors: S o p h i e B i n k s ,A A n n a N a g y , B J e b a n G a n e s a l i n g a m C a n d A b a r n a R a t n a r a j a h D Neurological emergencies represent 15–25% of the medical access neurology service and headache guideline were 2 take, second only to cardiac and respiratory cases. However, developed in response to this identified issue. the UK’s number of neurologists is lower than that of other The management of acute headache is complex; for example, in developed nations. This quality improvement project aimed to a patient presenting with thunderclap headache, the differential develop a guideline to optimise acute headache management is not limited to subarachnoid haemorrhage (SAH). Many other ABSTRACT by non-specialists, informed by the findings of a survey and serious aetiologies, including cervical artery dissection, posterior audit of doctors’ knowledge and practice. In total, 62 doctors reversible encephalopathy syndrome (PRES), reversible cerebral responded to our survey. 53/56 (94.6%) agreed a guideline vasoconstriction (RCVS), cerebral venous sinus thrombosis would be useful. Knowledge of some important causes of (CVST), pituitary apoplexy and temporal arteritis, are not headache was high, but was lower for others, including excluded by computerised tomography (CT) head and lumbar 5,6 cerebral venous sinus thrombosis and cervical artery dissection. -
Risk Factors for Postoperative Intracranial Infections in Patients
NEUROSURGICAL FOCUS Neurosurg Focus 47 (2):E5, 2019 Risk factors for postoperative intracranial infections in patients with pituitary adenoma after endoscopic endonasal transsphenoidal surgery: pneumocephalus deserves further study *Kang Guo, MD,1 Lijun Heng, MD, PhD,1 Haihong Zhang, MM,1 Lei Ma, MM,1 Hui Zhang, MS,2 and Dong Jia, MD, PhD1 1Department of Neurosurgery, Tangdu Hospital, Air Force Medical University, Xi’an, Shaanxi; 2State Key Laboratory of Genetic Engineering and Ministry of Education, College of Life Sciences, Fudan University, Shanghai, China OBJECTIVE The authors sought to identify the relevance between pneumocephalus and postoperative intracranial infections, as well as bacteriological characteristics and risk factors for intracranial infections, in patients with pituitary adenomas after endoscopic endonasal transsphenoidal surgery. METHODS In total, data from 251 consecutive patients with pituitary adenomas who underwent pure endoscopic en- donasal transsphenoidal surgeries from 2014 to 2018 were reviewed for preoperative comorbidities, intraoperative tech- niques, and postoperative care. RESULTS This retrospective study found 18 cases of postoperative pneumocephalus (7.17%), 9 CNS infections (3.59%), and 12 CSF leaks (4.78%). Of the patients with pneumocephalus, 5 (27.8%) had CNS infections. In patients with CNS infections, the culture results were positive in 7 cases and negative in 2 cases. The statistical analysis suggested that pneumocephalus (maximum bubble diameter of ≥ 1 cm), diaphragmatic defects (intraoperative CSF leak, Kelly grade ≥ 1), and a postoperative CSF leak are risk factors for postoperative CNS infections. CONCLUSIONS In pituitary adenoma patients who underwent pure endoscopic endonasal transsphenoidal surgeries, intraoperative saddle reconstruction has a crucial role for patients with postoperative intracranial infections. -
Precipitating Factors in Pituitary Apoplexy
J Neurol Neurosurg Psychiatry: first published as 10.1136/jnnp.71.4.542 on 1 October 2001. Downloaded from 542 J Neurol Neurosurg Psychiatry 2001;71:542–545 SHORT REPORT Precipitating factors in pituitary apoplexy V Biousse, N J Newman, N M Oyesiku Abstract management of patients with acute pituitary Pituitary apoplexy is a rare but life apoplexy remains to be elucidated. The aim of threatening condition caused by sudden our study was to identify associated conditions haemorrhage or infarction of the pituitary with the occurrence of acute, symptomatic gland. Potential precipitating factors in pituitary apoplexy, and to compare the charac- the occurrence of acute pituitary apoplexy teristics and outcome of patients with and in 30 consecutive patients were identified without identified associated diseases. and compared with the clinical character- istics and outcome of patients with and without associated factors. Six patients Methods had a previously known pituitary ad- We used the databases from the neuro- enoma. All patients complained of severe ophthalmology unit and the department of headaches, associated with neuro- neurological surgery to select patients with ophthalmological symptoms and signs in acute pituitary apoplexy seen at Emory Univer- 83% and altered mental status in 30%. sity School of Medicine between 1989 and Potential risk factors were identified in 2000. Pituitary apoplexy was defined as the nine patients (30%). When there was an acute onset of clinical symptoms associated associated factor, the clinical presentation with haemorrhage or infarction within a wasnodiVerent than in patients without normal pituitary gland or previously known such factors although altered mental sta- pituitary adenoma. -
Impact of Medicaid Insurance on Outcomes Following Endoscopic Transsphenoidal Pituitary Surgery
CLINICAL ARTICLE J Neurosurg 134:801–806, 2021 Impact of Medicaid insurance on outcomes following endoscopic transsphenoidal pituitary surgery Iyan Younus, BS,1 Mina Gerges, MD,2 Theodore H. Schwartz, MD,2–4 and Rohan Ramakrishna, MD2 1Weill Cornell Medical College; and Departments of 2Neurosurgery, 3Otolaryngology, and 4Neuroscience, Weill Cornell Medical College, NewYork-Presbyterian Hospital, New York, New York OBJECTIVE Despite the rise of studies in the neurosurgical literature suggesting that patients with Medicaid insurance have inferior outcomes, there remains a paucity of data on the impact of insurance on outcomes after endonasal endo- scopic transsphenoidal surgery (EETS). Given the increasing importance of complications in quality-based healthcare metrics, the objective of this study was to assess whether Medicaid insurance type influences outcomes in EETS for pituitary adenoma. METHODS The authors analyzed a prospectively acquired database of EETS for pituitary adenoma from 2005 to 2018 at NewYork-Presbyterian Hospital, Weill Cornell Medicine. All patients with Medicaid insurance were identified. As a con- trol group, the clinical, socioeconomic, and radiographic data of all other patients in the series with non-Medicaid insur- ance were reviewed. Statistical significance was determined with an alpha < 0.05 using Pearson chi-square and Fisher’s exact tests for categorical variables and the independent-samples t-test for continuous variables. RESULTS Of 584 patients undergoing EETS for pituitary adenoma, 57 (10%) had Medicaid insurance. The maximum tumor diameter was significantly larger for Medicaid patients (26.1 ± 12 vs 23.1 ± 11 mm for controls, p < 0.05). Baseline comorbidities including diabetes mellitus, hypertension, smoking history, and BMI were not significantly different be- tween Medicaid patients and controls.