Cannabinoids for Treating Inflammatory Bowel Diseases: Where Are We and Where Do We Go?
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cannabidiol Attenuates Seizures and Social Deficits in a Mouse Model of Dravet Syndrome
Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet syndrome Joshua S. Kaplana, Nephi Stellaa,b,1, William A. Catteralla,1,2, and Ruth E. Westenbroeka,1 aDepartment of Pharmacology, University of Washington, Seattle, WA 98195; and bDepartment of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA 98195 Contributed by William A. Catterall, September 7, 2017 (sent for review July 3, 2017; reviewed by Lori L. Isom, Daniele Piomelli, and Peter C. Ruben) Worldwide medicinal use of cannabis is rapidly escalating, despite 17). Previous work showed that DS symptoms result from the loss- limited evidence of its efficacy from preclinical and clinical studies. of-function of Nav1.1 channels, which selectively reduces sodium Here we show that cannabidiol (CBD) effectively reduced seizures current and excitatory drive in many types of GABAergic inter- and autistic-like social deficits in a well-validated mouse genetic neurons (13, 14, 18–20). Accordingly, targeting the Scn1a mutation model of Dravet syndrome (DS), a severe childhood epilepsy disorder to Nav1.1 channels in forebrain GABAergic interneurons re- caused by loss-of-function mutations in the brain voltage-gated capitulated the DS phenotype and established that hypoexcitability sodium channel NaV1.1. The duration and severity of thermally in- of these interneurons is sufficient to cause the epileptic phenotype duced seizures and the frequency of spontaneous seizures were sub- (21) and autistic-like behaviors (16) observed in DS mice. In con- stantially decreased. Treatment with lower doses of CBD also trast, targeting the Scn1a mutation to excitatory neurons ameliorates improved autistic-like social interaction deficits in DS mice. -
Cannabinoids and Endocannabinoid System Changes in Intestinal Inflammation and Colorectal Cancer
cancers Review Cannabinoids and Endocannabinoid System Changes in Intestinal Inflammation and Colorectal Cancer Viktoriia Cherkasova, Olga Kovalchuk * and Igor Kovalchuk * Department of Biological Sciences, University of Lethbridge, Lethbridge, AB T1K 7X8, Canada; [email protected] * Correspondence: [email protected] (O.K.); [email protected] (I.K.) Simple Summary: In recent years, multiple preclinical studies have shown that changes in endo- cannabinoid system signaling may have various effects on intestinal inflammation and colorectal cancer. However, not all tumors can respond to cannabinoid therapy in the same manner. Given that colorectal cancer is a heterogeneous disease with different genomic landscapes, experiments with cannabinoids should involve different molecular subtypes, emerging mutations, and various stages of the disease. We hope that this review can help researchers form a comprehensive understanding of cannabinoid interactions in colorectal cancer and intestinal bowel diseases. We believe that selecting a particular experimental model based on the disease’s genetic landscape is a crucial step in the drug discovery, which eventually may tremendously benefit patient’s treatment outcomes and bring us one step closer to individualized medicine. Abstract: Despite the multiple preventive measures and treatment options, colorectal cancer holds a significant place in the world’s disease and mortality rates. The development of novel therapy is in Citation: Cherkasova, V.; Kovalchuk, critical need, and based on recent experimental data, cannabinoids could become excellent candidates. O.; Kovalchuk, I. Cannabinoids and This review covered known experimental studies regarding the effects of cannabinoids on intestinal Endocannabinoid System Changes in inflammation and colorectal cancer. In our opinion, because colorectal cancer is a heterogeneous Intestinal Inflammation and disease with different genomic landscapes, the choice of cannabinoids for tumor prevention and Colorectal Cancer. -
N-Acyl-Dopamines: Novel Synthetic CB1 Cannabinoid-Receptor Ligands
Biochem. J. (2000) 351, 817–824 (Printed in Great Britain) 817 N-acyl-dopamines: novel synthetic CB1 cannabinoid-receptor ligands and inhibitors of anandamide inactivation with cannabimimetic activity in vitro and in vivo Tiziana BISOGNO*, Dominique MELCK*, Mikhail Yu. BOBROV†, Natalia M. GRETSKAYA†, Vladimir V. BEZUGLOV†, Luciano DE PETROCELLIS‡ and Vincenzo DI MARZO*1 *Istituto per la Chimica di Molecole di Interesse Biologico, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy, †Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, R. A. S., 16/10 Miklukho-Maklaya Str., 117871 Moscow GSP7, Russia, and ‡Istituto di Cibernetica, C.N.R., Via Toiano 6, 80072 Arco Felice, Napoli, Italy We reported previously that synthetic amides of polyunsaturated selectivity for the anandamide transporter over FAAH. AA-DA fatty acids with bioactive amines can result in substances that (0.1–10 µM) did not displace D1 and D2 dopamine-receptor interact with proteins of the endogenous cannabinoid system high-affinity ligands from rat brain membranes, thus suggesting (ECS). Here we synthesized a series of N-acyl-dopamines that this compound has little affinity for these receptors. AA-DA (NADAs) and studied their effects on the anandamide membrane was more potent and efficacious than anandamide as a CB" transporter, the anandamide amidohydrolase (fatty acid amide agonist, as assessed by measuring the stimulatory effect on intra- hydrolase, FAAH) and the two cannabinoid receptor subtypes, cellular Ca#+ mobilization in undifferentiated N18TG2 neuro- CB" and CB#. NADAs competitively inhibited FAAH from blastoma cells. This effect of AA-DA was counteracted by the l µ N18TG2 cells (IC&! 19–100 M), as well as the binding of the CB" antagonist SR141716A. -
The Endogenous Cannabinoid 2-Arachidonoylglycerol Is Intravenously Self-Administered by Squirrel Monkeys
The Journal of Neuroscience, May 11, 2011 • 31(19):7043–7048 • 7043 Brief Communications The Endogenous Cannabinoid 2-Arachidonoylglycerol Is Intravenously Self-Administered by Squirrel Monkeys Zuzana Justinova´,1,2 Sevil Yasar,3 Godfrey H. Redhi,1 and Steven R. Goldberg1 1Preclinical Pharmacology Section, Behavioral Neuroscience Research Branch, Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224, 2Maryland Psychiatric Research Centre, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, Maryland 21228, and 3Division of Geriatric Medicine and Gerontology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224 Two endogenous ligands for cannabinoid CB1 receptors, anandamide (N-arachidonoylethanolamine) and 2-arachidonoylglycerol (2-AG), have been identified and characterized. 2-AG is the most prevalent endogenous cannabinoid ligand in the brain, and electrophysiological studies suggest 2-AG, rather than anandamide, is the true natural ligand for cannabinoid receptors and the key endocannabinoid involved in retrograde signaling in the brain. Here, we evaluated intravenously administered 2-AG for reinforcing effects in nonhuman primates. Squirrel monkeys that previously self-administered anandamide or nicotine under a fixed-ratio schedule with a 60 s timeout after each injection had their self-administration behavior extinguished by vehicle substitution and were then given the opportunity to self-administer 2-AG. Intravenous 2-AG was a very effective reinforcer of drug-taking behavior, maintaining higher numbers of self-administered injections per session and higher rates of responding than vehicle across a wide range of doses. To assess involvement of CB1 receptors in the reinforcing effects of 2-AG, we pretreated monkeys with the cannabinoid CB1 receptor inverse agonist/antagonist rimonabant [N-piperidino-5-(4-chlorophenyl)-1-(2,4- dichlorophenyl)-4-methylpyrazole-3-carboxamide]. -
The Cannabinoid WIN 55,212-2 Prevents Neuroendocrine Differentiation of Lncap Prostate Cancer Cells
OPEN Prostate Cancer and Prostatic Diseases (2016) 19, 248–257 www.nature.com/pcan ORIGINAL ARTICLE The cannabinoid WIN 55,212-2 prevents neuroendocrine differentiation of LNCaP prostate cancer cells C Morell1, A Bort1, D Vara2, A Ramos-Torres1, N Rodríguez-Henche1 and I Díaz-Laviada1 BACKGROUND: Neuroendocrine (NE) differentiation represents a common feature of prostate cancer and is associated with accelerated disease progression and poor clinical outcome. Nowadays, there is no treatment for this aggressive form of prostate cancer. The aim of this study was to determine the influence of the cannabinoid WIN 55,212-2 (WIN, a non-selective cannabinoid CB1 and CB2 receptor agonist) on the NE differentiation of prostate cancer cells. METHODS: NE differentiation of prostate cancer LNCaP cells was induced by serum deprivation or by incubation with interleukin-6, for 6 days. Levels of NE markers and signaling proteins were determined by western blotting. Levels of cannabinoid receptors were determined by quantitative PCR. The involvement of signaling cascades was investigated by pharmacological inhibition and small interfering RNA. RESULTS: The differentiated LNCaP cells exhibited neurite outgrowth, and increased the expression of the typical NE markers neuron-specific enolase and βIII tubulin (βIII Tub). Treatment with 3 μM WIN inhibited NK differentiation of LNCaP cells. The cannabinoid WIN downregulated the PI3K/Akt/mTOR signaling pathway, resulting in NE differentiation inhibition. In addition, an activation of AMP-activated protein kinase (AMPK) was observed in WIN-treated cells, which correlated with a decrease in the NE markers expression. Our results also show that during NE differentiation the expression of cannabinoid receptors CB1 and CB2 dramatically decreases. -
P.1.G.070 PHARMACOLOGICAL BLOCKADE of GPR55 in the ANTERIOR CINGULATE CORTEX REDUCES FORMALIN-EVOKED NOCICEPTIVE BEHAVIOUR in RATS Bright N
P.1.g.070 PHARMACOLOGICAL BLOCKADE OF GPR55 IN THE ANTERIOR CINGULATE CORTEX REDUCES FORMALIN-EVOKED NOCICEPTIVE BEHAVIOUR IN RATS Bright N. Okine 1, 3, Gemma McLaughlin 1 , Michelle Roche 2, 3 , David P. Finn 1, 3 1Pharmacology and Therapeutics, 2Physiology, School of Medicine, 3Galway Neuroscience Centre and Centre for Pain Research, NCBES, National University of Ireland Galway, University Road, Galway, Ireland Introduction Results Intra-ACC administration of the GPR55 antagonist Intra-ACC administration of the GPR55 •The G-protein coupled receptor 55 reduced second phase formalin-evoked antagonist reduced ERK (GPR55), is a putative novel cannabinoid nociceptive behaviour in rats phosphorylation in the ACC receptor expressed throughout the central nervous system (CNS), including key brain regions such as the anterior cingulate cortex (ACC)1 which is associated with the ERK 1 ERK 2 cognitive-affective components of pain2. 1.2 150 150 Vehicle •Pharmacological modulation of GPR55 in CID 100 100 the rat periaqueductal grey (PAG) affects 0.9 * nociceptive responding in rodents3. vehicle of 50 vehicle of 50 * expressed as a % a as expressed % a as expressed ERK 42 (phospho/total) 42 ERK (phospho/total) 44 ERK 0.6 0 0 •The PAG is a key component of the descending pain pathway, an endogenous pain modulatory system, and is subject to 0.3 Total ERK (1/2) modulation by higher brain centres including Vehicle CID the ACC. However, the role of. GPR55 150 p=0.06 Composite pain scorepain Composite 0.0 signalling in the ACC in pain processing is unknown. 0-5 100 6-10 11-1516-2021-2526-3031-3536-4041-4546-5051-5556-60 Vehicle 50 total 42+44 / total 42+44 •This study investigated the effects of direct Time bins (5 mins) / 44+42 Phospho administration of the selective GPR55 0 antagonist, CID16020046, into the ACC, on Figure 1. -
208614788.Pdf
0022-3565/02/3013-1020–1024$7.00 THE JOURNAL OF PHARMACOLOGY AND EXPERIMENTAL THERAPEUTICS Vol. 301, No. 3 Copyright © 2002 by The American Society for Pharmacology and Experimental Therapeutics 0/986104 JPET 301:1020–1024, 2002 Printed in U.S.A. Characterization of a Novel Endocannabinoid, Virodhamine, with Antagonist Activity at the CB1 Receptor AMY C. PORTER, JOHN-MICHAEL SAUER, MICHAEL D. KNIERMAN, GERALD W. BECKER, MICHAEL J. BERNA, JINGQI BAO, GEORGE G. NOMIKOS, PETRA CARTER, FRANK P. BYMASTER, ANDREA BAKER LEESE, and CHRISTIAN C. FELDER Lilly Research Laboratories, Neuroscience Division (A.C.P., G.G.N., P.C., F.P.B., A.B.L., C.C.F.), Drug Disposition (J.-M.S., M.J.B., J.B.), and Research Technologies and Proteins (M.D.K., G.W.B.), Eli Lilly & Co., Lilly Corporate Center, Indianapolis, Indiana Received December 19, 2001; accepted February 18, 2002 This article is available online at http://jpet.aspetjournals.org Downloaded from ABSTRACT The first endocannabinoid, anandamide, was discovered in rodhamine concentrations were 2- to 9-fold higher than anan- 1992. Since then, two other endocannabinoid agonists have damide. In contrast to previously described endocannabinoids, been identified, 2-arachidonyl glycerol and, more recently, no- virodhamine was a partial agonist with in vivo antagonist activ- ladin ether. Here, we report the identification and pharmaco- ity at the CB1 receptor. However, at the CB2 receptor, vi- 14 logical characterization of a novel endocannabinoid, vi- rodhamine acted as a full agonist. Transport of [ C]anandam- jpet.aspetjournals.org rodhamine, with antagonist properties at the CB1 cannabinoid ide by RBL-2H3 cells was inhibited by virodhamine. -
Icrs2015 Programme
TH 25 ANNUAL SYMPOSIUM OF THE INTERNATIONAL CANNABINOID RESEARCH SOCIETY WOLFVILLE NOVA SCOTIA JUNE 28 - JULY 3, 2015 TH 25 ANNUAL SYMPOSIUM OF THE INTERNATIONAL CANNABINOID RESEARCH SOCIETY WOLFVILLE JUNE 28 – JULY 3, 2015 Symposium Programming by Cortical Systematics LLC Copyright © 2015 International Cannabinoid Research Society Research Triangle Park, NC USA ISBN: 978-0-9892885-2-1 These abstracts may be cited in the scientific literature as follows: Author(s), Abstract Title (2015) 25th Annual Symposium on the Cannabinoids, International Cannabinoid Research Society, Research Triangle Park, NC, USA, Page #. Funding for this conference was made possible in part by grant 5R13DA016280-13 from the National Institute on Drug Abuse. The views expressed in written conference materials or publications and by speakers and moderators do not necessarily reflect the official policies of the Department of Health and Human Services; nor does mention by trade names, commercial practices, or organizations imply endorsement by the U.S. Government. Sponsors ICRS Government Sponsors National Institute on Drug Abuse Non- Profit Organization Sponsors Kang Tsou Memorial Fund 2015 ICRS Board of Directors Executive Director Cecilia Hillard, Ph.D. President Stephen Alexander, Ph.D. President- Elect Michelle Glass, Ph.D. Past President Ethan Russo, M.D. Secretary Steve Kinsey, Ph.D. Treasurer Mary Abood, Ph.D. International Secretary Roger Pertwee, D . Phil. , D . S c. Student Representative Tiffany Lee, Ph.D. Grant PI Jenny Wiley, Ph.D. Managing Director Jason Schechter, Ph.D. 2015 Symposium on the Cannabinoids Conference Coordinators Steve Alexander, Ph.D. Cecilia Hillard, Ph.D. Mary Lynch, M.D. Jason Schechter, Ph.D. -
A Selective Antagonist Reveals a Potential Role of G Protein-Coupled
JPET Fast Forward. Published on May 2, 2013 as DOI: 10.1124/jpet.113.204180 JPETThis Fast article Forward. has not been Published copyedited and on formatted. May 2, The 2013 final as version DOI:10.1124/jpet.113.204180 may differ from this version. JPET #204180 Title Page A selective antagonist reveals a potential role of G protein-coupled receptor 55 in platelet and endothelial cell function Julia Kargl*, Andrew J Brown, Liisa Andersen, Georg Dorn, Rudolf Schicho, Maria Waldhoer and Akos Heinemann Downloaded from Primary laboratory of origin: Institute for Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria jpet.aspetjournals.org Affiliation: Institute for Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria at ASPET Journals on September 26, 2021 (J.K., L.A., G.D., R.S., M.W., A.H.); Screening and Compound Profiling, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage, SG1 2NY, UK (A.J.B); current address: Hagedorn Research Institute, Novo Nordisk A/S, 2820-Gentofte, Denmark (M.W.) 1 Copyright 2013 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on May 2, 2013 as DOI: 10.1124/jpet.113.204180 This article has not been copyedited and formatted. The final version may differ from this version. JPET #204180 Running Title Page Characterization of a GPR55 antagonist *Corresponding author: Julia Kargl Institute for Experimental and Clinical Pharmacology Medical University of Graz 8010 Graz, Austria -
Anti-Melanoma Activity of AM251
AM251 induces apoptosis and G2/M cell cycle arrest in A375 human melanoma cells Running head: Anti-melanoma activity of AM251 Sara Carpia, Stefano Foglia, Antonella Romaninib, Mario Pellegrinoc, Barbara Adinolfia, Adriano d a a a a Podestà , Barbara Costa , Eleonora Da Pozzo , Claudia Martini , Maria Cristina Breschi , Paola Nieria aDepartment of Pharmacy, University of Pisa, Pisa, Italy; bUniversity Hospital of Pisa, Pisa, Italy; cDepartment of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy; dDepartment of Veterinary Sciences, University of Pisa, Pisa, Italy Conflicts of interest The authors declare no conflict of interests. Funding This work was supported by Association against Melanoma Onlus (Italy). Corresponding author: Sara Carpi Department of Pharmacy University of Pisa Via Bonanno 6, 56126 PISA Tel: +39-050-2219539 Fax.: +39-050-2219609 e-mail: [email protected] 1 Abstract Objective. Human cutaneous melanoma is an aggressive and chemotherapy resistant type of cancer. AM251 is a cannabinoid type 1 (CB1) receptor antagonist/inverse agonist with off-target antitumor activity against pancreatic and colon cancer cells. The current study is aimed at characterizing the in vitro anti-melanoma activity of AM251. Methods. The BRAF V600E mutant melanoma cell line, A375, was used as an in vitro model system. Characterization tools included cell viability assay, nuclear morphology assessment, gene expression, western blot, flow cytometry with annexin V-FITC/ 7-AAD double staining, cell cycle analyses, measurements of changes in intracellular cAMP and calcium concentrations. Results. AM251 exerted a remarkable cytotoxic effect against A375 human melanoma cells with potency comparable to that observed for cisplatin without significant changes on the human dermal fibroblasts viability. -
Beneficial Changes in Rat Vascular Endocannabinoid System In
International Journal of Molecular Sciences Article Beneficial Changes in Rat Vascular Endocannabinoid System in Primary Hypertension and under Treatment with Chronic Inhibition of Fatty Acid Amide Hydrolase by URB597 Marta Baranowska-Kuczko 1,2,* , Hanna Kozłowska 1, Monika Kloza 1, Ewa Harasim-Symbor 3, Michał Biernacki 4 , Irena Kasacka 5 and Barbara Malinowska 1 1 Department of Experimental Physiology and Pathophysiology, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland; [email protected] (H.K.); [email protected] (M.K.); [email protected] (B.M.) 2 Department of Clinical Pharmacy, Medical University of Białystok, ul. Mickiewicza 2A, 15-222 Białystok, Poland 3 Department of Physiology, Medical University of Białystok, ul. Mickiewicza 2C, 15-222 Białystok, Poland; [email protected] 4 Department of Analytical Chemistry, Medical University of Białystok, ul. Mickiewicza 2D, 15-222 Białystok, Poland; [email protected] 5 Department of Histology and Cytophysiology, Medical University of Białystok, ul. Mickiewicza 2C, 15-222 Białystok, Poland; [email protected] * Correspondence: [email protected]; Tel./Fax: +48-85-74-856-99 Citation: Baranowska-Kuczko, M.; Abstract: Our study aimed to examine the effects of hypertension and the chronic administration of Kozłowska, H.; Kloza, M.; the fatty acid amide hydrolase (FAAH) inhibitor URB597 on vascular function and the endocannabi- Harasim-Symbor, E.; Biernacki, M.; noid system in spontaneously hypertensive rats (SHR). Functional studies were performed on small Kasacka, I.; Malinowska, B. Beneficial mesenteric G3 arteries (sMA) and aortas isolated from SHR and normotensive Wistar Kyoto rats Changes in Rat Vascular (WKY) treated with URB597 (1 mg/kg; twice daily for 14 days). -
Anandamide-Mediated CB1/CB2 Receptor-Independent NO Production in Rabbit Aortic Endothelial Cells
JPET Fast Forward. Published on March 22, 2007 as DOI: 10.1124/jpet.106.117549 JPET FastThis article Forward. has not beenPublished copyedited on and Marchformatted. 22, The 2007 final version as DOI:10.1124/jpet.106.117549 may differ from this version. JPET # 117549 Anandamide-mediated CB1/CB2 receptor-independent NO production in rabbit aortic endothelial cells LaTronya McCollum, Allyn C. Howlett and Somnath Mukhopadhyay1 Neuroscience of Drug Abuse Research Program Julius. L. Chambers Biomedical/Biotechnology Research Institute North Carolina Central University, Durham, NC 27707 Downloaded from jpet.aspetjournals.org at ASPET Journals on September 30, 2021 1 Copyright 2007 by the American Society for Pharmacology and Experimental Therapeutics. JPET Fast Forward. Published on March 22, 2007 as DOI: 10.1124/jpet.106.117549 This article has not been copyedited and formatted. The final version may differ from this version. JPET # 117549 Running title: Novel Anandamide receptor mediated eNOS activation 1Corresponding author Somnath Mukhopadhyay, Ph.D. Neuroscience of Drug Abuse Research Program J. L. Chambers Biomedical/Biotechnology Research Institute North Carolina Central University Downloaded from 700 George Street, Durham, NC 27707 Ph # (919) 530-7762 FAX (919) 530-7760 jpet.aspetjournals.org [email protected] Abbreviations used are: Abn-CBD, abnormal cannabidiol; DAF-DA, 4-amino-5- methylamino-2',7'-difluorofluorescein diacetate; ECL, enhanced chemiluminescence; eNOS, at ASPET Journals on September 30, 2021 endothelial NO synthase; MAPK, mitogen-activated protein kinase; PCR, polymerase chain reaction; PKA, cyclic AMP-dependent protein kinase; PI3-kinase, phosphatidylinositol 3-kinase; PVDF, polyvinylidene difluoride; PTX, pertussis toxin; RAEC, rabbit aortic endothelial cells; RT-PCR, reverse transcription-polymerase chain reaction; SDS-PAGE, sodium dodecyl sulfate- polyacrylamide gel electrophoresis.