A NAZARIANS-ARMAVIL and others Insulin resistance in novel 220:1 13–24 Research POMC/GFP cell lines Cellular insulin resistance disrupts hypothalamic mHypoA-POMC/GFP neuronal signaling pathways Anaies Nazarians-Armavil1, Jennifer A Chalmers1, Claire B Lee1, Wenqing Ye1 and Denise D Belsham1,2,3,4 Correspondence Departments of 1Physiology, 2Obstetrics and Gynaecology and 3Medicine, University of Toronto, Medical Sciences should be addressed Building 3344, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8 to D D Belsham 4Division of Cellular and Molecular Biology, Toronto Genera Hospital Research Institute, University Health Network, Email Toronto, Ontario, Canada M5S 1A8
[email protected] Abstract POMC neurons play a central role in the maintenance of whole-body energy homeostasis. Key Words This balance requires proper regulation of POMC neurons by metabolic hormones, such as " proopiomelanocortin insulin. However, the heterogeneous cellular population of the intact hypothalamus " a-melanocortin-synthesizing presents challenges for examining the molecular mechanisms underlying the potent hormone anorexigenic effects of POMC neurons, and there is currently a complete lack of mature " insulin POMC neuronal cell models for study. To this end, we have generated novel, immortalized, " neuroendocrinology adult-derived POMC-expressing/a-MSH-secreting cell models, mHypoA-POMC/GFP lines 1–4, " insulin resistance representing the fluorescence-activated cell-sorted POMC population from primary POMC- " cell biology " hypothalamus Journal of Endocrinology eGFP mouse hypothalamus. The presence of Pomc mRNA in these cell lines was confirmed, and a-MSH was detected via immunofluorescence. a-MSH secretion in the mHypoA- POMC/GFP-1 was found to increase in response to 10 ng/ml ciliary neurotrophic factor (CNTF) or 10 nM insulin as determined by enzyme immunoassay.