Fiber-Rich Barley Increases Butyric Acid-Producing Bacteria in the Human Gut Microbiota

Total Page:16

File Type:pdf, Size:1020Kb

Fiber-Rich Barley Increases Butyric Acid-Producing Bacteria in the Human Gut Microbiota H OH metabolites OH Article Fiber-Rich Barley Increases Butyric Acid-Producing Bacteria in the Human Gut Microbiota Shohei Akagawa 1 , Yuko Akagawa 1 , Yoko Nakai 1, Mitsuru Yamagishi 1, Sohsaku Yamanouchi 1, Takahisa Kimata 1, Kazushige Chino 2, Taiga Tamiya 3 , Masaki Hashiyada 4, Atsushi Akane 4 , Shoji Tsuji 1 and Kazunari Kaneko 1,* 1 Department of Pediatrics, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; [email protected] (S.A.); [email protected] (Y.A.); [email protected] (Y.N.); [email protected] (M.Y.); [email protected] (S.Y.); [email protected] (T.K.); [email protected] (S.T.) 2 Healthcare New Business Division, TEIJIN Limited, 3-2-1 Kasumigaseki, Tokyo 100-8585, Japan; [email protected] 3 Bio Palette Co., Ltd., 1-1 Rokkodai-cho, Kobe 650-0047, Japan; [email protected] 4 Department of Legal Medicine, Kansai Medical University, 2-5-1 Shinmachi, Hirakata 573-1010, Japan; [email protected] (M.H.); [email protected] (A.A.) * Correspondence: [email protected]; Tel.: +81-72-804-0101 Abstract: Butyric acid produced in the intestine by butyric acid-producing bacteria (BAPB) is known to suppress excessive inflammatory response and may prevent chronic disease development. We evaluated whether fiber-rich barley intake increases BAPB in the gut and concomitantly butyric acid in feces. Eighteen healthy adults received granola containing functional barley (BARLEYmax®) once daily for four weeks. Fecal DNA before intake, after intake, and one month after intake was analyzed Citation: Akagawa, S.; Akagawa, Y.; using 16S rRNA gene sequencing to assess microbial diversity, microbial composition at the order Nakai, Y.; Yamagishi, M.; level, and the proportion of BAPB. Fecal butyric acid concentration was also measured. There were Yamanouchi, S.; Kimata, T.; Chino, K.; Tamiya, T.; Hashiyada, M.; Akane, no significant differences in diversities and microbial composition between samples. The proportion A.; et al. Fiber-Rich Barley Increases of BAPB increased significantly after the intake (from 5.9% to 8.2%). However, one month after Butyric Acid-Producing Bacteria in stopping the intake, the proportion of BAPB returned to the original value (5.4%). Fecal butyric acid the Human Gut Microbiota. concentration increased significantly from 0.99 mg/g feces before intake to 1.43 mg/g after intake Metabolites 2021, 11, 559. https:// (p = 0.028), which decreased significantly to 0.87 mg/g after stopping intake (p = 0.008). As BAPB doi.org/10.3390/metabo11080559 produce butyric acid by degrading dietary fiber, functional barley may act as a prebiotic, increasing BAPB and consequently butyric acid in the intestine. Academic Editor: Cholsoon Jang Keywords: microbiota; butyric acid-producing bacteria; 16S rRNA gene sequencing; dietary fiber; prebiotics Received: 2 August 2021 Accepted: 19 August 2021 Published: 22 August 2021 1. Introduction Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in More than 100 trillion bacteria, including 1000 different species, form the gut mi- published maps and institutional affil- crobiota in the human intestine, greatly affecting human health [1]. Butyric acid, one of iations. the short chain fatty acids (SCFA) produced by butyric acid-producing bacteria (BAPB) (e.g., portion of Alistipes and Porphyromonas (order Bacteroidales); Clostridium, Eubacterium, Feacalibacterium, and Roseburia (order Clostridiales)) in the intestine, has garnered attention owing to its role in the maturation of regulatory T cells in the intestine, which suppress excessive immune responses [2,3]. A decrease in BAPB in the intestine and in fecal butyric Copyright: © 2021 by the authors. Licensee MDPI, Basel, Switzerland. acid concentration has been reported in patients with idiopathic nephrotic syndrome [4,5], This article is an open access article food allergy [6], cerebrovascular disease [7], and type 2 diabetes [8,9]. Therefore, increasing distributed under the terms and BAPB in the gut microbiota may aid in the prevention and treatment of various chronic conditions of the Creative Commons diseases. Although probiotics have been employed extensively to correct gut microbiota Attribution (CC BY) license (https:// imbalance (dysbiosis), their effects are limited, as most probiotics only pass through the creativecommons.org/licenses/by/ intestine without residing in and modulating the gut microbial composition [10,11]. In- 4.0/). stead, the efficacy of prebiotics has been receiving attention recently. According to the Metabolites 2021, 11, 559. https://doi.org/10.3390/metabo11080559 https://www.mdpi.com/journal/metabolites Metabolites 2021, 11, 559 2 of 9 International Scientific Association for Probiotics and Prebiotics, prebiotics are defined as “a substrate that is selectively utilized by host microorganisms conferring a health benefit” and include dietary fibers such as β-glucan, fructan, resistant starch, and oligosaccha- rides [12]. Whole-grain products using corn, wheat, and barley are known to regulate the gut microbiota owing to their high content of dietary fiber [13–15]. BARLEYmax®, a line of non-genetically modified barley developed by the Commonwealth Scientific and Industrial Research Organization, contains twice the amount of dietary fiber and four times the resistant starch compared to regular barley and is reported to elevate the fecal SCFA concentration [16]. However, no study has analyzed its effect on the human gut microbiota, especially focusing on butyric acid. Therefore, we evaluated whether the intake of fiber-rich barley, BARLEYmax, elevates fecal butyric acid concentration by increasing BAPB in the gut of healthy adults. 2. Results 2.1. Participants’ Characteristics A total of the 20 participants took part in this study; however, the analysis was performed on 18 participants after excluding two participants (owing to antibiotic use during the study period). The median age of the subjects, including 12 males (67%), was 35.9 years (IQR, 33.8–41.6 years). Seventeen participants (94%) were born vaginally. Median body mass index was 22.0 (19.6–24.6). Fifteen participants had allergic diseases, mostly allergic rhinitis (14 participants). Three participants were taking anti-histamine drugs for allergic rhinitis and one participant was taking magnesium oxide for constipation. Twelve participants (67%) were taking probiotics constantly. The compliance rate for BARLEYmax (the percentage of days for which participants had BARLEYmax during the 28-day study period) was 78% (64–93%) (Table1). Table 1. Characteristics of participants. n = 18 Sex, male (%) 12 (67%) Age (years) 35.9 (33.8–41.6) Body mass index 22.0 (19.6–24.6) Mode of delivery, vaginal delivery (%) 17 (94%) Allergic disease (%) 15 (83%) Allergic rhinitis (%) 14 (78%) Atopic dermatitis (%) 1 (6%) Daily use of prescription drugs (%) 4 (22%) Antihistamine (%) 3 (17%) Magnesium oxide (%) 1 (6%) Daily use of probiotics (%) † 12 (66%) Compliance rate (%) ‡ 79% (64–93%) Consumed BARLEYmax granola BARLEYmax alone 6 (33%) With Milk 8 (44%) With Yogurt 3 (17%) With Soy milk 1 (6%) Data are expressed as number (%) or median (IQR). † Four or more times per week of eating yogurt, cheese, miso (fermented soybean paste), pickles, probiotic drink, or probiotic supplements. ‡ Percentage of days for which participants took granola during the 28-day study period. 2.2. Alpha Diversity There was no significant difference in the numbers of observed species between the pre, post, and 1M groups (46 [IQR, 38–50], 45 [42–50], and 44 [38–50], respectively, p > 0.05). Moreover, there were no significant differences in Shannon and Simpson indices (Shannon Metabolites 2021, 11, 559 3 of 9 2.2. Alpha Diversity Metabolites 2021, 11, 559 There was no significant difference in the numbers of observed species between3 the of 9 pre, post, and 1M groups (46 [IQR, 38–50], 45 [42–50], and 44 [38–50], respectively, p > 0.05). Moreover, there were no significant differences in Shannon and Simpson indices (Shannon index: 4.10 [3.96–4.41], 4.01 [3.81–4.14], and 4.15 [3.53–4.23], respectively, p > 0.05;index: Simpson 4.10 [3.96–4.41], index: 0.91 4.01 [0.88–0.93], [3.81–4.14], 0.89 and [0.87–0.92], 4.15 [3.53–4.23], and 0.91 respectively, [0.85–0.92],p > respectively, 0.05; Simpson p >index: 0.05) 0.91(Figure [0.88–0.93], 1A). 0.89 [0.87–0.92], and 0.91 [0.85–0.92], respectively, p > 0.05) (Figure1A). Figure 1. Changes in gut microbiota microbiota diversity and and composition composition due due to to the the intake intake of of BARLEYmax: BARLEYmax:( A) numbers of species and Shannon and Simpson indices. (B) principal coordinates analysis plot of Bray–Curtis dissimilarity. Each point repre- and Shannon and Simpson indices. (B) principal coordinates analysis plot of Bray–Curtis dissimilarity. Each point represents sents a sample. The circular, triangular, and square points represent the samples from the pre, post, and one-month a sample. The circular, triangular, and square points represent the samples from the pre, post, and one-month groups, groups, respectively. (C) Compositions of the gut microbiota at the order level. Each bar represents an individual sample (left)respectively. or a group (C) (right). Compositions of the gut microbiota at the order level. Each bar represents an individual sample (left) or a group (right). 2.3. Beta Diversity 2.3. Beta Diversity To evaluate the differences in gut microbiota between the pre, post, and one-month To evaluate the differences in gut microbiota between the pre, post, and one-month groups, a principal coordinates analysis plot of Bray–Curtis dissimilarity was generated, groups, a principal coordinates analysis plot of Bray–Curtis dissimilarity was generated, and the sample was characterized in two dimensions. No apparent clusters were observed and the sample was characterized in two dimensions.
Recommended publications
  • Designing Future Prebiotic Fiber to Target Metabolic Syndrome
    Nutrition 30 (2014) 497–502 Contents lists available at ScienceDirect Nutrition journal homepage: www.nutritionjrnl.com Review Designing future prebiotic fiber to target metabolic syndrome Greta Jakobsdottir M.Sci., Margareta Nyman Ph.D., Frida Fak Ph.D. * Applied Nutrition and Food Chemistry, Department of Food Technology, Engineering and Nutrition, Lund University, Lund, Sweden article info abstract Article history: The metabolic syndrome (MetS), characterized by obesity, hyperlipidemia, hypertension, and in- Received 26 June 2013 sulin resistance, is a growing epidemic worldwide, requiring new prevention strategies and Accepted 17 August 2013 therapeutics. The concept of prebiotics refers to selective stimulation of growth and/or activity(ies) of one or a limited number of microbial genus(era)/species in the gut microbiota that confer(s) Keywords: health benefits to the host. Sequencing the gut microbiome and performing metagenomics has fi Dietary ber provided new knowledge of the significance of the composition and activity of the gut microbiota Short-chain fatty acids in metabolic disease. As knowledge of how a healthy gut microbiota is composed and which Metabolism fi Inflammation bacterial metabolites are bene cial increases, tailor-made dietary interventions using prebiotic fi fi Microbiota bers could be developed for individuals with MetS. In this review, we describe how dietary bers alter short-chain fatty acid (SCFA) profiles and the intrinsic and extrinsic effects of prebiotics on host metabolism. We focus on several key aspects in prebiotic research in relation to MetS and provide mechanistic data that support the use of prebiotic fibers in order to alter the gut mi- crobiota composition and SCFA profiles.
    [Show full text]
  • An Investigation of the Prebiotic Properties of Australian Honeys
    An investigation of the prebiotic properties of Australian honeys Nural Cokcetin A thesis in fulfilment of the requirements for the degree of Doctor of Philosophy School of Biotechnology and Biomolecular Sciences Faculty of Science April 2015 THE UNIVERSITY OF NEW SOUTH WALES Thesis/Dissertation Sheet Surname or Family name: Cokcetin First name: Nural Other name/s: Abbreviation for degree as given in the University calendar: PhD School: School of Biotechnology and Biomolecular Sciences Faculty: Science Title: An investigation of the prebiotic properties of Australian honeys ABSTRACT Non-digestible carbohydrates that promote specific, favourable changes in the composition and functionality of the gut microbiota, and thus contribute to improving health and well-being, are referred to as prebiotics. These favourable changes might be due to a relative increase in the numbers of potentially beneficial bacteria, and/or an increase in the metabolic activity of gut microbiota to produce more beneficial substances, such as short chain fatty acids (SCFA). An established method for quantifying the prebiotic effect of a carbohydrate utilises the Prebiotic Index (PI), which is the ratio of the changes in the populations of the potentially beneficial and potentially harmful bacteria. Honey contains non-digestible oligosaccharides and there is some evidence that certain honeys could induce beneficial changes in the gut, however there is limited information on Australian floral varieties of honey. The aim of this work was to conduct an in-depth investigation of the prebiotic properties of Australian honeys from a variety of floral sources. Three broad approaches were used. Initially, the influences of the monosaccharides in high fructose content Australian honeys on the composition and metabolic activity of gut microbes were tested in microcosms established with human intestinal microbiota.
    [Show full text]
  • Food & Nutrition Journal
    Food & Nutrition Journal Oku T and Nakamura S. Food Nutr J 2: 128. Review article DOI: 10.29011/2575-7091.100028 Fructooligosaccharide: Metabolism through Gut Microbiota and Prebiotic Effect Tsuneyuki Oku*, Sadako Nakamura Institute of Food, Nutrition and Health, Jumonji University, Japan *Corresponding author: Tsuneyuki Oku, Institute of Food, Nutrition and Health, Jumonji University, 2-1-28, Sugasawa, Niiza, Saitama 3528510, Japan. Tel: +81 482607612; Fax: +81 484789367; E-mail: [email protected], t-oku@jumonji-u. ac.jp Citation: Oku T and Nakamura S (2017) Fructooligosaccharide: Metabolism through Gut Microbiota and Prebiotic Effect. Food Nutr J 2: 128. DOI: 10.29011/2575-7091.100028 Received Date: 20 March, 2017; Accepted Date: 06 April, 2017; Published Date: 12 April, 2017 Abstract This review aims to provide the accurate information with useful application of Fructooligosaccharide (FOS) for health care specialists including dietician and physician, food adviser and user. Therefore, we described on metabolism through gut microbiota, physiological functions including prebiotic effect and accelerating defecation, practical appli- cation and suggestions on FOS. FOS is a mixture of oligosaccharides what one to three molecules of fructose are bound straightly to the fructose residue of sucrose with β-1,2 linkage. FOS which is produced industrially from sucrose using enzymes from Aspergillus niger, is widely used in processed foods with claimed health benefits. But, FOS occurs natu- rally in foodstuffs including edible burdock, onion and garlic, which have long been part of the human diet. Therefore, eating FOS can be considered a safe food material. FOS ingested by healthy human subjects, does not elevate the blood glucose and insulin levels, because it is not digested by enzymes in the small intestine.
    [Show full text]
  • Overview of Fibersym® RW, a Resistant Wheat Starch
    Overview of Fibersym® RW, a Resistant Wheat Starch Creating Better Solutions...Naturally Fibersym® RW and Dietary Fiber • Definition of Resistant Starch – Resistant Starch is the sum of starch and products of starch degradation not absorbed in the small intestine of healthy individuals • Resistant Starch is recognized as dietary fiber – American Association of Cereal Chemists International (AACCI, 2000) – Institute of Medicine (IOM, 2001) – Codex (2009) – European Food Safety Authority (2007) Creating Better Solutions...Naturally Fibersym® RW as a Dietary Fiber • Measures as dietary fiber by both AOAC 991.43 and AOAC 985.29 – Fibersym RW = 85% (minimum, dry basis) insoluble fiber – FiberRite RW = 75% (minimum, dry basis) insoluble fiber • Labeled as “Modified Wheat Starch” and no use level limitations – Code of Federal Regulations Title 21, Part 172.892 Creating Better Solutions...Naturally Four Types of Resistant Starches in Diet Types of RS Occurrence RS1 - Physically Partially milled inaccessible starch grains, seeds and legumes RS2 - Granular starch Native, uncooked banana starch and potato starch RS3 - Nongranular, Cooked and retrograded amylose cooled potato RS4 - Chemically Cross-linked or modified starch hydroxypropylated Slide Courtesy of Dr. Paul A. Seib Creating Better Solutions...Naturally Native Wheat vs. Resistant Wheat Starch Native Wheat Resistant Wheat Pregelatinized RS Starch Starch Fibersym® Wheat FiberRite ® RW RW x1,000 x1,000 x1,000 Creating Better Solutions...Naturally Benefits of Fibersym® RW in flour-containing products • Low water-binding capacity • Compatibility with wheat flour • Bland/Neutral flavor profile • Fine particle size with smooth texture • White and “invisible” appearance Creating Better Solutions...Naturally • fiber sources. (0.7g water/g) (0.7g sources.
    [Show full text]
  • Spirulina Microalgae and Brain Health: a Scoping Review of Experimental and Clinical Evidence
    marine drugs Review Spirulina Microalgae and Brain Health: A Scoping Review of Experimental and Clinical Evidence Vincenzo Sorrenti 1,2,* , Davide Augusto Castagna 3, Stefano Fortinguerra 4 , Alessandro Buriani 2 , Giovanni Scapagnini 5 and Donald Craig Willcox 6,7 1 Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy 2 Maria Paola Belloni Center for Personalized Medicine, Data Medica Group (Synlab Limited), 35100 Padova, Italy; [email protected] 3 MedicRiab srls Via Novara, 6, 36071 Arzignano, Italy; [email protected] 4 IRCCS SDN, 80143 Napoli, Italy; [email protected] 5 Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, 86100 Campobasso, Italy; [email protected] 6 Department of Human Welfare, Okinawa International University, Ginowan 901-2701, Japan; [email protected] 7 Department of Research, Kuakini Medical Center, Honolulu, HI 96817, USA * Correspondence: [email protected] Abstract: Spirulina microalgae contain a plethora of nutrient and non-nutrient molecules provid- ing brain health benefits. Numerous in vivo evidence has provided support for the brain health potential of spirulina, highlighting antioxidant, anti-inflammatory, and neuroprotective mechanisms. Preliminary clinical studies have also suggested that spirulina can help to reduce mental fatigue, protect the vascular wall of brain vessels from endothelial damage and regulate internal pressure, Citation: Sorrenti, V.; Castagna, D.A.; thus contributing to the prevention and/or mitigating of cerebrovascular conditions. Furthermore, Fortinguerra, S.; Buriani, A.; the use of spirulina in malnourished children appears to ameliorate motor, language, and cognitive Scapagnini, G.; Willcox, D.C. skills, suggesting a reinforcing role in developmental mechanisms.
    [Show full text]
  • Impacts of Dietary Protein and Prebiotic Inclusion on Liver and Spleen Gene Expression in Hy-Line Brown Caged Layers
    animals Article Impacts of Dietary Protein and Prebiotic Inclusion on Liver and Spleen Gene Expression in Hy-Line Brown Caged Layers Morouj N. Al-Ajeeli 1,2, Shawna M. Hubert 1 , Hector Leyva-Jimenez 1 , Mohammed M. Hashim 1, Raghad A. Abdaljaleel 1, Akhil M. Alsadwi 1, Giridhar Athrey 1,* and Christopher A. Bailey 1 1 Department of Poultry Science, Texas A&M University, College Station, TX 77843-2472, USA; [email protected] (M.N.A.-A.); [email protected] (S.M.H.); [email protected] (H.L.-J.); [email protected] (M.M.H.); [email protected] (R.A.A.); [email protected] (A.M.A.); [email protected] (C.A.B.) 2 Calpis America, Inc. 455 Dividend Dr, Peachtree, GA 30269, USA * Correspondence: [email protected]; Tel.: +1-979-458-9921 Received: 7 February 2020; Accepted: 6 March 2020; Published: 9 March 2020 Simple Summary: Eggs are one of the most affordable and nutritious animal proteins available, and with increasing human population, there is an increased demand for production. As feed is the main expense in poultry production, novel protein sources and feed additives need to be evaluated for their benefits for poultry health and performance. In this study, we evaluated the standard soybean-based diets against an alternate source—cottonseed meal, in the context of prebiotic addition. Prebiotics putatively improves health and production. We assessed the homeostatic and immune balance by assaying the expression of select marker genes. We find that the inclusion of yeast cell wall products as prebiotic alters homeostatic balance. Particularly, the upregulation of apoptosis—a normal cell process—suggests that these products may promote homeostatic balance.
    [Show full text]
  • Fiber and Prebiotic Interventions in Pediatric Inflammatory Bowel Disease
    nutrients Review Fiber and Prebiotic Interventions in Pediatric Inflammatory Bowel Disease: What Role Does the Gut Microbiome Play? Genelle R. Healey, Larissa S. Celiberto , Soo Min Lee and Kevan Jacobson * Department of Pediatrics, BC Children’s Hospital Research Institute, University of British Columbia, Vancouver, BC V6T 1Z4, Canada; [email protected] (G.R.H.); [email protected] (L.S.C.); [email protected] (S.M.L.) * Correspondence: [email protected] Received: 27 September 2020; Accepted: 15 October 2020; Published: 20 October 2020 Abstract: The etiology of inflammatory bowel disease (IBD) is complex but is thought to be linked to an intricate interaction between the host’s immune system, resident gut microbiome and environment, i.e., diet. One dietary component that has a major impact on IBD risk and disease management is fiber. Fiber intakes in pediatric IBD patients are suboptimal and often lower than in children without IBD. Fiber also has a significant impact on beneficially shaping gut microbiota composition and functional capacity. The impact is likely to be particularly important in IBD patients, where various studies have demonstrated that an imbalance in the gut microbiome, referred to as dysbiosis, occurs. Microbiome-targeted therapeutics, such as fiber and prebiotics, have the potential to restore the balance in the gut microbiome and enhance host gut health and clinical outcomes. Indeed, studies in adult IBD patients demonstrate that fiber and prebiotics positively alter the microbiome and improve disease course. To date, no studies have been conducted to evaluate the therapeutic potential of fiber and prebiotics in pediatric IBD patients.
    [Show full text]
  • Development of Prebiotic Food Products and Health Benefits Priscilla Moura ROLIM1*
    a Food Science and Technology ISSN 0101-2061 DDOI http://dx.doi.org/10.1590/1678-457X.6546 Development of prebiotic food products and health benefits Priscilla Moura RDLIM1* Abstract In the current context from the nutritional and epidemiological point of view, it can be seen an occurrence increase of Chronic Non-Communicable Diseases, as well as the inflammatory ones, ordinarily associated to a wrong feed, poor in fibers and rich in fats and simple and refined carbohydrates. This view has evidenced a progressive increase of diseases, highlighting the importance of colonic microbiota as an active mechanism of infectious processes control and modulation of immunologic answer. Therefore, constant the worries related to recovering and maintenance of healthy intestines, stocked with prebiotic nutrients that support the survival of beneficial health agents. This way, researchers and the segment of food industry has encouraged the development of products with prebiotic properties, looking for the health promotion, treatment and diseases prevention, besides the strengthening on the competitive market. This article will embrace the contents about physiologic effects of the main known prebiotic, their potential in relation to fermentatives bacterias, new developed products and used methodologies to the recognition of pre and probiotic functions. Keywords: prebiotics; physiologic effect; functional foods market. Practical Application: Innovative applicability to the prebiotics is a consumer attitude for maximum efficacy of their functionality. 1 Introduction Production of functional foods containing prebiotic potential health and positive perspective for consolidation in ingredients, is an area that has dominant featuring in the food the functional foods market. industry in recent years, and a very promising market, not only for economic reasons but by scientific evidence of its benefits.
    [Show full text]
  • In Vitro Evaluation of Probiotic Bacteria and Yeast Growth, Ph Changes and Metabolites Produced in a Pure Culture System Using P
    a ISSN 0101-2061 (Print) Food Science and Technology ISSN 1678-457X (Online) DOI: https://doi.org/10.1590/fst.18321 In vitro evaluation of probiotic bacteria and yeast growth, pH changes and metabolites produced in a pure culture system using protein base products with various added carbon sources Asrof KAREENA1 , Sunisa SIRIPONGVUTIKORN 2*, Worapong USAWAKESMANEE2, Santad WICHIENCHOT2 Abstract This study was designed to evaluate the changes number of cells of the two selected probiotic bacteria, B. longum TISTR2195 and L. plantarum TISTR1465, and yeast S. cerevisiae TISTR8656. The microorganisms were cultured in two types of media, namely selective media and protein base model. Selective media were divided into 4 sub-groups: with 2% glucose added as a positive control (i), inulin (ii), fructo-oligosaccharide (FOS) (iii), and without added carbon source as negative control (iv). Protein base media had chicken egg and coconut juice, baker’s yeast and potassium chloride (i), with 9% FOS (ii), or inulin (iii), or 7.34% whey protein (iv) to verify growth. All the probiotics were able to utilize inulin and FOS to growth. The numbers of cells increased with incubation time. However, L. plantarum produced an acidic in the selective culture medium significantly. Protein based with FOS and inulin added supported all probiotics growth. In addition, acetic acid content was the highest among short-chain fatty acids (SCFAs) produced. B. longum produced acetic acid very fast within 24 h. L. plantarum cultured in inulin added provided the peak level of acetic acid at 72 h. However, S. cerevisiae tended to decrease the SCFAs with incubation time.
    [Show full text]
  • Discovery of the Gut Microbial Signature Driving the Efficacy Of
    Gut microbiota ORIGINAL RESEARCH Gut: first published as 10.1136/gutjnl-2019-319726 on 10 February 2020. Downloaded from Discovery of the gut microbial signature driving the efficacy of prebiotic intervention in obese patients Julie Rodriguez ,1 Sophie Hiel,1 Audrey M Neyrinck ,1 Tiphaine Le Roy ,1,2 Sarah A Pötgens,1 Quentin Leyrolle,1 Barbara D Pachikian,1 Marco A Gianfrancesco,3 Patrice D Cani ,1,2 Nicolas Paquot,3 Miriam Cnop ,4,5 Nicolas Lanthier ,6 Jean- Paul Thissen,7 Laure B Bindels ,1 Nathalie M Delzenne 1 ► Additional material is ABSTRACT Significance of this study published online only. To view Objective The gut microbiota has been proposed as please visit the journal online an interesting therapeutic target for metabolic disorders. (http:// dx. doi. org/ 10. 1136/ What is already known on this subject? gutjnl- 2019- 319726). Inulin as a prebiotic has been shown to lessen obesity and related diseases. The aim of the current study was ► Disturbances of the gut microbial ecosystem are For numbered affiliations see associated with obesity and related metabolic end of article. to investigate whether preintervention gut microbiota characteristics determine the physiological response to disorders. ► The efficacy of dieting in obese patients Correspondence to inulin. Professor Nathalie M Delzenne, Design The stools from four obese donors differing by is dependent on the initial gut microbiota Metabolism and Nutrition microbial diversity and composition were sampled before composition. Research Group, Louvain Drug the dietary intervention and inoculated to antibiotic- ► Supplementation with fermentable inulin- type Research Institute, Université pretreated mice (hum- ob mice; humanised obese mice).
    [Show full text]
  • Plant Prebiotics and Their Role in the Amelioration of Diseases
    biomolecules Review Plant Prebiotics and Their Role in the Amelioration of Diseases Amrit Pal Kaur 1,†, Sonali Bhardwaj 2,† , Daljeet Singh Dhanjal 2,† , Eugenie Nepovimova 3, 4,5,6, 3, 2 2 1 7 Natália Cruz-Martins * , Kamil Kuˇca * , Chirag Chopra , Reena Singh , Harsh Kumar , Fatih S, en , Vinod Kumar 8, Rachna Verma 9 and Dinesh Kumar 1,* 1 School of Bioengineering and Food Technology, Shoolini University of Biotechnology and Management Sciences, Solan 173229, Himachal Pradesh, India; [email protected] (A.P.K.); [email protected] (H.K.) 2 School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab 144411, India; [email protected] (S.B.); [email protected] (D.S.D.); [email protected] (C.C.); [email protected] (R.S.) 3 Department of Chemistry, Faculty of Science, University of Hradec Kralove, 50003 Hradec Kralove, Czech Republic; [email protected] 4 Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal 5 Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal 6 Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal 7 Sen Research Group, Biochemistry Department, Faculty of Arts and Science, EvliyaÇelebi Campus, Dumlupınar University, Kütahya 43100, Turkey; [email protected] 8 School of Water, Energy and Environment, Cranfield University, Cranfield MK430AL, UK; Vinod.Kumar@cranfield.ac.uk 9 School of Biological and Environmental Sciences, Shoolini University of Biotechnology Citation: Kaur, A.P.; Bhardwaj, S.; and Management Sciences, Solan 173229, Himachal Pradesh, India; [email protected] * Dhanjal, D.S.; Nepovimova, E.; Correspondence: [email protected] (N.C.-M.); [email protected] (K.K.); [email protected] (D.K.) Cruz-Martins, N.; Kuˇca,K.; Chopra, † These authors contributed equally to this work.
    [Show full text]
  • Gut Health-Promoting Benefits of a Dietary Supplement of Vitamins
    nutrients Article Gut Health-Promoting Benefits of a Dietary Supplement of Vitamins with Inulin and Acacia Fibers in Rats Malén Massot-Cladera 1,2 , Ignasi Azagra-Boronat 1,2 , Àngels Franch 1,2 , Margarida Castell 1,2 , Maria J. Rodríguez-Lagunas 1,2 and Francisco J. Pérez-Cano 1,2,* 1 Physiology Section, Department of Biochemistry and Physiology, Faculty of Pharmacy and Food Science, University of Barcelona (UB), 08028 Barcelona, Spain; [email protected] (M.M.-C.); [email protected] (I.A.-B.); [email protected] (À.F.); [email protected] (M.C.); [email protected] (M.J.R.-L.) 2 Nutrition and Food Safety Research Institute (INSA-UB), 08921 Santa Coloma de Gramenet, Spain * Correspondence: [email protected]; Tel.: +34-93-402-45-05 Received: 7 June 2020; Accepted: 20 July 2020; Published: 23 July 2020 Abstract: The study’s objective was to ascertain whether a nutritional multivitamin and mineral supplement enriched with two different dietary fibers influences microbiota composition, mineral absorption, and some immune and metabolic biomarkers in adult rats. Nine-week-old Wistar rats were randomly assigned into four groups: the reference group; the group receiving a daily supplement based on a food matrix with proteins, vitamins, and minerals; and two other groups receiving this supplement enriched with inulin (V + I) or acacia (V + A) fiber for four weeks. Microbiota composition was determined in cecal content and mineral content in fecal, blood, and femur samples. Intestinal IgA concentration, hematological, and biochemical variables were evaluated. Both V + I and V + A supplementations increased Firmicutes and Actinobacteria phyla, which were associated with a higher presence of Lactobacillus and Bifidobacterium spp.
    [Show full text]