12 Number Patternsmep Pupil Text 12

Total Page:16

File Type:pdf, Size:1020Kb

12 Number Patternsmep Pupil Text 12 12 Number PatternsMEP Pupil Text 12 12.1 Simple Number Patterns A list of numbers which form a pattern is called a sequence. In this section, straightfor- ward sequences are continued. Worked Example 1 Write down the next three numbers in each sequence. (a) 2, 4, 6, 8, 10, . (b) 3, 6, 9, 12, 15, . Solution (a) This sequence is a list of even numbers, so the next three numbers will be 12, 14, 16. (b) This sequence is made up of the multiples of 3, so the next three numbers will be 18, 21, 24. Worked Example 2 Find the next two numbers in each sequence. (a) 6, 10, 14, 18, 22, . (b) 3, 8, 13, 18, 23, . Solution (a) For this sequence the difference between each term and the next term is 4. Sequence 6, 10, 14, 18, 22, . Difference 4 4 4 4 So 4 must be added to obtain the next term in the sequence. The next two terms are 22+= 4 26 and 26+= 4 30 , giving 6, 10, 14, 18, 22, 26, 30, . (b) For this sequence, the difference between each term and the next is 5. Sequence 3, 8, 13, 18, 23, . Difference 5 5 5 5 Adding 5 gives the next two terms as 23+= 5 28 and 28+= 5 33, giving 3, 8, 13, 18, 23, 28, 33, . 262 MEP Pupil Text 12 Exercises 1. Write down the next four numbers in each list. (a) 1, 3, 5, 7, 9, . (b) 4, 8, 12, 16, 20, . (c) 5, 10, 15, 20, 25, . (d) 7, 14, 21, 28, 35, . (e) 9, 18, 27, 36, 45, . (f) 6, 12, 18, 24, 30, . (g) 10, 20, 30, 40, 50, . (h) 11, 22, 33, 44, 55, . (i) 8, 16, 24, 32, 40, . (j) 20, 40, 60, 80, 100, . (k) 15, 30, 45, 60, 75, . (l) 50, 100, 150, 200, 250, . 2. Find the difference between terms for each sequence and hence write down the next two terms of the sequence. (a) 5, 8, 11, 14, 17, . (b) 2, 10, 18, 26, 34, . (c) 7, 12, 17, 22, 27, . (d) 6, 17, 28, 39, 50, . 1 1 1 (e) 8, 15, 22, 29, 36, . (f) 2 2 , 3, 3 2 , 4, 4 2 , . (g) 4, 13, 22, 31, 40, . (h) 26, 23, 20, 17, 14, . (i) 20, 16, 12, 8, 4, . (j) 18, 14, 10, 6, 2, . (k) 11, 8, 5, 2, −1, . (l) − 5, −8, −11, −14 , −17, . 3. In each part, find the answers to (i) to (iv) with a calculator and the answer to (v) without a calculator. (a) (i) 211×=? (b) (i) 99×= 11 ? (ii) 22×= 11 ? (ii) 999×= 11 ? (iii) 222×= 11 ? (iii) 9999×= 11 ? (iv) 2222×= 11 ? (iv) 99999×= 11 ? (v) 22222×= 11 ? (v) 999999×= 11 ? (c) (i) 88×= 11 ? (d) (i) 79×=? (ii) 888×= 11 ? (ii) 799×=? (iii) 8888×= 11 ? (iii) 7×= 999 ? (iv) 88888×= 11 ? (iv) 7×= 9999 ? (v) 8888888×= 11 ? (v) 7×= 999999 ? 4. (a) (i) Complete the following number pattern: 11 = 11 11× 11 = 121 11×× 11 11 = ? ? = ? (ii) Look at the numbers in the right hand column. Write down what you notice about these numbers. 263 12.1 MEP Pupil Text 12 (b) Use your calculator to work out the next line of the pattern. What do you notice now? (NEAB) 5. 92×= 18 93×= 27 94×= 36 95×= 45 96×= 54 97×= 63 98×= 72 99×= 81 (a) (i) Complete the statement, The units digits in the right hand column, in order, are 8, 7, 6, . (ii) Complete the statement, The tens digits in the right-hand column, in order, are 1, 2, 3, . (iii) What is the connection between the answers to parts (i) and (ii)? (b) The numbers in the right-hand column go up by 9 each time. What else do you notice about these numbers? (MEG) 12.2 Recognising Number Patterns This section looks at how the terms of a sequence are related. For example the Fibonacci sequence: 1, 1, 2, 3, 5, 8, 13, . is obtained by adding together two consecutive terms to obtain the next term. 11+= 2 12+= 3 23+= 5 35+= 8 58+= 13 Worked Example 1 The sequence of square numbers is 1, 4, 9, 16, 25, 36, . Explain how to obtain the next number in the sequence. Solution The next number can be obtained in one of two ways. 264 MEP Pupil Text 12 (1) The sequence could be written, 12 , 22 , 32 , 42 , 52 , 62 , . and so the next term would be 7492=. (2) Calculating the differences between the terms gives Sequence 1, 4, 9, 16, 25, 36, . Difference 3 5 7 9 11 The difference increases by 2 each time so the next term would be 36+= 13 49. Worked Example 2 Describe how to obtain the next term of each sequence below. (a) 3, 10, 17, 24, 31, . (b) 3, 6, 11, 18, 27, . (c) 1, 5, 6, 11, 17, 28, . Solution (a) Finding the differences between the terms gives Sequence 3, 10, 17, 24, 31, . Difference 7 7 7 7 All the differences are the same so each term can be obtained by adding 7 to the previous term. The next term would be 31+= 7 38. (b) Here again the differences show a pattern. Sequence 3, 6, 11, 18, 27, . Difference 3 5 7 9 Here the differences increase by 2 each time, so to find further terms add 2 more than the previous difference. The next term would be 27+= 11 38. (c) The differences again help to see the pattern for this sequence. Sequence 1, 5, 6, 11, 17, 28, . Difference 4 1 5 6 11 If the first difference, 4, is ignored, the remaining pattern of the differences is the same as the sequence itself. This shows that the difference between any two terms is equal to the previous term. So a new term is obtained by adding together the two previous terms. The next term of the sequence will be 17+= 28 45. 265 12.2 MEP Pupil Text 12 Worked Example 3 A sequence of shapes is shown below. Write down a sequence for the number of line segments and explain how to find the next number in the sequence. Solution The sequence for the number of line segments is 4, 8, 12, 16, . The difference between each pair of terms is 4, so to the previous term add 4. Then the next term is 16+= 4 20. This corresponds to the shape opposite, which has 20 line segments. Exercises 1. Find the next two terms of each sequence below, showing the calculations which have to be done to obtain them. (a) 5, 11, 17, 23, 29, . (b) 6, 10, 15, 21, 28, . (c) 22, 19, 16, 13, 10, . (d) 30, 22, 15, 9, 4, . (e) 50, 56, 63, 71, 80, . (f) 2, 2, 4, 8, 14, 22, . (g) 6, 11, 16, 21, 26, . (h) 0, 3, 8, 15, 24, . (i) 3, 6, 12, 24, 48, . (j) 1, 4, 10, 22, 46, . (k) 4, −1, −11, − 26 , − 46, . 2. A sequence of numbers is 1, 8, 27, 64, 125, . By considering the differences between the terms, find the next two terms. 3. Each sequence of shapes below is made up of lines which join two points. For each sequence: (i) write down the number of lines, as a sequence; (ii) explain how to obtain the next term of the sequence; (iii) draw the next shape and check your answer. (a) 266 MEP Pupil Text 12 (b) (c) (d) (e) 4. Write down a sequence for the number of dots in each pattern. Then explain how to get the next number. (a) (b) (c) (d) 267 12.2 MEP Pupil Text 12 (e) (f) 5. (a) Describe how the sequence 1, 4, 9, 16, 25, 36. is formed. (b) What is the relationship between the sequence in (a) and the sequences below? For each sequence explain how to calculate the terms. (i) 3, 6, 11, 18, 27, 38, . (ii) −1, 2, 7, 14, 23, 34, . (iii) 2, 8, 18, 32, 50, 72, . (iv) 4, 16, 36, 64, 100, 144, . 6. (a) Describe how the sequences below are related. (i) 1, 1, 2, 3, 5, 8, 13, 21, . (ii) 4, 4, 5, 6, 8, 11, 16, 24, . (iii) −1, −1, 0, 1, 3, 6, 11, 19, . (b) Describe how to find the next term of each sequence. 7. A computer program prints out the following numbers. 1 2 4 8 11 16 22 When one of these numbers is changed, the numbers will form a pattern. Circle the number which has to be changed and correct it. Give a reason why your numbers now form a pattern. (SEG) 8. Here are the first four numbers of a number pattern. 7, 14, 21, 28, ... (a) Write down the next two numbers in the pattern. (b) Describe, in words, the rule for finding the next number in the pattern. (LON) 268 MEP Pupil Text 12 9. (a) To generate a sequence of numbers, Paul multiplies the previous number in the sequence by 3, then subtracts 1. Here are the first four numbers of his sequence. 1, 2, 5, 14, . Find the next two numbers in the sequence. (b) Here are the first four numbers of the sequence of cube numbers. 1, 8, 27, 64, . Find the next two numbers in the sequence. (MEG) 10. Row 1 12 19 28 39 52 q Row 2 791113p The numbers in Row 2 of the above pattern are found by using pairs of numbers from Row 1.
Recommended publications
  • Math/CS 467 (Lesieutre) Homework 2 September 9, 2020 Submission
    Math/CS 467 (Lesieutre) Homework 2 September 9, 2020 Submission instructions: Upload your solutions, minus the code, to Gradescope, like you did last week. Email your code to me as an attachment at [email protected], including the string HW2 in the subject line so I can filter them. Problem 1. Both prime numbers and perfect squares get more and more uncommon among larger and larger numbers. But just how uncommon are they? a) Roughly how many perfect squares are there less than or equal to N? p 2 For a positivep integer k, notice that k is less than N if and only if k ≤ N. So there are about N possibilities for k. b) Are there likely to be more prime numbers or perfect squares less than 10100? Give an estimate of the number of each. p There are about 1010 = 1050 perfect squares. According to the prime number theorem, there are about 10100 10100 π(10100) ≈ = = 1098 · log 10 = 2:3 · 1098: log(10100) 100 log 10 That’s a lot more primes than squares. (Note that the “log” in the prime number theorem is the natural log. If you use log10, you won’t get the right answer.) Problem 2. Compute g = gcd(1661; 231). Find integers a and b so that 1661a + 231b = g. (You can do this by hand or on the computer; either submit the code or show your work.) We do this using the Euclidean algorithm. At each step, we keep track of how to write ri as a combination of a and b.
    [Show full text]
  • 6Th Online Learning #2 MATH Subject: Mathematics State: Ohio
    6th Online Learning #2 MATH Subject: Mathematics State: Ohio Student Name: Teacher Name: School Name: 1 Yari was doing the long division problem shown below. When she finishes, her teacher tells her she made a mistake. Find Yari's mistake. Explain it to her using at least 2 complete sentences. Then, re-do the long division problem correctly. 2 Use the computation shown below to find the products. Explain how you found your answers. (a) 189 × 16 (b) 80 × 16 (c) 9 × 16 3 Solve. 34,992 ÷ 81 = ? 4 The total amount of money collected by a store for sweatshirt sales was $10,000. Each sweatshirt sold for $40. What was the total number of sweatshirts sold by the store? (A) 100 (B) 220 (C) 250 (D) 400 5 Justin divided 403 by a number and got a quotient of 26 with a remainder of 13. What was the number Justin divided by? (A) 13 (B) 14 (C) 15 (D) 16 6 What is the quotient of 13,632 ÷ 48? (A) 262 R36 (B) 272 (C) 284 (D) 325 R32 7 What is the result when 75,069 is divided by 45? 8 What is the value of 63,106 ÷ 72? Write your answer below. 9 Divide. 21,900 ÷ 25 Write the exact quotient below. 10 The manager of a bookstore ordered 480 copies of a book. The manager paid a total of $7,440 for the books. The books arrived at the store in 5 cartons. Each carton contained the same number of books. A worker unpacked books at a rate of 48 books every 2 minutes.
    [Show full text]
  • 13A. Lists of Numbers
    13A. Lists of Numbers Topics: Lists of numbers List Methods: Void vs Fruitful Methods Setting up Lists A Function that returns a list We Have Seen Lists Before Recall that the rgb encoding of a color involves a triplet of numbers: MyColor = [.3,.4,.5] DrawDisk(0,0,1,FillColor = MyColor) MyColor is a list. A list of numbers is a way of assembling a sequence of numbers. Terminology x = [3.0, 5.0, -1.0, 0.0, 3.14] How we talk about what is in a list: 5.0 is an item in the list x. 5.0 is an entry in the list x. 5.0 is an element in the list x. 5.0 is a value in the list x. Get used to the synonyms. A List Has a Length The following would assign the value of 5 to the variable n: x = [3.0, 5.0, -1.0, 0.0, 3.14] n = len(x) The Entries in a List are Accessed Using Subscripts The following would assign the value of -1.0 to the variable a: x = [3.0, 5.0, -1.0, 0.0, 3.14] a = x[2] A List Can Be Sliced This: x = [10,40,50,30,20] y = x[1:3] z = x[:3] w = x[3:] Is same as: x = [10,40,50,30,20] y = [40,50] z = [10,40,50] w = [30,20] Lists are Similar to Strings s: ‘x’ ‘L’ ‘1’ ‘?’ ‘a’ ‘C’ x: 3 5 2 7 0 4 A string is a sequence of characters.
    [Show full text]
  • Ground and Explanation in Mathematics
    volume 19, no. 33 ncreased attention has recently been paid to the fact that in math- august 2019 ematical practice, certain mathematical proofs but not others are I recognized as explaining why the theorems they prove obtain (Mancosu 2008; Lange 2010, 2015a, 2016; Pincock 2015). Such “math- ematical explanation” is presumably not a variety of causal explana- tion. In addition, the role of metaphysical grounding as underwriting a variety of explanations has also recently received increased attention Ground and Explanation (Correia and Schnieder 2012; Fine 2001, 2012; Rosen 2010; Schaffer 2016). Accordingly, it is natural to wonder whether mathematical ex- planation is a variety of grounding explanation. This paper will offer several arguments that it is not. in Mathematics One obstacle facing these arguments is that there is currently no widely accepted account of either mathematical explanation or grounding. In the case of mathematical explanation, I will try to avoid this obstacle by appealing to examples of proofs that mathematicians themselves have characterized as explanatory (or as non-explanatory). I will offer many examples to avoid making my argument too dependent on any single one of them. I will also try to motivate these characterizations of various proofs as (non-) explanatory by proposing an account of what makes a proof explanatory. In the case of grounding, I will try to stick with features of grounding that are relatively uncontroversial among grounding theorists. But I will also Marc Lange look briefly at how some of my arguments would fare under alternative views of grounding. I hope at least to reveal something about what University of North Carolina at Chapel Hill grounding would have to look like in order for a theorem’s grounds to mathematically explain why that theorem obtains.
    [Show full text]
  • Whole Numbers
    03_WNCP_Gr4_U02.qxd.qxd 3/19/07 12:04 PM Page 32 U N I T Whole Numbers Learning Goals • recognize and read numbers from 1 to 10 000 • read and write numbers in standard form, expanded form, and written form • compare and order numbers • use diagrams to show relationships • estimate sums and differences • add and subtract 3-digit and 4-digit numbers mentally • use personal strategies to add and subtract • pose and solve problems 32 03_WNCP_Gr4_U02.qxd.qxd 3/19/07 12:04 PM Page 33 Key Words expanded form The elephant is the world’s largest animal. There are two kinds of elephants. standard form The African elephant can be found in most parts of Africa. Venn diagram The Asian elephant can be found in Southeast Asia. Carroll diagram African elephants are larger and heavier than their Asian cousins. The mass of a typical adult African female elephant is about 3600 kg. The mass of a typical male is about 5500 kg. The mass of a typical adult Asian female elephant is about 2720 kg. The mass of a typical male is about 4990 kg. •How could you find how much greater the mass of the African female elephant is than the Asian female elephant? •Kandula,a male Asian elephant,had a mass of about 145 kg at birth. Estimate how much mass he will gain from birth to adulthood. •The largest elephant on record was an African male with an estimated mass of about 10 000 kg. About how much greater was the mass of this elephant than the typical African male elephant? 33 03_WNCP_Gr4_U02.qxd.qxd 3/19/07 12:04 PM Page 34 LESSON Whole Numbers to 10 000 The largest marching band ever assembled had 4526 members.
    [Show full text]
  • Use Style: Paper Title
    Volume 4, Issue 11, November – 2019 International Journal of Innovative Science and Research Technology ISSN No:-2456-2165 On Three Figurate Numbers with Same Values A. Vijayasankar1, Assistant Professor, Department of Mathematics, National College, Affiliated to Bharathidasan University Trichy-620 001, Tamil Nadu, India Sharadha Kumar2, M. A. Gopalan3, Research Scholar, Professor, Department of Mathematics, Department of Mathematics, Shrimati Indira Gandhi College, National College, Affiliated to Bharathidasan University, Affiliated Bharathidasan University, Trichy-620 001, Tamil Nadu, India Trichy-620 002, Tamil Nadu, India Abstract:- Explicit formulas for the ranks of Triangular Centered Octagonal Number of rank M numbers, Hexagonal numbers, Centered Hexagonal ct8,M 4MM 11 numbers, Centered Octagonal numbers, Centered Decagonal numbers and Centered Dodecagonal numbers Centered Decagonal Number of rank M satisfying the relations; ct10,M 5MM 11 t 3, N t 6,h ct 6, H , t3,N t6,h ct 8,M , t 3,N t6,h ct 10,M , t t ct 3,N 6,h 12,D are obtained. Centered Dodecagonal Number of rank D ct12,D 6DD 11 Keywords:- Equality of polygonal numbers, Centered Hexagonal numbers, Centered Octagonal numbers, Triangular Number of rank N Centered Decagonal numbers, Centered Dodecagonal NN 1 numbers, Hexagonal numbers, Triangular numbers. t3, N 2 Mathematics Subject Classification: 11D09, 11D99 Hexagonal Number of rank h 2 I. INTRODUCTION t6,h 2h h The theory of numbers has occupied a remarkable II. METHOD OF ANALYSIS position in the world of mathematics and it is unique among the mathematical sciences in its appeal to natural human 1. Equality of t t ct curiosity.
    [Show full text]
  • 4.7 Recursive-Explicit-Formula Notes
    11/6/17 4.7 Arithmetic Sequences (Recursive & Explicit Formulas) Arithmetic sequences • are linear functions that have a domain of positive consecutive integers in which the difference between any two consecutive terms is equal. • is a list of terms separated by a common difference, (the number added to each consecutive term in an arithmetic sequence.) • can be represented by formulas, either explicit or recursive, and those formulas can be used to find a certain term of the sequence. 1 11/6/17 Recursive Formula The following slides will answer these questions: • What does recursive mean? • What is the math formula? • How do you write the formula given a situation? • How do you use the formula? Definition of Recursive • relating to a procedure that can repeat itself indefinitely • repeated application of a rule 2 11/6/17 Recursive Formula A formula where each term is based on the term before it. Formula: A(n) = A(n-1) + d, A(1) = ? For each list of numbers below, determine the next three numbers in the list. 1, 2, 3, 4, 5, _______, ________, ________ 7, 9, 11, 13, 15, _______, _______, _______ 10, 7, 4, 1, -2, _______, _______, _______ 2, 4, 7, 11, 16, _______, _______, _______ 1, -1, 2, -2, 3, -3, _______, _______, _______ 3 11/6/17 For each list of numbers below, determine the next three numbers in the list. 1, 2, 3, 4, 5, 6, 7, 8 7, 9, 11, 13, 15, _______, _______, _______ 10, 7, 4, 1, -2, _______, _______, _______ 2, 4, 7, 11, 16, _______, _______, _______ 1, -1, 2, -2, 3, -3, _______, _______, _______ For each list of numbers below, determine the next three numbers in the list.
    [Show full text]
  • Notations Used 1
    NOTATIONS USED 1 NOTATIONS ⎡ (n −1)(m − 2)⎤ Tm,n = n 1+ - Gonal number of rank n with sides m . ⎣⎢ 2 ⎦⎥ n(n +1) T = - Triangular number of rank n . n 2 1 Pen = (3n2 − n) - Pentagonal number of rank n . n 2 2 Hexn = 2n − n - Hexagonal number of rank n . 1 Hep = (5n2 − 3n) - Heptagonal number of rank n . n 2 2 Octn = 3n − 2n - Octagonal number of rank n . 1 Nan = (7n2 − 5n) - Nanogonal number of rank n . n 2 2 Decn = 4n − 3n - Decagonal number of rank n . 1 HD = (9n 2 − 7n) - Hendecagonal number of rank n . n 2 1 2 DDn = (10n − 8n) - Dodecagonal number of rank n . 2 1 TD = (11n2 − 9n) - Tridecagonal number of rank n . n 2 1 TED = (12n 2 −10n) - Tetra decagonal number of rank n . n 2 1 PD = (13n2 −11n) - Pentadecagonal number of rank n . n 2 1 HXD = (14n2 −12n) - Hexadecagonal number of rank n . n 2 1 HPD = (15n2 −13n) - Heptadecagonal number of rank n . n 2 NOTATIONS USED 2 1 OD = (16n 2 −14n) - Octadecagonal number of rank n . n 2 1 ND = (17n 2 −15n) - Nonadecagonal number of rank n . n 2 1 IC = (18n 2 −16n) - Icosagonal number of rank n . n 2 1 ICH = (19n2 −17n) - Icosihenagonal number of rank n . n 2 1 ID = (20n 2 −18n) - Icosidigonal number of rank n . n 2 1 IT = (21n2 −19n) - Icositriogonal number of rank n . n 2 1 ICT = (22n2 − 20n) - Icositetragonal number of rank n . n 2 1 IP = (23n 2 − 21n) - Icosipentagonal number of rank n .
    [Show full text]
  • The Prime Number Lottery
    The prime number lottery • about Plus • support Plus • subscribe to Plus • terms of use search plus with google • home • latest issue • explore the archive • careers library • news © 1997−2004, Millennium Mathematics Project, University of Cambridge. Permission is granted to print and copy this page on paper for non−commercial use. For other uses, including electronic redistribution, please contact us. November 2003 Features The prime number lottery by Marcus du Sautoy The prime number lottery 1 The prime number lottery David Hilbert On a hot and sultry afternoon in August 1900, David Hilbert rose to address the first International Congress of Mathematicians of the new century in Paris. It was a daunting task for the 38 year−old mathematician from Göttingen in Germany. You could hear the nerves in his voice as he began to talk. Gathered in the Sorbonne were some of the great names of mathematics. Hilbert had been worrying for months about what he should talk on. Surely the first Congress of the new century deserved something rather more exciting than just telling mathematicians about old theorems. So Hilbert decided to deliver a very daring lecture. He would talk about what we didn't know rather what we had already proved. He challenged the mathematicians of the new century with 23 unsolved problems. He believed that "Problems are the life blood of mathematics". Without problems to spur the mathematician on in his or her journey of discovery, mathematics would stagnate. These 23 problems set the course for the mathematical explorers of the twentieth century. They stood there like a range of mountains for the mathematician to conquer.
    [Show full text]
  • Mathematics Education; *Number Conc
    DOCUMENT RESUME ED 069 503 SE 015 194 AUTHOR Evans, Diane TITLE Learning Activity Package, Pre-Algebra. Ninety Six High School, S. C. PUB. DATE 72 NOTE 134p. EDRS PRICE MF-$0.65 HC-$6,58 DESCRIPTORS Algebra; *Curriculum; *Individualized Instruction; *Instructional Materials; Mathematics Education; *Number Concepts; Number Systems; Objectives; *Secondary School Mathematics; Set Theory; Teacher Developed Materials; Teaching Guides; Units of Study (Subject Fields) ABSTRACT A sett of ten teacher-prepared Learning Activity Packages (LAPs) for individualized instruction in topics in . pre-algebra, the units cover the decimal numeration system; number ?- theory; fractions and decimals; ratio, proportion, and percent; sets; properties of operations; rational numbers; real numbers; open expressions; and open rational expressions. Each unit contains a rationale for the material; a list of behavioral objectives for the unit; a list of resources including texts (specifying reading assignments and problem sets), tape recordings, and commercial games to be used; a problem set for student self-evaluation; suggestions for advanced study; and references. For other documents in this series, see SE 015 193, SE 015 195, SE 015 196, and SE 015 197. (DT) 1 LEARNING CTIVITY ACKAGE DECIMAL NUMERATION SYSTEM Vowl.,............._. Az., Pre--A I gebra U1111111111111111111111 ;VIEW ED BY LAP t\T13ER WRIT'NN ry DiatIO Evans FROV. BEST:V.PAII.APLE COPY RATIONALE Probably the greatest achievement of man is the developmeht of symbols to communicate facts and ideas. Symbols known as letters developed into the words of many languages of the people of the world. The early Egyptians used a type of picture-writing called "hieroglyphics" for words and numbers.
    [Show full text]
  • Hard Math Elementary School: Answer Key for Workbook
    Hard Math for Elementary School: Answer Key for Workbook Glenn Ellison 1 Copyright © 2013 by Glenn Ellison All right reserved ISBN-10: 1-4848-5142-0 ISBN-13: 978-1-4848-5142-5 2 Introduction Most books in the Hard Math series have long introductions that tell you something about the book, how to use it, the philosophy behind it, etc. This one doesn’t. It’s just the answer key for Hard Math for Elementary School: Workbook. So basically it just does what you would expect: it gives the answers to the problems in the Workbook. I reproduced the worksheets because I think it makes checking one’s answers easier. At the bottom of many worksheets I added brief explanations of how to do some of the harder problems. I hope that I got all of the answers right. But it’s hard to avoid making any mistakes when working on a project this big, so please accept my apologies if you find things that are wrong. I’ll try to fix any mistakes in some future edition. And until I do, you could think of the mistakes as a feature: they help show that the problems really are hard and students should feel proud of how many they are able to get. 3 Hard Math Worksheets Name Answer Key_______ 1.1 Basic Addition with Carrying 1. Word Problem: If Ron has 2127 pieces of candy and Harry has 5374 pieces of candy, how much candy do they have in total? 7,501 pieces 2. Solve the following problems.
    [Show full text]
  • Taking Place Value Seriously: Arithmetic, Estimation, and Algebra
    Taking Place Value Seriously: Arithmetic, Estimation, and Algebra by Roger Howe, Yale University and Susanna S. Epp, DePaul University Introduction and Summary Arithmetic, first of nonnegative integers, then of decimal and common fractions, and later of rational expres- sions and functions, is a central theme in school mathematics. This article attempts to point out ways to make the study of arithmetic more unified and more conceptual through a systematic emphasis on place-value structure in the base 10 number system. The article contains five sections. Section one reviews the basic principles of base 10 notation and points out the sophisticated structure underlying its amazing efficiency. Careful definitions are given for the basic constituents out of which numbers written in base 10 notation are formed: digit, power of 10 ,andsingle-place number. The idea of order of magnitude is also discussed, to prepare the way for considering relative sizes of numbers. Section two discusses how base 10 notation enables efficient algorithms for addition, subtraction, mul- tiplication and division of nonnegative integers. The crucial point is that the main outlines of all these procedures are determined by the form of numbers written in base 10 notation together with the Rules of Arithmetic 1. Division plays an especially important role in the discussion because both of the two main ways to interpret numbers written in base 10 notation are connected with division. One way is to think of the base 10 expansion as the result of successive divisions-with-remainder by 10; the other way involves suc- cessive approximation by single-place numbers and provides the basis for the usual long-division algorithm.
    [Show full text]