Installation and Configuration Guide for Linux® Workstations
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Early Experiences with Storage Area Networks and CXFS John Lynch
Early Experiences with Storage Area Networks and CXFS John Lynch Aerojet 6304 Spine Road Boulder CO 80516 Abstract This paper looks at the design, integration and application issues involved in deploying an early access, very large, and highly available storage area network. Covered are topics from filesystem failover, issues regarding numbers of nodes in a cluster, and using leading edge solutions to solve complex issues in a real-time data processing network. 1 Introduction SAN technology can be categorized in two distinct approaches. Both Aerojet designed and installed a highly approaches use the storage area network available, large scale Storage Area to provide access to multiple storage Network over spring of 2000. This devices at the same time by one or system due to it size and diversity is multiple hosts. The difference is how known to be one of a kind and is the storage devices are accessed. currently not offered by SGI, but would serve as a prototype system. The most common approach allows the hosts to access the storage devices across The project’s goal was to evaluate Fibre the storage area network but filesystems Channel and SAN technology for its are not shared. This allows either a benefits and applicability in a second- single host to stripe data across a greater generation, real-time data processing number of storage controllers, or to network. SAN technology seemed to be share storage controllers among several the technology of the future to replace systems. This essentially breaks up a the traditional SCSI solution. large storage system into smaller distinct pieces, but allows for the cost-sharing of The approach was to conduct and the most expensive component, the evaluation of SAN technology as a storage controller. -
CXFSTM Client-Only Guide for SGI® Infinitestorage
CXFSTM Client-Only Guide for SGI® InfiniteStorage 007–4507–016 COPYRIGHT © 2002–2008 SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of SGI. LIMITED RIGHTS LEGEND The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14. TRADEMARKS AND ATTRIBUTIONS SGI, Altix, the SGI cube and the SGI logo are registered trademarks and CXFS, FailSafe, IRIS FailSafe, SGI ProPack, and Trusted IRIX are trademarks of SGI in the United States and/or other countries worldwide. Active Directory, Microsoft, Windows, and Windows NT are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. AIX and IBM are registered trademarks of IBM Corporation. Brocade and Silkworm are trademarks of Brocade Communication Systems, Inc. AMD, AMD Athlon, AMD Duron, and AMD Opteron are trademarks of Advanced Micro Devices, Inc. Apple, Mac, Mac OS, Power Mac, and Xserve are registered trademarks of Apple Computer, Inc. Disk Manager is a registered trademark of ONTRACK Data International, Inc. Engenio, LSI Logic, and SANshare are trademarks or registered trademarks of LSI Corporation. -
Serverless Network File Systems
Serverless Network File Systems Thomas E. Anderson, Michael D. Dahlin, Jeanna M. Neefe, David A. Patterson, Drew S. Roselli, and Randolph Y. Wang Computer Science Division University of California at Berkeley Abstract In this paper, we propose a new paradigm for network file system design, serverless network file systems. While traditional network file systems rely on a central server machine, a serverless system utilizes workstations cooperating as peers to provide all file system services. Any machine in the system can store, cache, or control any block of data. Our approach uses this location independence, in combination with fast local area networks, to provide better performance and scalability than traditional file systems. Further, because any machine in the system can assume the responsibilities of a failed component, our serverless design also provides high availability via redundant data storage. To demonstrate our approach, we have implemented a prototype serverless network file system called xFS. Preliminary performance measurements suggest that our architecture achieves its goal of scalability. For instance, in a 32-node xFS system with 32 active clients, each client receives nearly as much read or write throughput as it would see if it were the only active client. 1. Introduction A serverless network file system distributes storage, cache, and control over cooperating workstations. This approach contrasts with traditional file systems such as Netware [Majo94], NFS [Sand85], Andrew [Howa88], and Sprite [Nels88] where a central server machine stores all data and satisfies all client cache misses. Such a central server is both a performance and reliability bottleneck. A serverless system, on the other hand, distributes control processing and data storage to achieve scalable high performance, migrates the responsibilities of failed components to the remaining machines to provide high availability, and scales gracefully to simplify system management. -
XFS: There and Back ...And There Again? Slide 1 of 38
XFS: There and Back.... .... and There Again? Dave Chinner <[email protected]> <[email protected]> XFS: There and Back .... and There Again? Slide 1 of 38 Overview • Story Time • Serious Things • These Days • Shiny Things • Interesting Times XFS: There and Back .... and There Again? Slide 2 of 38 Story Time • Way back in the early '90s • Storage exceeding 32 bit capacities • 64 bit CPUs, large scale MP • Hundreds of disks in a single machine • XFS: There..... Slide 3 of 38 "x" is for Undefined xFS had to support: • Fast Crash Recovery • Large File Systems • Large, Sparse Files • Large, Contiguous Files • Large Directories • Large Numbers of Files • - Scalability in the XFS File System, 1995 http://oss.sgi.com/projects/xfs/papers/xfs_usenix/index.html XFS: There..... Slide 4 of 38 The Early Years XFS: There..... Slide 5 of 38 The Early Years • Late 1994: First Release, Irix 5.3 • Mid 1996: Default FS, Irix 6.2 • Already at Version 4 • Attributes • Journalled Quotas • link counts > 64k • feature masks • • XFS: There..... Slide 6 of 38 The Early Years • • Allocation alignment to storage geometry (1997) • Unwritten extents (1998) • Version 2 directories (1999) • mkfs time configurable block size • Scalability to tens of millions of directory entries • • XFS: There..... Slide 7 of 38 What's that Linux Thing? • Feature development mostly stalled • Irix development focussed on CXFS • New team formed for Linux XFS port! • Encumberance review! • Linux was missing lots of bits XFS needed • Lot of work needed • • XFS: There and..... Slide 8 of 38 That Linux Thing? XFS: There and..... Slide 9 of 38 Light that fire! • 2000: SGI releases XFS under GPL • • 2001: First stable XFS release • • 2002: XFS merged into 2.5.36 • • JFS follows similar timeline • XFS: There and.... -
Comparing Filesystem Performance: Red Hat Enterprise Linux 6 Vs
COMPARING FILE SYSTEM I/O PERFORMANCE: RED HAT ENTERPRISE LINUX 6 VS. MICROSOFT WINDOWS SERVER 2012 When choosing an operating system platform for your servers, you should know what I/O performance to expect from the operating system and file systems you select. In the Principled Technologies labs, using the IOzone file system benchmark, we compared the I/O performance of two operating systems and file system pairs, Red Hat Enterprise Linux 6 with ext4 and XFS file systems, and Microsoft Windows Server 2012 with NTFS and ReFS file systems. Our testing compared out-of-the-box configurations for each operating system, as well as tuned configurations optimized for better performance, to demonstrate how a few simple adjustments can elevate I/O performance of a file system. We found that file systems available with Red Hat Enterprise Linux 6 delivered better I/O performance than those shipped with Windows Server 2012, in both out-of- the-box and optimized configurations. With I/O performance playing such a critical role in most business applications, selecting the right file system and operating system combination is critical to help you achieve your hardware’s maximum potential. APRIL 2013 A PRINCIPLED TECHNOLOGIES TEST REPORT Commissioned by Red Hat, Inc. About file system and platform configurations While you can use IOzone to gauge disk performance, we concentrated on the file system performance of two operating systems (OSs): Red Hat Enterprise Linux 6, where we examined the ext4 and XFS file systems, and Microsoft Windows Server 2012 Datacenter Edition, where we examined NTFS and ReFS file systems. -
Silicon Graphics, Inc. Scalable Filesystems XFS & CXFS
Silicon Graphics, Inc. Scalable Filesystems XFS & CXFS Presented by: Yingping Lu January 31, 2007 Outline • XFS Overview •XFS Architecture • XFS Fundamental Data Structure – Extent list –B+Tree – Inode • XFS Filesystem On-Disk Layout • XFS Directory Structure • CXFS: shared file system ||January 31, 2007 Page 2 XFS: A World-Class File System –Scalable • Full 64 bit support • Dynamic allocation of metadata space • Scalable structures and algorithms –Fast • Fast metadata speeds • High bandwidths • High transaction rates –Reliable • Field proven • Log/Journal ||January 31, 2007 Page 3 Scalable –Full 64 bit support • Large Filesystem – 18,446,744,073,709,551,615 = 264-1 = 18 million TB (exabytes) • Large Files – 9,223,372,036,854,775,807 = 263-1 = 9 million TB (exabytes) – Dynamic allocation of metadata space • Inode size configurable, inode space allocated dynamically • Unlimited number of files (constrained by storage space) – Scalable structures and algorithms (B-Trees) • Performance is not an issue with large numbers of files and directories ||January 31, 2007 Page 4 Fast –Fast metadata speeds • B-Trees everywhere (Nearly all lists of metadata information) – Directory contents – Metadata free lists – Extent lists within file – High bandwidths (Storage: RM6700) • 7.32 GB/s on one filesystem (32p Origin2000, 897 FC disks) • >4 GB/s in one file (same Origin, 704 FC disks) • Large extents (4 KB to 4 GB) • Request parallelism (multiple AGs) • Delayed allocation, Read ahead/Write behind – High transaction rates: 92,423 IOPS (Storage: TP9700) -
CXFSTM Administration Guide for SGI® Infinitestorage
CXFSTM Administration Guide for SGI® InfiniteStorage 007–4016–025 CONTRIBUTORS Written by Lori Johnson Illustrated by Chrystie Danzer Engineering contributions to the book by Vladmir Apostolov, Rich Altmaier, Neil Bannister, François Barbou des Places, Ken Beck, Felix Blyakher, Laurie Costello, Mark Cruciani, Rupak Das, Alex Elder, Dave Ellis, Brian Gaffey, Philippe Gregoire, Gary Hagensen, Ryan Hankins, George Hyman, Dean Jansa, Erik Jacobson, John Keller, Dennis Kender, Bob Kierski, Chris Kirby, Ted Kline, Dan Knappe, Kent Koeninger, Linda Lait, Bob LaPreze, Jinglei Li, Yingping Lu, Steve Lord, Aaron Mantel, Troy McCorkell, LaNet Merrill, Terry Merth, Jim Nead, Nate Pearlstein, Bryce Petty, Dave Pulido, Alain Renaud, John Relph, Elaine Robinson, Dean Roehrich, Eric Sandeen, Yui Sakazume, Wesley Smith, Kerm Steffenhagen, Paddy Sreenivasan, Roger Strassburg, Andy Tran, Rebecca Underwood, Connie Woodward, Michelle Webster, Geoffrey Wehrman, Sammy Wilborn COPYRIGHT © 1999–2007 SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of SGI. LIMITED RIGHTS LEGEND The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond -
Filesystem Considerations for Embedded Devices ELC2015 03/25/15
Filesystem considerations for embedded devices ELC2015 03/25/15 Tristan Lelong Senior embedded software engineer Filesystem considerations ABSTRACT The goal of this presentation is to answer a question asked by several customers: which filesystem should you use within your embedded design’s eMMC/SDCard? These storage devices use a standard block interface, compatible with traditional filesystems, but constraints are not those of desktop PC environments. EXT2/3/4, BTRFS, F2FS are the first of many solutions which come to mind, but how do they all compare? Typical queries include performance, longevity, tools availability, support, and power loss robustness. This presentation will not dive into implementation details but will instead summarize provided answers with the help of various figures and meaningful test results. 2 TABLE OF CONTENTS 1. Introduction 2. Block devices 3. Available filesystems 4. Performances 5. Tools 6. Reliability 7. Conclusion Filesystem considerations ABOUT THE AUTHOR • Tristan Lelong • Embedded software engineer @ Adeneo Embedded • French, living in the Pacific northwest • Embedded software, free software, and Linux kernel enthusiast. 4 Introduction Filesystem considerations Introduction INTRODUCTION More and more embedded designs rely on smart memory chips rather than bare NAND or NOR. This presentation will start by describing: • Some context to help understand the differences between NAND and MMC • Some typical requirements found in embedded devices designs • Potential filesystems to use on MMC devices 6 Filesystem considerations Introduction INTRODUCTION Focus will then move to block filesystems. How they are supported, what feature do they advertise. To help understand how they compare, we will present some benchmarks and comparisons regarding: • Tools • Reliability • Performances 7 Block devices Filesystem considerations Block devices MMC, EMMC, SD CARD Vocabulary: • MMC: MultiMediaCard is a memory card unveiled in 1997 by SanDisk and Siemens based on NAND flash memory. -
Compatibility Matrix for CTE Agent with Data Security Manager Release 7.0.0 Document Version 15 January 19, 2021 Contents
Compatibility Matrix for CTE Agent with Data Security Manager Release 7.0.0 Document Version 15 January 19, 2021 Contents Rebranding Announcement 6 CTE Agent for Linux 6 Interoperability 6 Table 1: Linux Interoperability with Third Party Applications 6 ESG (Efficient Storage GuardPoint) Support 7 Table 2: Efficient Storage GuardPoint Support 7 Linux Agent Raw Device Support Matrix 8 Red Hat, CentOS, and OEL non-UEK 6.10 Raw Device Support 8 Table 3: Red Hat 6.10 | CentOS 6.10 | OEL non-UEK 6.10 (x86_64)3 8 Red Hat, CentOS, and OEL non-UEK 7.5-7.9 Raw Device Support 9 Table 4: Red Hat 7.5-7.9 | CentOS 7.5-7.8 | OEL non-UEK 7.5-7.8 (x86_64)1,2 9 Red Hat, CentOS, and OEL non-UEK 8 Raw Device Support 9 Table 5: Red Hat 8.0-8.2 | CentOS 8.0-8.2 | OEL non-UEK 8.0-8.2 (x86_64)1,2 9 SLES 12 Raw Device Support 10 Table 6: SLES 12 SP3, SLES 12 SP4, and SLES 12 SP5 (x86_64)2 10 SLES 15 Raw Device Support 10 Table 7: SLES 15, SLES 15 SP1, and SLES 15 SP2 (x86_64) 10 Redhat 6.10/7.5 ACFS Support with Secvm 11 Table 8: Oracle ACFS/Secvm support on Redhat 6.10/7.5 (x86_64) 11 Table 9: Oracle ACFS/Secvm Stack with Red Hat 6.10/7.5 (x86_64) 11 Linux Agent File System Support Matrix 12 Red Hat, CentOS, and OEL non-UEK 6. 10 File System Support 12 Table 10: Red Hat 6.10 | CentOS 6.10 | OEL non-UEK 6.10 (x86_64)1,3 12 LDT Feature for Red Hat, CentOS, and OEL non-UEK 6.10 File System Support 13 Table 11: Red Hat 6.10 | CentOS 6.10 | OEL non-UEK 6.10 (x86_64)1 13 Red Hat, CentOS, and OEL non-UEK 7.5 - 7.9 File System Support 14 Table 12: Red Hat 7.5-7.9 | CentOS -
Xfs: a Wide Area Mass Storage File System
xFS: A Wide Area Mass Storage File System Randolph Y. Wang and Thomas E. Anderson frywang,[email protected] erkeley.edu Computer Science Division University of California Berkeley, CA 94720 Abstract Scalability : The central le server mo del breaks down when there can b e: The current generation of le systems are inadequate thousands of clients, in facing the new technological challenges of wide area terabytes of total client caches for the servers networks and massive storage. xFS is a prototyp e le to keep track of, system we are developing to explore the issues brought billions of les, and ab out by these technological advances. xFS adapts p etabytes of total storage. many of the techniques used in the eld of high p er- Availability : As le systems are made more scalable, formance multipro cessor design. It organizes hosts into allowing larger groups of clients and servers to work a hierarchical structure so lo cality within clusters of together, it b ecomes more likely at any given time workstations can b e b etter exploited. By using an that some clients and servers will b e unable to com- invalidation-based write back cache coherence proto col, municate. xFS minimizes network usage. It exploits the le system Existing distributed le systems were originally de- naming structure to reduce cache coherence state. xFS signed for lo cal area networks and disks as the b ottom also integrates di erent storage technologies in a uni- layer of the storage hierarchy. They are inadequate in form manner. Due to its intelligent use of lo cal hosts facing the challenges of wide area networks and massive and lo cal storage, we exp ect xFS to achieve b etter p er- storage. -
Scaling Source Control for the Next Generation of Game Development by Mike Sundy & Tobias Roberts Perforce User's Conference May 2007, Las Vegas
Scaling Source Control for the Next Generation of Game Development by Mike Sundy & Tobias Roberts Perforce User's Conference May 2007, Las Vegas Introduction: This document intends to show performance differences between various Windows and Linux Perforce server configurations. About the Authors Tobias Roberts is the Studio IT Architect for the Electronic Arts Redwood Shores (EARS) and Sims Studios. He has been focused on server performance and studio architecture for the past nine years. E-mail: [email protected]. Mike Sundy is the Senior Perforce Administrator for the EARS/Sims Studios. He has over eleven years of version control administration experience and has specialized in Perforce for the past five years. E-mail: [email protected] or [email protected] Installation Metrics At Electronic Arts, we check in art binary data in addition to code. There are typically a much greater number of data assets compared to code. 90% of files we store in Perforce are binary, the other 10% are code. Some of our servers have upwards of 1200 users, 6.3 million files, 600,000 changelists, and a 80 GB db.have. Oldest server has 7 years of P4 history. EA is primarily a Windows-based development shop, with upwards of 90% of client desktops running Windows. EA has over 4,000 Perforce users and 90+ Perforce servers scattered across dozens of worldwide studios. Our largest server has 1.5 TB of data. We use 5 TB of Perforce RCS storage total at the EARS/Sims studios. The EARS/Sims studios have 10 Perforce servers and approximately 1,000 users. -
Comparative Analysis of Distributed and Parallel File Systems' Internal Techniques
Comparative Analysis of Distributed and Parallel File Systems’ Internal Techniques Viacheslav Dubeyko Content 1 TERMINOLOGY AND ABBREVIATIONS ................................................................................ 4 2 INTRODUCTION......................................................................................................................... 5 3 COMPARATIVE ANALYSIS METHODOLOGY ....................................................................... 5 4 FILE SYSTEM FEATURES CLASSIFICATION ........................................................................ 5 4.1 Distributed File Systems ............................................................................................................................ 6 4.1.1 HDFS ..................................................................................................................................................... 6 4.1.2 GFS (Google File System) ....................................................................................................................... 7 4.1.3 InterMezzo ............................................................................................................................................ 9 4.1.4 CodA .................................................................................................................................................... 10 4.1.5 Ceph.................................................................................................................................................... 12 4.1.6 DDFS ..................................................................................................................................................