Vitamin a As a Transcriptional Regulator of Cardiovascular Disease

Total Page:16

File Type:pdf, Size:1020Kb

Vitamin a As a Transcriptional Regulator of Cardiovascular Disease Review Vitamin A as a Transcriptional Regulator of Cardiovascular Disease Robert S. Leigh and Bogac L. Kaynak * Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, 00790 Helsinki, Finland; robert.leigh@helsinki.fi * Correspondence: bogac.kaynak@helsinki.fi Received: 28 August 2020; Accepted: 17 September 2020; Published: 21 September 2020 Abstract: Vitamin A is a micronutrient and signaling molecule that regulates transcription, cellular differentiation, and organ homeostasis. Additionally, metabolites of Vitamin A are utilized as differentiation agents in the treatment of hematological cancers and skin disorders, necessitating further study into the effects of both nutrient deficiency and the exogenous delivery of Vitamin A and its metabolites on cardiovascular phenotypes. Though vitamin A/retinoids are well-known regulators of cardiac formation, recent evidence has emerged that supports their role as regulators of cardiac regeneration, postnatal cardiac function, and cardiovascular disease progression. We here review findings from genetic and pharmacological studies describing the regulation of both myocyte- and vascular-driven cardiac phenotypes by vitamin A signaling. We identify the relationship between retinoids and maladaptive processes during the pathological hypertrophy of the heart, with a focus on the activation of neurohormonal signaling and fetal transcription factors (Gata4, Tbx5). Finally, we assess how this information might be leveraged to develop novel therapeutic avenues. Keywords: micronutrient; heart failure; vitamin A; retinoid; nuclear receptor; cardiomyocyte; cardiac regeneration 1. Introduction Vitamin A and its retinoid metabolites are known differentiation inducers and antioxidants used in the treatment of blood cancers and skin disorders [1–3]. Additionally, Vitamin A/retinoids are essential for mammalian embryogenesis [4,5], and excessive vitamin A/retinoids are known to cause congenital heart diseases (CHDs, full list of abbreviations in Table1) in rodents and humans [ 6–9]. Intriguingly, population studies have identified a relationship between serum levels of vitamin A/retinoids and adult cardiovascular diseases (CVDs) [10], the global leading cause of death and one for which regenerative therapies are lacking. Thus, an improved understanding of teratogenic and postnatal mechanisms-of-action of vitamin A/retinoid signaling is of importance to both fetal and adult health. Table 1. Abbreviations used in the current study. Abbreviation Full Name Abbreviation Full Name 9CRA 9-cis retinoic acid PSC pluripotent stem cell ATRA all-trans retinoic acid RA retinoic acid atrRFP atrial RFP reporter RAR retinoic acid receptor CaMKII Ca2+/calmodulin-dependent protein kinase II RARE retinoic acid response element CHD congenital heart disease RBP retinol binding protein CPC cardiac progenitor cell RXR retinoid x receptor CRBP cellular retinol binding protein SMC smooth muscle cell CVD cardiovascular disease venGFP ventricular GFP reporter MI myocardial infarction VD3 vitamin D3 Hearts 2020, 1, 126–145; doi:10.3390/hearts1020013 www.mdpi.com/journal/hearts Hearts 2020, 1 127 We here review the molecular mechanisms of vitamin A/retinoid signaling in mammals and describe how these contribute to both cardiogenesis and postnatal cardiovascular function. Furthermore, we review evidence from population, genetic, and pharmacological studies on the role of vitamin A/retinoids in cardiac regeneration, myocardial/arterial homeostasis, and CVDs. Finally, we highlight the interaction of vitamin A and prototypical disease signaling pathways and examine how this evidence contributes to an understanding of the pathophysiology of CVDs, micronutrient deficiency, and therapeutic cardiac regeneration. 2. Molecular Mechanisms of Vitamin A/Retinoid Signaling and Homeostasis Cell- and tissue-level effects of vitamin A/retinoid signaling are dependent on a complex series of steps, encompassing dietary intake, storage, mobilization, transport, metabolism to active forms, and activation of retinoic acid receptors (Figure1). Dietary vitamin A /retinoids are ingested in the form of β-carotene, retinol, or retinyl esters [1], and a lack of dietary vitamin A is one of the most common micronutrient deficiencies [11]. After ingestion, β-carotene and retinol are converted into retinyl esters, and these are stored in the liver until mobilized, at which point they are usually re-converted into retinol [1]. After mobilization, retinol is transported from the liver to tissues bound to retinol binding proteins (RBPs) [12], though retinyl esters may also be transported to distant tissues within chylomicrons [13]. Intracellularly, retinol is bound to cellular retinol binding proteins (CRBPs) [12], and retinol and retinal dehyrodgenases oxidize retinol into active retinoid isoforms, the most predominant of which are all-trans retinoic acid (ATRA) and its stereoisomers, 9-cis retinoic acid (9CRA) and 13-cis retinoic acid [1]. In order to exert its effects on gene expression, ATRA/9CRA bind to homo- or heterodimers of retinoid x receptors (RXRs) and retinoic acid receptors (RARs), which themselves include various subtypes (α, β, γ)[1]. Interestingly, both ATRA and 9CRA activate RARs, whereas only 9CRA is a natural activator of RXRs [14–16]. Moreover, a diverse set of RAR/RXR receptor homo- and heterodimers can be formed in response to ligand binding, and these bind to DNA to regulate transcriptional activity [14]. RARs/RXRs are expressed in numerous tissues/organ systems, and gene expression and genetic loss-of-function analyses have revealed tissue-specific roles of specific combinations of RARs/RXRs, expertly reviewed elsewhere [17,18]. Importantly, synthetic retinoids have been developed which are selective for RARα, RARβ-γ, RARγ and RXRs [19–23], and these serve as tool compounds for probing specific receptor activity. The biological activity of retinoids is also regulated by their degradation. Cell and tissue levels of active retinoid forms are controlled by Cyp26a1, Cyp26b1, and Cyp26c1, enzymes that degrade both ATRA and 9CRA [24]. Interestingly, Cyp26 enzymes are themselves under the transcriptional control of RAR/RXR, thus forming a negative feedback loop that regulates levels of active retinoids at the cellular and tissue level [24]. Though in vitro studies allow precise perturbation of retinoic acid (RA) signaling, in vivo effects are regulated by the mobilization of vitamin A in the liver [25]. Interestingly, vitamin A levels were reported to increase in the hearts of rats following myocardial infarction (MI), in conjunction with increased hydrolysis of vitamin A stores in the liver and the transcription of RA-dependent reporter genes [26,27]. Furthermore, there were increased levels of retinol in the hearts of mice lacking β-carotene-15,150-dioxygenase, the enzyme responsible for converting β-carotene into active retinoids [28]. Thus, RA activity is a function of dietary intake, the synthesis of active ATRA/9CRA forms, degradation, binding of retinoids to nuclear RAR/RXR receptors, and modulation of transcriptional outcomes. Hearts 2020, 1, FOR PEER REVIEW 3 Hearts 2020, 1 128 Figure 1. Overview of Vitamin A/retinoid signaling. Dietary intake of retinoids is commonly in the Figure 1. Overview of Vitamin A/retinoid signaling. Dietary intake of retinoids is commonly in the form of β-carotene, Retinyl esters, or retinol. These are stored in the liver and transported to target tissuesform of viaβ-carotene, retinol binding Retinyl proteins. esters, or Active retinol. retinoid These formsare stored of all-trans in the retinoicliver and acid transported (ATRA) and to target 9-cis retinoictissues via acid retinol (9CRA) binding bind toproteins. homo and Active heterodimers retinoid forms of retinoic of all-trans acid receptorsretinoic acid (RARs) (ATRA) and and retinoid 9-cis Xretinoic receptors acid (RXRs). (9CRA) Levelsbind to of homo ATRA and and heterodimers 9CRA arecontrolled of retinoic viaacid Cyp26-mediated receptors (RARs) degradation and retinoid of X activereceptors metabolites. (RXRs). Levels Following of ATRA myocardial and 9CRA infarction, are controlled vitamin via ACyp26-mediated levels have been degradation shown to increaseof active inmetabolites. the heart, asFollowing evidenced myocardial by direct measurementinfarction, vitamin of vitamin A levels A levels have andbeen RA-induced shown to increase transcription. in the All-transheart, as retinoicevidenced acid by (ATRA), direct measurement 9-cis retinoic of acid vitamin (9CRA), A levels Retinoic and acid RA-induced receptor (RAR),transcription. Retinoid All- X receptortrans retinoic (RXR). acid (ATRA), 9-cis retinoic acid (9CRA), Retinoic acid receptor (RAR), Retinoid X receptor (RXR). 3. Effects of Vitamin A/Retinoids on the Formation of the Heart and Differentiation of Multipotent3. Effects of Vitamin Cardiovascular A/Retinoids Progenitor on the Cells Formation of the Heart and Differentiation of Multipotent CardiovascularMaternal vitamin Progenitor A deficiency Cells was long ago identified as a cause of congenital heart abnormalities in rodentsMaternal [6,7 ],vitamin and the A exposure deficiency of thewas fetuslong toago exogenous identified ATRA as a is cause highly of teratogenic congenital toheart the embryonicabnormalities human in rodents heart [ 8[6,7],]. In additionand the exposure to providing of the insights fetus to into exogenous the onset ATRA of CHDs, is highly a more teratogenic thorough understandingto the
Recommended publications
  • Impaired Hepatic Drug and Steroid Metabolism in Congenital Adrenal
    European Journal of Endocrinology (2010) 163 919–924 ISSN 0804-4643 CLINICAL STUDY Impaired hepatic drug and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency Dorota Tomalik-Scharte1, Dominique Maiter2, Julia Kirchheiner3, Hannah E Ivison, Uwe Fuhr1 and Wiebke Arlt School of Clinical and Experimental Medicine, Centre for Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK, 1Department of Pharmacology, University Hospital, University of Cologne, 50931 Cologne, Germany, 2Department of Endocrinology, University Hospital Saint Luc, 1200 Brussels, Belgium and 3Department of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, 89019 Ulm, Germany (Correspondence should be addressed to W Arlt; Email: [email protected]) Abstract Objective: Patients with congenital adrenal hyperplasia due to P450 oxidoreductase (POR) deficiency (ORD) present with disordered sex development and glucocorticoid deficiency. This is due to disruption of electron transfer from mutant POR to microsomal cytochrome P450 (CYP) enzymes that play a key role in glucocorticoid and sex steroid synthesis. POR also transfers electrons to all major drug- metabolizing CYP enzymes, including CYP3A4 that inactivates glucocorticoid and oestrogens. However, whether ORD results in impairment of in vivo drug metabolism has never been studied. Design: We studied an adult patient with ORD due to homozygous POR A287P, the most frequent POR mutation in Caucasians, and her clinically unaffected, heterozygous mother. The patient had received standard dose oestrogen replacement from 17 until 37 years of age when it was stopped after she developed breast cancer. Methods: Both subjects underwent in vivo cocktail phenotyping comprising the oral administration of caffeine, tolbutamide, omeprazole, dextromethorphan hydrobromide and midazolam to assess the five major drug-metabolizing CYP enzymes.
    [Show full text]
  • Identification and Developmental Expression of the Full Complement Of
    Goldstone et al. BMC Genomics 2010, 11:643 http://www.biomedcentral.com/1471-2164/11/643 RESEARCH ARTICLE Open Access Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish Jared V Goldstone1, Andrew G McArthur2, Akira Kubota1, Juliano Zanette1,3, Thiago Parente1,4, Maria E Jönsson1,5, David R Nelson6, John J Stegeman1* Abstract Background: Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Results: Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates.
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • Impaired Hepatic Drug and Steroid Metabolism in Congenital Adrenal
    European Journal of Endocrinology (2010) 163 919–924 ISSN 0804-4643 CLINICAL STUDY Impaired hepatic drug and steroid metabolism in congenital adrenal hyperplasia due to P450 oxidoreductase deficiency Dorota Tomalik-Scharte1, Dominique Maiter2, Julia Kirchheiner3, Hannah E Ivison, Uwe Fuhr1 and Wiebke Arlt School of Clinical and Experimental Medicine, Centre for Endocrinology, Diabetes and Metabolism (CEDAM), University of Birmingham, Birmingham B15 2TT, UK, 1Department of Pharmacology, University Hospital, University of Cologne, 50931 Cologne, Germany, 2Department of Endocrinology, University Hospital Saint Luc, 1200 Brussels, Belgium and 3Department of Pharmacology of Natural Products and Clinical Pharmacology, University of Ulm, 89019 Ulm, Germany (Correspondence should be addressed to W Arlt; Email: [email protected]) Abstract Objective: Patients with congenital adrenal hyperplasia due to P450 oxidoreductase (POR) deficiency (ORD) present with disordered sex development and glucocorticoid deficiency. This is due to disruption of electron transfer from mutant POR to microsomal cytochrome P450 (CYP) enzymes that play a key role in glucocorticoid and sex steroid synthesis. POR also transfers electrons to all major drug- metabolizing CYP enzymes, including CYP3A4 that inactivates glucocorticoid and oestrogens. However, whether ORD results in impairment of in vivo drug metabolism has never been studied. Design: We studied an adult patient with ORD due to homozygous POR A287P, the most frequent POR mutation in Caucasians, and her clinically unaffected, heterozygous mother. The patient had received standard dose oestrogen replacement from 17 until 37 years of age when it was stopped after she developed breast cancer. Methods: Both subjects underwent in vivo cocktail phenotyping comprising the oral administration of caffeine, tolbutamide, omeprazole, dextromethorphan hydrobromide and midazolam to assess the five major drug-metabolizing CYP enzymes.
    [Show full text]
  • Inhibition of the All Trans-Retinoic Acid Hydroxylases CYP26A1 and CYP26B1 Results in Dynamic, Tissue-Specific Changes in Endogenous Atra Signaling
    DMD Fast Forward. Published on April 26, 2017 as DOI: 10.1124/dmd.117.075341 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 75341 Inhibition of the all trans-retinoic acid hydroxylases CYP26A1 and CYP26B1 results in dynamic, tissue-specific changes in endogenous atRA signaling Faith Stevison, Cathryn Hogarth, Sasmita Tripathy, Travis Kent, and Nina Isoherranen Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.) School of Molecular Biosciences and the Center for Reproductive Biology, Washington State Downloaded from University, Pullman, Washington (C.H., T.K.) dmd.aspetjournals.org at ASPET Journals on September 28, 2021 1 DMD Fast Forward. Published on April 26, 2017 as DOI: 10.1124/dmd.117.075341 This article has not been copyedited and formatted. The final version may differ from this version. DMD # 75341 Dynamic changes in atRA signaling after CYP26 inhibition Corresponding Author: Dr. Nina Isoherranen, Department of Pharmaceutics, School of Pharmacy, University of Washington, Health Sciences Building Room H-272M, Box 357610, Seattle, WA 98195-7610 USA, Phone: 206-543-2517, Fax: 206-543-3204, E-mail: [email protected] Text Pages: 20 Tables: 0 Downloaded from Figures: 7 References: 40 dmd.aspetjournals.org Words in the abstract: 248 Words in the introduction: 715 Word in discussion: 1500 at ASPET Journals on September 28, 2021 Abbreviations: ALDH1A, aldehyde dehydrogenase 1A family; atRA, all-trans retinoic acid;
    [Show full text]
  • Cyp26b1 Restrains Murine Heart Valve Growth During Development Neha
    bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.450958; this version posted July 5, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Cyp26b1 restrains murine heart valve growth during development Neha Ahuja1†, Max S. Hiltabidle1†, Hariprem Rajasekhar2, Haley R. Barlow1, Edward Daniel3, Sophie Voss1, Ondine Cleaver1* and Caitlin Maynard4* 1Departments of Molecular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, Texas, USA 75390, 2Department of Pediatrics, Rutgers Robert Wood Johnson Medical School, One Robert Wood Johnson Place, New Brunswick, NJ, USA 08901, 3John T. Milliken Department of Medicine, Washington University School of Medicine, 4960 Children’s Place, Suite 6602, St. Louis, MO 63110, and 4Department of Biological Sciences, University of Texas at Dallas, 800 W. Campbell Road, Richardson, Texas, USA, 75080 † These authors contributed equally. * Co-corresponding authors: Ondine Cleaver, PhD Department of Molecular Biology, University of Texas Southwestern Medical Center 5323 Harry Hines Blvd., NA8.300 Dallas, Texas 75390-9148, USA. Phone: (214) 648-1647 Fax: (214) 648-1196 E-mail: [email protected] Caitlin Maynard, PhD Department of Biological Sciences The University of Texas at Dallas 800 W. Campbell Road, FO31 Richardson, TX 75080-3021, USA Phone: (972) 883-6895 Email: [email protected] Running title: Cyp26b1 essential for murine heart valve development Keywords: Cyp26b1, endothelial cell proliferation, aortic valve, pulmonary valve, tricuspid valve, mitral valve 1 bioRxiv preprint doi: https://doi.org/10.1101/2021.07.05.450958; this version posted July 5, 2021.
    [Show full text]
  • Robert Foti to Cite This Version
    Characterization of xenobiotic substrates and inhibitors of CYP26A1, CYP26B1 and CYP26C1 using computational modeling and in vitro analyses Robert Foti To cite this version: Robert Foti. Characterization of xenobiotic substrates and inhibitors of CYP26A1, CYP26B1 and CYP26C1 using computational modeling and in vitro analyses. Agricultural sciences. Université Nice Sophia Antipolis, 2016. English. NNT : 2016NICE4033. tel-01376678 HAL Id: tel-01376678 https://tel.archives-ouvertes.fr/tel-01376678 Submitted on 5 Oct 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Université de Nice-Sophia Antipolis Thèse pour obtenir le grade de DOCTEUR DE L’UNIVERSITE NICE SOPHIA ANTIPOLIS Spécialité : Interactions Moléculaires et Cellulaires Ecole Doctorale : Sciences de la Vie et de la Santé (SVS) Caractérisation des substrats xénobiotiques et des inhibiteurs des cytochromes CYP26A1, CYP26B1 et CYP26C1 par modélisation moléculaire et études in vitro présentée et soutenue publiquement par Robert S. Foti Le 4 Juillet 2016 Membres du jury Dr. Danièle Werck-Reichhart Rapporteur Dr. Philippe Roche Rapporteur Pr. Serge Antonczak Examinateur Dr. Philippe Breton Examinateur Pr. Philippe Diaz Examinateur Dr. Dominique Douguet Directrice de thèse 1 1. Table of Contents 1. Table of Contents ..............................................................................................................................
    [Show full text]
  • Vitamin D3 Transactivates the Zinc and Manganese Transporter SLC30A10 Via the Vitamin D Receptor
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2016 Vitamin D3 transactivates the zinc and manganese transporter SLC30A10 via the Vitamin D receptor Claro da Silva, Tatiana ; Hiller, Christian ; Gai, Zhibo ; Kullak-Ublick, Gerd A Abstract: Vitamin D3 regulates genes critical for human health and its deficiency is associated with an increased risk for osteoporosis, cancer, diabetes, multiple sclerosis, hypertension, inflammatory and immunological diseases. To study the impact of vitamin D3 on genes relevant for the transport and metabolism of nutrients and drugs, we employed next-generation sequencing (NGS) and analyzed global gene expression of the human-derived Caco-2 cell line treated with 500nM vitamin D3. Genes involved in neuropeptide signaling, inflammation, cell adhesion and morphogenesis were differentially expressed. Notably, genes implicated in zinc, manganese and iron homeostasis were largely increased by vitamin D3 treatment. An ฀10-fold increase in ceruloplasmin and ฀4-fold increase in haptoglobin gene expression suggested a possible association between vitamin D and iron homeostasis. SLC30A10, the gene encoding the zinc and manganese transporter ZnT10, was the chiefly affected transporter, with ฀15-fold increase in expression. SLC30A10 is critical for zinc and manganese homeostasis and mutations in this gene, resulting in impaired ZnT10 function or expression, cause manganese intoxication, with Parkinson-like symptoms. Our NGS results were validated by real-time PCR in Caco-2 cells, as well as in duodenal biopsies taken from healthy human subjects treated with 0.5฀g vitamin D3 daily for 10 days. In addition to increasing gene expression of SLC30A10 and the positive control TRPV6, vitamin D3 also increased ZnT10 protein expression, as indicated by Western blot and cytofluorescence.
    [Show full text]
  • The Impact of Vitamin D in Breast Cancer: Genomics, Pathways, Metabolism
    REVIEW ARTICLE published: 13 June 2014 doi: 10.3389/fphys.2014.00213 The impact of vitamin D in breast cancer: genomics, pathways, metabolism Carmen J. Narvaez 1, Donald Matthews 1,2, Erika LaPorta 1,2, Katrina M. Simmons 1,2, Sarah Beaudin 1,2 and JoEllen Welsh 1,3* 1 Cancer Research Center, University at Albany, Rensselaer, NY, USA 2 Department of Biomedical Sciences, University at Albany, Rensselaer, NY, USA 3 Department of Environmental Health Sciences, University at Albany, Rensselaer, NY, USA Edited by: Nuclear receptors exert profound effects on mammary gland physiology and have complex Carsten Carlberg, University of roles in the etiology of breast cancer. In addition to receptors for classic steroid hormones Eastern Finland, Finland such as estrogen and progesterone, the nuclear vitamin D receptor (VDR) interacts Reviewed by: with its ligand 1α,25(OH) D to modulate the normal mammary epithelial cell genome Mieke Verstuyf, KU Leuven, Belgium 2 3 Moray J. Campbell, Roswell Park and subsequent phenotype. Observational studies suggest that vitamin D deficiency Cancer Institute, USA is common in breast cancer patients and that low vitamin D status enhances the *Correspondence: risk for disease development or progression. Genomic profiling has characterized many JoEllen Welsh, Cancer Research 1α,25(OH)2D3 responsive targets in normal mammary cells and in breast cancers, Center, University at Albany, 1 providing insight into the molecular actions of 1α,25(OH) D and the VDR in regulation Discovery Drive, Rensselaer, 2 3 NY 12144, USA of cell cycle, apoptosis, and differentiation. New areas of emphasis include regulation e-mail: [email protected] of tumor metabolism and innate immune responses.
    [Show full text]
  • Glyphosate's Suppression of Cytochrome P450 Enzymes
    Entropy 2013, 15, 1416-1463; doi:10.3390/e15041416 OPEN ACCESS entropy ISSN 1099-4300 www.mdpi.com/journal/entropy Review Glyphosate’s Suppression of Cytochrome P450 Enzymes and Amino Acid Biosynthesis by the Gut Microbiome: Pathways to Modern Diseases Anthony Samsel 1 and Stephanie Seneff 2,* 1 Independent Scientist and Consultant, Deerfield, NH 03037, USA; E-Mail: [email protected] 2 Computer Science and Artificial Intelligence Laboratory, MIT, Cambridge, MA 02139, USA * Author to whom correspondence should be addressed; E-Mail: [email protected]; Tel.: +1-617-253-0451; Fax: +1-617-258-8642. Received: 15 January 2013; in revised form: 10 April 2013 / Accepted: 10 April 2013 / Published: 18 April 2013 Abstract: Glyphosate, the active ingredient in Roundup®, is the most popular herbicide used worldwide. The industry asserts it is minimally toxic to humans, but here we argue otherwise. Residues are found in the main foods of the Western diet, comprised primarily of sugar, corn, soy and wheat. Glyphosate's inhibition of cytochrome P450 (CYP) enzymes is an overlooked component of its toxicity to mammals. CYP enzymes play crucial roles in biology, one of which is to detoxify xenobiotics. Thus, glyphosate enhances the damaging effects of other food borne chemical residues and environmental toxins. Negative impact on the body is insidious and manifests slowly over time as inflammation damages cellular systems throughout the body. Here, we show how interference with CYP enzymes acts synergistically with disruption of the biosynthesis of aromatic amino acids by gut bacteria, as well as impairment in serum sulfate transport. Consequences are most of the diseases and conditions associated with a Western diet, which include gastrointestinal disorders, obesity, diabetes, heart disease, depression, autism, infertility, cancer and Alzheimer’s disease.
    [Show full text]
  • Retinol-Induced Intestinal Tumorigenesis in Min/+ Mice and Importance of Vitamin D Status
    ANTICANCER RESEARCH 29: 4353-4360 (2009) Retinol-induced Intestinal Tumorigenesis in Min/+ Mice and Importance of Vitamin D Status RAGNA BOGEN HETLAND1, JAN ALEXANDER1, JENS PETTER BERG2,3, CAMILLA SVENDSEN1 and JAN ERIK PAULSEN1 1Norwegian Institute of Public Health, Division of Environmental Medicine, Lovisenberggata 8, NO-0456 Oslo; 2Aker University Hospital, Trondheimsveien 235, NO-0514 Oslo; 3Faculty Division Aker University Hospital, University of Oslo, Norway Abstract. The effects of life-long dietary exposure, starting association between plasma 25(OH)D and colorectal cancer in utero, to high retinol, low vitamin D, or high retinol in did not seem to differ by retinol intake in males within the combination with low vitamin D on intestinal tumorigenesis Health Professionals’ Follow-up Study (HPSF) (6). in Min/+ mice were investigated. In males, high retinol alone Effects of retinol and vitamin D, or their active metabolites significantly increased the number (2.6-fold) and size (1.3- retinoic acid and 1α,25(OH)-D3, on intestinal tumorigenesis fold) of small intestinal tumours; in females no significant have been studied in murine models of familial adenomatous increase in tumour number or size was seen. In both polyposis (FAP). In the Min/+ mouse model, mutation in one of genders, low vitamin D intake alone did not affect intestinal the Apc alleles leads to spontaneous polyp formation throughout tumorigenesis. In males, intake of the combined high the gastrointestinal tract. The Apc gene is also mutated in most retinol/low vitamin D diet did not further increase the effects (>80%) sporadic adenomas and carcinomas in human. This gene caused by high retinol alone.
    [Show full text]
  • Atra) Hydroxylases CYP26A1 and CYP26B1 Results in Dynamic, Tissue-Specific Changes in Endogenous Atra Signaling
    1521-009X/45/7/846–854$25.00 https://doi.org/10.1124/dmd.117.075341 DRUG METABOLISM AND DISPOSITION Drug Metab Dispos 45:846–854, July 2017 Copyright ª 2017 by The American Society for Pharmacology and Experimental Therapeutics Inhibition of the all-trans Retinoic Acid (atRA) Hydroxylases CYP26A1 and CYP26B1 Results in Dynamic, Tissue-Specific Changes in Endogenous atRA Signaling Faith Stevison, Cathryn Hogarth, Sasmita Tripathy, Travis Kent, and Nina Isoherranen Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, Washington (F.S., S.T., N.I.); and School of Molecular Biosciences and the Center for Reproductive Biology, Washington State University, Pullman, Washington (C.H., T.K.) Received February 1, 2017; accepted April 18, 2017 ABSTRACT All-trans retinoic acid (atRA), the active metabolite of vitamin A, is a atRA concentrations in tissues. Following a single 2.5-mg/kg dose of Downloaded from ligand for several nuclear receptors and acts as a critical regulator of talarozole to mice, atRA concentrations increased up to 5.7-, 2.7-, and many physiologic processes. The cytochrome P450 family 26 (CYP26) 2.5-fold in serum, liver, and testis, respectively, resulting in induction enzymes are responsible for atRA clearance, and are potential drug of Cyp26a1 in the liver and testis and Rar b and Pgc 1b in liver. The targets to increase concentrations of endogenous atRA in a tissue- increase in atRA concentrations was well predicted from talarozole specific manner. Talarozole is a potent inhibitor of CYP26A1 and pharmacokinetics and in vitro data of CYP26 inhibition. After multiple CYP26B1, and has shown some success in clinical trials.
    [Show full text]