Isoprenylcysteine Carboxylmethyltransferase Regulates Mitochondrial Respiration and Cancer Cell Metabolism

Total Page:16

File Type:pdf, Size:1020Kb

Isoprenylcysteine Carboxylmethyltransferase Regulates Mitochondrial Respiration and Cancer Cell Metabolism Oncogene (2015) 34, 3296–3304 © 2015 Macmillan Publishers Limited All rights reserved 0950-9232/15 www.nature.com/onc ORIGINAL ARTICLE Isoprenylcysteine carboxylmethyltransferase regulates mitochondrial respiration and cancer cell metabolism JT Teh1,5, WL Zhu1,2,5, OR Ilkayeva3,YLi4, J Gooding3, PJ Casey1, SA Summers4, CB Newgard3 and M Wang1,2 Isoprenylcysteine carboxylmethyltransferase (Icmt) catalyzes the last of the three-step posttranslational protein prenylation process for the so-called CaaX proteins, which includes many signaling proteins, such as most small GTPases. Despite extensive studies on Icmt and its regulation of cell functions, the mechanisms of much of the impact of Icmt on cellular functions remain unclear. Our recent studies demonstrated that suppression of Icmt results in induction of autophagy, inhibition of cell growth and inhibition of proliferation in various cancer cell types, prompting this investigation of potential metabolic regulation by Icmt. We report here the findings that Icmt inhibition reduces the function of mitochondrial oxidative phosphorylation in multiple cancer cell lines. In-depth oximetry analysis demonstrated that functions of mitochondrial complex I, II and III are subject to Icmt regulation. Consistently, Icmt inhibition decreased cellular ATP and depleted critical tricarboxylic acid cycle metabolites, leading to suppression of cell anabolism and growth, and marked autophagy. Several different approaches demonstrated that the impact of Icmt inhibition on cell proliferation and viability was largely mediated by its effect on mitochondrial respiration. This previously unappreciated function of Icmt, which can be therapeutically exploited, likely has a significant role in the impact of Icmt on tumorigenic processes. Oncogene (2015) 34, 3296–3304; doi:10.1038/onc.2014.260; published online 25 August 2014 INTRODUCTION These phenotypes suggested to us that the cells in which Icmt is Prenylation is a three-step posttranslational lipid modification inhibited might be metabolically compromised, as impairment of process in the maturation of a number of proteins involved in cell ATP production induces a starvation response leading to similar regulation. The majority of prenylated proteins belong to a group presentations. We therefore investigated the impact of Icmt termed ‘CaaX proteins’ that are defined by a specific C-terminal inhibition on cell respiration, energy status and metabolism. Our amino-acid sequence ‘cysteine-aliphatic-aliphatic-any’, serving as findings demonstrate that Icmt has a previously unappreciated fi the consensus sequence for their modification. Following role in cellular metabolism, which account signi cantly for its isoprenoid addition on the cysteine and proteolytic removal of impact on growth and proliferation and its role in tumorigenesis. the –aaX sequence, the final step is methylation of the C-terminal prenylcysteine by isoprenylcysteine carboxylmethyltransferase (Icmt).1,2 The prenylation process is required for proper function RESULTS of the modified protein, either as a mediator of specific subcellular Icmt inhibition leads to AMPK activation, a result of energy localization, a determinant for specific protein–protein interac- depletion 3–5 tions, or protein stability. Following the discovery that K-Ras We have shown previously that treatment of multiple cancer cell is significantly mislocalized in cells that lack the Icmt types, including PC3 prostate and MDA-MB-231 breast cancer 4 methyltransferase, and that the abilities of K-Ras to transform cells, with a small-molecule Icmt inhibitor termed cysmethynil led fibroblasts and promote myeloproliferative disease and lung to inhibition of the mammalian target of rapamycin (mTOR) and cancer are dependent on Icmt,6,7 this enzyme has gained elevated autophagy.8,9 This Icmt inhibitor-induced autophagy attention as a potential cancer target. However, it is increasingly phenotype was extensively investigated in our prior studies, which recognized that the impact of Icmt-catalyzed CAAX protein demonstrated consistent increased LC3 I to LC3 II conversion and methylation is not limited to processes mediated by Ras; this increased autophagy flux measured by multiple modalities, such carboxylmethylation also affects basic cell functions mediated by as baflomycin cotreatment and colocalization of RFP-LC3- and CaaX proteins other than Ras.2 Unravelling the roles of Icmt in GFP-LC3-positive vesicles. However, the mechanism through regulating CaaX protein-driven processes is fundamentally which Icmt inhibition impacts this important biologic response important. was unresolved. To investigate the impact of cysmethynil Pharmacologic or genetic suppression of Icmt results in slow treatment upstream of mTOR, we assessed the activation status cell growth, cell cycle arrest and excessive autophagy, of possible regulators including AMP-dependent kinase (AMPK). which account for the anticancer efficacies of Icmt inhibition.8,9 AMPK activity responds to ATP levels and hence provides a direct 1Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, Singapore, Singapore; 2Department of Biochemistry, National University of Singapore, Singapore, Singapore; 3Sarah W Stedman Nutrition and Metabolism Center, and Duke Institute of Molecular Physiology, Duke University Medical Center, Durham, NC, USA and 4Program in Cardiovascular and Metabolic Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore. Correspondence: Dr M Wang, Program in Cancer and Stem Cell Biology, Duke-NUS Graduate Medical School, 8 College Road, Singapore 169857, Singapore. E-mail: [email protected] 5These authors contributed equally to this work. Received 4 February 2014; revised 9 June 2014; accepted 3 July 2014; published online 25 August 2014 Icmt regulates mitochondrial respiration JT Teh et al 3297 gauge of cellular energy status. Once activated, AMPK suppresses cysmethynil-treated PC3 cells (Figure 1d). Although ATP is anabolic activities, activates fuel catabolism and promotes considered the major energy currency in cells, it is important to autophagy to increase energy stores.10,11 measure the other nucleoside triphosphates in the evaluation of Indeed, the treatment of PC3 cells with cysmethynil elevated cell energy status, as there exists a dynamic balance between levels of phosphorylated AMPK in a dose-dependent manner different NTPs, energy currency molecules.12,13 The reduction of (Figure 1a). We also observed increased inhibitory phosphoryla- NTPs in cysmethynil-treated cells suggests that AMPK activation is tion of acetyl-coA carboxylase (ACC) at serine 79, an AMPK likely the result of energy deficiency. It is worth noting that the phosphorylation site, consistent with increased AMPK activity. energy deplete state and associated signaling changes induced by Aligned with our previous reports of autophagy induction, there Icmt inhibition is not limited to PC3 cells; MDA-MB-231 cells was also a dose-dependent accumulation of the autophagy responded in a similar manner (Supplementary Figure 1), marker LC3 II, which paralleled the response of AMPK activation suggesting a general regulatory mechanism by Icmt in cell energy (Figure 1a). Similar phenotype of elevated pAMPK level was metabolism. observed upon small interfering RNA (siRNA) suppression of Icmt expression (Figure 1b). Further, we subjected wild-type mouse Cysmethynil treatment reduces mitochondrial respiratory capacity embryonic fibroblast (MEF) cells and Icmt-null MEF cells to To investigate the cause of cysmethynil-induced energy depletion, cysmethynil treatment. While Icmt-null MEFs exhibit higher basal we studied mitochondrial function in the cells. Cysmethynil- pAMPK and LC3 II levels, robust increases in pAMPK and LC3 II treated cells exhibit markedly reduced basal/resting-respiration levels are only observed in the wild-type MEFs upon cysmethynil rates (Figure 2a). In addition, cysmethynil-treated cells exhibited a treatment (Figure 1c). These genetic suppression studies provided shallower drop in oxygen consumption rate (OCR) upon the compelling evidence that effect of cysmethynil on AMPK addition of oligomycin, an ATPase inhibitor, in comparison with activation and autophagy is Icmt dependent. the untreated cells (Figure 2a), suggesting attenuated ATP The parallel elevation of autophagy and activation of AMPK are production before oligomycin addition. This result is consistent indications that Icmt-induced autophagy is mediated by AMPK with the NTP quantification study and the phenotype of AMPK activation, which can be either a direct response to cellular energy activation shown above. Trifluorocarbonylcyanide phenylhydra- status or a result of modulation by upstream molecules. In the zone (FCCP), uncoupling the electron transport system from investigation for possible etiology of Icmt-inhibition-mediated oxidative phosphorylation, is often used to assess the maximal AMPK activation, we analyzed the levels of nucleotide tripho- respiratory capacity of cells. Cysmethynil-treated cells displayed sphates (NTPs) in cysmethynil-treated and control cells. Significant lower FCCP-induced respiration in comparison with untreated decreases in levels of ATP, GTP, CTP and UTP were observed in cells (Figure 2a), indicative of reduction in the maximal respiratory capacity and potential rate for ATP production. Last, the differences in respiration between cysmethynil-treated and control cells are not likely from non-mitochondrial oxygen PC3 1.2 fi Cysm consumption, as no signi cant differences
Recommended publications
  • Legionella Genus Genome Provide Multiple, Independent Combinations for Replication in Human Cells
    Supplemental Material More than 18,000 effectors in the Legionella genus genome provide multiple, independent combinations for replication in human cells Laura Gomez-Valero1,2, Christophe Rusniok1,2, Danielle Carson3, Sonia Mondino1,2, Ana Elena Pérez-Cobas1,2, Monica Rolando1,2, Shivani Pasricha4, Sandra Reuter5+, Jasmin Demirtas1,2, Johannes Crumbach1,2, Stephane Descorps-Declere6, Elizabeth L. Hartland4,7,8, Sophie Jarraud9, Gordon Dougan5, Gunnar N. Schroeder3,10, Gad Frankel3, and Carmen Buchrieser1,2,* Table S1: Legionella strains analyzed in the present study Table S2: Type IV secretion systems predicted in the genomes analyzed Table S3: Eukaryotic like domains identified in the Legionella proteins analyzed Table S4: Small GTPases domains detected in the genus Legionella as defined in the CDD ncbi domain database Table S5: Eukaryotic like proteins detected in the Legionella genomes analyzed in this study Table S6: Aminoacid identity of the Dot/Icm components in Legionella species with respect to orthologous proteins in L. pneumophila Paris Table S7: Distribution of seventeen highly conserved Dot/Icm secreted substrates Table S8: Comparison of the effector reperotoire among strains of the same Legionella species Table S9. Number of Dot/Icm secreted proteins predicted in each strain analyzed Table S10: Replication capacity of the different Legionella species analyzed in this study and collection of literature data on Legionella replication Table S11: Orthologous table for all genes of the 80 analyzed strains based on PanOCT. The orthologoss where defined with the program PanOCT using the parameters previously indicated in material and methods.) Figure S1: Distribution of the genes predicted to encode for the biosynthesis of flagella among all Legionella species.
    [Show full text]
  • A Shunt Pathway Limits the Caax Processing of Hsp40 Ydj1p and Regulates Ydj1p-Dependent
    1 TITLE 2 A shunt pathway limits the CaaX processing of Hsp40 Ydj1p and regulates Ydj1p-dependent 3 phenotypes 4 Emily R. Hildebrandt, Michael Cheng, Peng Zhao, June H. Kim, Lance Wells, and Walter K. 5 Schmidt* 6 Department of Biochemistry and Molecular Biology, The University of Georgia, Athens, GA 7 30602, USA 8 *corresponding author: Walter K. Schmidt, 706-583-8241 (phone), 706-542-1738 (fax), 9 [email protected] (email) 10 11 COMPETING INTERESTS: none 12 13 Key words: CaaX, isoprenylation, HSP40, chaperone, thermotolerance 14 15 ABBREVIATIONS 16 polyacrylamide gel electrophoresis (PAGE) 17 sodium dodecyl sulfate (SDS) 18 heat shock protein 40 (Hsp40) 19 20 ABSTRACT 21 The modifications occurring to CaaX proteins have largely been established using few reporter 22 molecules (e.g. Ras, yeast a-factor mating pheromone). These proteins undergo three 23 coordinated COOH-terminal events: isoprenylation of the cysteine, proteolytic removal of aaX, 24 and COOH-terminal methylation. Here, we investigated the coupling of these modifications in 25 the context of the yeast Ydj1p chaperone. We provide genetic, biochemical, and biophysical 26 evidence that the Ydj1p CaaX motif is isoprenylated but not cleaved and carboxylmethylated. 27 Moreover, we demonstrate that Ydj1p-dependent thermotolerance and Ydj1p localization are 28 perturbed when alternative CaaX motifs are transplanted onto Ydj1p. The abnormal 29 phenotypes revert to normal when post-isoprenylation events are genetically interrupted. Our 30 findings indicate that proper Ydj1p function requires an isoprenylatable CaaX motif that is 31 resistant to post-isoprenylation events. These results expand on the complexity of protein 32 isoprenylation and highlight the impact of post-isoprenylation events in regulating the function of 33 Ydj1p and perhaps other CaaX proteins.
    [Show full text]
  • A Small-Molecule Inhibitor of Isoprenylcysteine Carboxyl Methyltransferase with Antitumor Activity in Cancer Cells
    A small-molecule inhibitor of isoprenylcysteine carboxyl methyltransferase with antitumor activity in cancer cells Ann M. Winter-Vann*, Rudi A. Baron*, Waihay Wong*, June dela Cruz*, John D. York*, David M. Gooden†, Martin O. Bergo‡, Stephen G. Young§, Eric J. Toone†, and Patrick J. Casey*¶ Departments of *Pharmacology and Cancer Biology and †Chemistry, Duke University Medical Center, Durham, NC 27710; ‡Department of Internal Medicine, Sahlgrenska University Hospital, S-413 45 Gothenburg, Sweden; and §Department of Medicine, University of California, Los Angeles, CA 90095 Edited by John A. Glomset, University of Washington, Seattle, WA, and approved February 7, 2005 (received for review November 1, 2004) Many key regulatory proteins, including members of the Ras family proteins have also been implicated in oncogenesis and tumor of GTPases, are modified at their C terminus by a process termed progression, and these proteins most likely require processing via prenylation. This processing is initiated by the addition of an the prenylation pathway for function (2, 15). isoprenoid lipid, and the proteins are further modified by a pro- Both the membrane targeting and the transforming abilities of teolytic event and methylation of the C-terminal prenylcysteine. Ras require processing through the prenylation pathway (16, 17). Although the biological consequences of prenylation have been For this reason, the protein prenyltransferases, most notably characterized extensively, the contributions of prenylcysteine FTase, have been targets of major drug discovery programs for methylation to the functions of the modified proteins are not well the last decade (18, 19). Presently, several FTase inhibitors are understood. This reaction is catalyzed by the enzyme isoprenyl- being evaluated in clinical trials (15, 19).
    [Show full text]
  • Onc2016508.Pdf
    OPEN Oncogene (2017) 36, 3934–3942 www.nature.com/onc SHORT COMMUNICATION Isoprenylcysteine carboxylmethyltransferase is critical for malignant transformation and tumor maintenance by all RAS isoforms HY Lau1, J Tang1, PJ Casey1 and M Wang1,2 Despite extensive effort, there has been limited progress in the development of direct RAS inhibitors. Targeting isoprenylcysteine carboxylmethyltransferase (ICMT), a unique enzyme of RAS post-translational modification, represents a promising strategy to inhibit RAS function. However, there lacks direct genetic evidence on the role of ICMT in RAS-driven human cancer initiation and maintenance. Using CRISPR/Cas9 genome editing, we have created Icmt loss-of-function isogenic cell lines for both RAS- transformed human mammary epithelial cells (HME1) and human cancer cell lines MiaPaca-2 and MDA-MB-231 containing naturally occurring mutant KRAS. In both in vitro and in vivo tumorigenesis studies, Icmt loss-of-function abolishes the tumor initiation ability of all major isoforms of mutant RAS in HME1 cells, and the tumor maintenance capacity of MiaPaca-2 and MDA-MB-231 cells, establishing the critical role of ICMT in RAS-driven cancers. Oncogene (2017) 36, 3934–3942; doi:10.1038/onc.2016.508; published online 13 February 2017 INTRODUCTION driven transformation and maintenance. Another important Constitutively active mutations of RAS are the most common unanswered question in this field is whether ICMT inhibition driving mutations in human cancers,1,2 with up to 90% of invasive impacts tumorigenic processes driven by different RAS isoforms, pancreatic ductal adenocarcinomas harboring activating KRAS since most studies have been done on KRAS up to this point.
    [Show full text]
  • A Chemical Proteomic Approach to Investigate Rab Prenylation in Living Systems
    A chemical proteomic approach to investigate Rab prenylation in living systems By Alexandra Fay Helen Berry A thesis submitted to Imperial College London in candidature for the degree of Doctor of Philosophy of Imperial College. Department of Chemistry Imperial College London Exhibition Road London SW7 2AZ August 2012 Declaration of Originality I, Alexandra Fay Helen Berry, hereby declare that this thesis, and all the work presented in it, is my own and that it has been generated by me as the result of my own original research, unless otherwise stated. 2 Abstract Protein prenylation is an important post-translational modification that occurs in all eukaryotes; defects in the prenylation machinery can lead to toxicity or pathogenesis. Prenylation is the modification of a protein with a farnesyl or geranylgeranyl isoprenoid, and it facilitates protein- membrane and protein-protein interactions. Proteins of the Ras superfamily of small GTPases are almost all prenylated and of these the Rab family of proteins forms the largest group. Rab proteins are geranylgeranylated with up to two geranylgeranyl groups by the enzyme Rab geranylgeranyltransferase (RGGT). Prenylation of Rabs allows them to locate to the correct intracellular membranes and carry out their roles in vesicle trafficking. Traditional methods for probing prenylation involve the use of tritiated geranylgeranyl pyrophosphate which is hazardous, has lengthy detection times, and is insufficiently sensitive. The work described in this thesis developed systems for labelling Rabs and other geranylgeranylated proteins using a technique known as tagging-by-substrate, enabling rapid analysis of defective Rab prenylation in cells and tissues. An azide analogue of the geranylgeranyl pyrophosphate substrate of RGGT (AzGGpp) was applied for in vitro prenylation of Rabs by recombinant enzyme.
    [Show full text]
  • C-Terminal Proteolysis of Prenylated Proteins in Trypanosomatids And
    Molecular & Biochemical Parasitology 153 (2007) 115–124 C-terminal proteolysis of prenylated proteins in trypanosomatids and RNA interference of enzymes required for the post-translational processing pathway of farnesylated proteins John R. Gillespie a, Kohei Yokoyama b,∗, Karen Lu a, Richard T. Eastman c, James G. Bollinger b,d, Wesley C. Van Voorhis a,c, Michael H. Gelb b,d, Frederick S. Buckner a,∗∗ a Department of Medicine, University of Washington, 1959 N.E. Pacific St., Seattle, WA 98195, USA b Department of Chemistry, University of Washington, Seattle, WA 98195, USA c Department of Pathobiology, University of Washington, Seattle, Washington 98195, USA d Department of Biochemistry, University of Washington, Seattle, Washington 98195, USA Received 22 December 2006; received in revised form 17 February 2007; accepted 26 February 2007 Available online 1 March 2007 Abstract The C-terminal “CaaX”-motif-containing proteins usually undergo three sequential post-translational processing steps: (1) attachment of a prenyl group to the cysteine residue; (2) proteolytic removal of the last three amino acids “aaX”; (3) methyl esterification of the exposed ␣-carboxyl group of the prenyl-cysteine residue. The Trypanosoma brucei and Leishmania major Ras converting enzyme 1 (RCE1) orthologs of 302 and 285 amino acids-proteins, respectively, have only 13–20% sequence identity to those from other species but contain the critical residues for the activity found in other orthologs. The Trypanosoma brucei a-factor converting enzyme 1 (AFC1) ortholog consists of 427 amino acids with 29–33% sequence identity to those of other species and contains the consensus HExxH zinc-binding motif. The trypanosomatid RCE1 and AFC1 orthologs contain predicted transmembrane regions like other species.
    [Show full text]
  • Geranylgeranylated Proteins Are Involved in the Regulation of Myeloma Cell Growth
    Vol. 11, 429–439, January 15, 2005 Clinical Cancer Research 429 Geranylgeranylated Proteins are Involved in the Regulation of Myeloma Cell Growth Niels W.C.J. van de Donk,1 Henk M. Lokhorst,3 INTRODUCTION 2 1 Evert H.J. Nijhuis, Marloes M.J. Kamphuis, and Multiple myeloma is characterized by the accumulation Andries C. Bloem1 of slowly proliferating monoclonal plasma cells in the bone Departments of 1Immunology, 2Pulmonary Diseases, and 3Hematology, marrow. Via the production of growth factors, such as University Medical Center Utrecht, Utrecht, the Netherlands interleukin-6 (IL-6) and insulin-like growth factor-I (1–4), and cellular interactions (5, 6), the local bone marrow microenvironment sustains tumor growth and increases the ABSTRACT resistance of tumor cells for apoptosis-inducing signals (7). Purpose: Prenylation is essential for membrane locali- Multiple signaling pathways are involved in the regulation of zation and participation of proteins in various signaling growth and survival of myeloma tumor cells. Activation of the pathways. This study examined the role of farnesylated and Janus-activated kinase-signal transducers and activators of geranylgeranylated proteins in the regulation of myeloma transcription (8), nuclear factor-nB (9–11), and phosphatidy- cell proliferation. linositol 3V-kinase (PI-3K; refs. 4, 12, 13) pathways has been Experimental Design: Antiproliferative and apoptotic implicated in the protection against apoptosis, whereas effects of various modulators of farnesylated and geranyl- activation of the PI-3K (4, 12, 13), nuclear factor-nB (10, 11), geranylated proteins were investigated in myeloma cells. and mitogen-activated protein kinase pathways (14) induces Results: Depletion of geranylgeranylpyrophosphate proliferation in myeloma cell lines.
    [Show full text]
  • Genome-Wide Association and Gene Enrichment Analyses of Meat Sensory Traits in a Crossbred Brahman-Angus
    Proceedings of the World Congress on Genetics Applied to Livestock Production, 11. 124 Genome-wide association and gene enrichment analyses of meat tenderness in an Angus-Brahman cattle population J.D. Leal-Gutíerrez1, M.A. Elzo1, D. Johnson1 & R.G. Mateescu1 1 University of Florida, Department of Animal Sciences, 2250 Shealy Dr, 32608 Gainesville, Florida, United States. [email protected] Summary The objective of this study was to identify genomic regions associated with meat tenderness related traits using a whole-genome scan approach followed by a gene enrichment analysis. Warner-Bratzler shear force (WBSF) was measured on 673 steaks, and tenderness and connective tissue were assessed by a sensory panel on 496 steaks. Animals belong to the multibreed Angus-Brahman herd from University of Florida and range from 100% Angus to 100% Brahman. All animals were genotyped with the Bovine GGP F250 array. Gene enrichment was identified in two pathways; the first pathway is involved in negative regulation of transcription from RNA polymerase II, and the second pathway groups several cellular component of the endoplasmic reticulum membrane. Keywords: tenderness, gene enrichment, regulation of transcription, cell growth, cell proliferation Introduction Identification of quantitative trait loci (QTL) for any complex trait, including meat tenderness, is the first most important step in the process of understanding the genetic architecture underlying the phenotype. Given a large enough population and a dense coverage of the genome, a genome-wide association study (GWAS) is usually successful in uncovering major genes and QTLs with large and medium effect on these type of traits. Several GWA studies on Bos indicus (Magalhães et al., 2016; Tizioto et al., 2013) or crossbred beef cattle breeds (Bolormaa et al., 2011b; Hulsman Hanna et al., 2014; Lu et al., 2013) were successful at identifying QTL for meat tenderness; and most of them include the traditional candidate genes µ-calpain and calpastatin.
    [Show full text]
  • Nucleic Acids Worksheet Answers
    Nucleic Acids Worksheet Answers andElamite rotted Carlo Wilmar would unrounds floatingly. while Fouled metrical Barnabe Bengt delay trap fearsomelyher aircraftman or confesses bedward longestand laik when unpardonably. Saunderson is monodical. Unparliamentary The hereditary information of a cell, teaching biology, the alleles for hair color and the alleles for eye color in humans are not inherited together. You have already flagged this document. During endocytosis, cut the pieces apart Each student correctly match the term to its definition or to an example of the term. Describe three characteristics of DNA that are well represented by your model and three that are not. Does your model have an approximately constant diameter? If they are working at home, forming strong covalent bonds between monomers of DNA. Your browsing activity is empty. Trigonometry Worksheets Sequencing Worksheets Geometry Worksheets Printable Math Worksheets Free Printable Geometry Book Triangle Worksheet Writing Mini Lessons Right. If you want to do some advance planning and have your kids take a DNA test, or butter? Introduction to Acids and Bases MAIN Idea Different models help describe the behavior of acids and bases. While located close together, it is first necessary to understand the symbols. This process is used for molecules that cannot readily diffuse through cell membranes, the more likely it is that the reaction will occur. Cells can be in one of three different osmotic states depending on their environment, and Py stands for pyrimidine. In both processes, a biochemist at Columbia University. RNA copies from DNA. Math trivia with key answer, water moves out of the cell, it ultimately did not fitthe data.
    [Show full text]
  • The Protein Lipidation and Its Analysis
    Triola, J Glycom Lipidom 2011, S:2 DOI: 10.4172/2153-0637.S2-001 Journal of Glycomics & Lipidomics Research Article Open Access The Protein Lipidation and its Analysis Gemma Triola Department of Chemical Biology, Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany Abstract Protein Lipidation is essential not only for membrane binding but also for the interaction with effectors and the regulation of signaling processes, thereby playing a key role in controlling protein localization and function. Cholesterylation, the attachment of the glycosylphosphatidylinositol anchor, as well as N-myristoylation, S-prenylation and S-acylation are among the most relevant protein lipidation processes. Little is still known about the significance of the high diversity in lipid modifications as well as the mechanism by which lipidation controls function and activity of the proteins. Although the development of new strategies to uncover these and other unexplored topics is in great demand, important advances have already been achieved during the last years in the analysis of protein lipidation. This review will highlight the most prominent lipid modifications encountered in proteins and will provide an overview of the existing methods for the analysis and identification of lipid modified proteins. Introduction new tools and strategies. As such, this review will highlight the most prominent lipid modifications encountered in proteins and will provide Biological cell membranes are typically formed by mixtures an overview of the existing methods for the analysis and identification of lipids and proteins. Whereas the major lipid components are of lipid modified proteins detailing their advantages and limitations. glycerophospholipids, cholesterol and sphingolipids, proteins located in the membrane can be divided in two main classes, integral proteins Types of Lipidation and associated proteins.
    [Show full text]
  • Post Translational Covalent Modification
    Post Translational Covalent Modification Which Bharat neigh so traverse that Harvey bats her extravert? Fescennine and hoar Mario chloridized her prayerlessness cartes underneath or payed unexclusively, is Berkie pushiest? Methodist Giraldo foredated beadily, he traffics his hippus very divergently. Analysis has been able of Wang Z, Zang C, Rosenfeld JA, et al. Like what you just read? These post translational covalent modification sites in mind, apoptosis induced by covalent histone in aggregates interfere with proteinopathies: enzymatic activation or from each other fields, stockli j obstet gynecol. Histones are phosphorylated mainly on serine, threonine, tyrosine as well as much less studied sites such as arginine, histidine and lysine. Not have also observed misfolding, jensen on local eye lens proteomics survey reveals aspects, histone lysine acetylation refers to fold in peptide. In vivo targeting of organic calcium sensors via genetically selected peptides. The gore effects featured in the video were from another mod that no longer exists on the workshop. Distribution, metabolism and function of dolichol and polyprenols. Your purchase has been completed. For the best results and optimal dosage accuracy, we recommend that you use our Lovemelanotan Peptide Calculator below, which can help you identify the proper ratios and dosage amounts for your skin type to ensure the best possible results. The symptoms these pups showed as they grew up also mimicked the symptoms seen in children who have experienced early trauma. Down arrows to advance ten seconds. Accessories suspension rear axles belt drive against target protein for metabolism, but require an unknown material aggregates grow by mass spectrometry based on how to share with.
    [Show full text]
  • Glycosylphosphatidylinositol-Anchored Proteins As Chaperones and Co-Receptors for FERONIA Receptor Kinase Signaling in Arabidops
    RESEARCH ARTICLE elifesciences.org Glycosylphosphatidylinositol-anchored proteins as chaperones and co-receptors for FERONIA receptor kinase signaling in Arabidopsis Chao Li1, Fang-Ling Yeh1†, Alice Y Cheung1,2,3*, Qiaohong Duan1, Daniel Kita1,2‡, Ming-Che Liu1,4, Jacob Maman1, Emily J Luu1, Brendan W Wu1§, Laura Gates1¶, Methun Jalal1, Amy Kwong1, Hunter Carpenter1, Hen-Ming Wu1,2* 1Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, United States; 2Molecular and Cell Biology Program, University of 3 *For correspondence: acheung@ Massachusetts, Amherst, United States; Plant Biology Graduate Program, University 4 biochem.umass.edu (AYC); of Massachusetts, Amherst, United States; Graduate Institute of Biotechnology, [email protected] National Chung Hsing University, Tai Chung, Taiwan (HMW) Present address: †Clinical Research Center, Chung Shan Medical University Hospital, Abstract The Arabidopsis receptor kinase FERONIA (FER) is a multifunctional regulator for Taichung, Taiwan; ‡Department plant growth and reproduction. Here we report that the female gametophyte-expressed of Vascular Biology, University of glycosylphosphatidylinositol-anchored protein (GPI-AP) LORELEI and the seedling-expressed Connecticut Health Center, LRE-like GPI-AP1 (LLG1) bind to the extracellular juxtamembrane region of FER and show that this Farmington, United States; interaction is pivotal for FER function. LLG1 interacts with FER in the endoplasmic reticulum and on § Department of Immunology, the cell surface, and loss
    [Show full text]