MAT5107 : Combinatorial Enumeration Course Notes

Total Page:16

File Type:pdf, Size:1020Kb

MAT5107 : Combinatorial Enumeration Course Notes MAT5107 : Combinatorial Enumeration Course Notes (this version: December 2018) Mike Newman These notes are intended for the course MAT5107. They somewhat follow approaches in the two (ex- cellent!) books generatingfunctionology by Herbert Wilf [2] and Analytic Combinatorics by Phillipe Flajolet and Robert Sedgewick [1]. Both of these are available in relatively inexpensive print versions, as well as free downloadable .pdf files. W: https://www.math.upenn.edu/~wilf/DownldGF.html F&S: http://algo.inria.fr/flajolet/Publications/AnaCombi/anacombi.html Both of these books are highly recommended and both could be considered unofficial textbooks for the course (and both are probably not explicitly cited as much as they should be in these notes). The origin of these notes traces back to old course notes scribed by students in a course given by Jason and/or Daniel. I typically cover most of the material in these notes during one course. Wilf's book covers more than a course's worth of material; Flajolet and Sedgewick cover much more. These notes are available on my webpage. Please don't post them elsewhere. Feel free to share the link; the current url is http://web5.uottawa.ca/mnewman/notes/. Despite my best efforts to eliminate typos, there \may" be some that remain. Please let me know if you find any mistakes, big or small. Thanks to those who have pointed out typos in the past! References [1] Philippe Flajolet and Robert Sedgewick. Analytic Combinatorics. Cambridge University Press, Cambridge, 2009. [2] Herbert S. Wilf. generatingfunctionology. A K Peters, Ltd., Wellesley, MA, third edition, 2006. ∗ These notes are intended for students in mike's MAT5107. For other uses please say \hi" to [email protected]. MAT5107 : Combinatorial Enumeration Mike Newman, December 2018 1. generating functions basic ideas and setup Combinatorial enumeration is about counting combinatorial (discrete) structures such as sequences, permutations, graphs, polynomials over finite fields, and partitions. We start with a set A of objects (graphs, permutations, etc.), as well as a function ! : A! N that measure the \size" of an object. The exact meaning of \size" depends on the objects and how we wish to treat them. Then we set An to be the pre-image of n and an = jAnj; that is An is the set of objects of size n, and an is the number of such objects. The sequence a0; a1; a2; ··· ; an; ··· is an answer to the question \How many objects are there of size n?" We might have an explicit formula for the an, we might have an asymptotic formula that is close for large n, we might only know a relation with some other sequence. In this course we will be dealing with both exact enumeration and asymptotic enumeration. For example, let an be the number of permutationsp of n elements. Then an = n! gives an exact answer. n Using Stirling's formula, we have an ∼ 2πn(n=e) , which gives an asymptotic expression for an. Here fn ∼ gn means fn=gn ! 1 as n ! 1. So the asymptotic expression of an gives the main order of magnitude of an. Of special interest is the fact that there are many cases where we are unable to get an exact formula for an but we can get an asymptotic one. The unifying tool is the generating function. Given a sequence of numbers (an)n≥0, its ordinary generating function (OGF) and exponential generating function (EGF) are, respectively, 2 3 X n a0 + a1x + a2x + a3x + ··· = anx n≥0 x2 x3 X xn a + a x + a + a + ··· = a 0 1 2 2 3 6 n n! n≥0 These are formal sums, so the question of convergence does not arise (for the moment!); it is just a quirky way of writing the sequence a0; a1; a2; ··· . As we will see later, ordinary generating functions are usually associated with unlabelled structures while exponential generating functions are usually associated with labelled structures (though the reasons for that might seem a little mysterious at the moment). formal power series We define a formal power series in the indeterminate x to be an expression of the form 2 X n A(x) = a0 + a1x + a2x + ··· = anx : n≥0 The coefficients an are typically integers or rational numbers; this is the most useful case for us. Formal power series form a ring, in particular if the coefficients are rational then this ring is denoted by Q[[x]]. ∗ These notes are intended for students in mike's MAT5107. For other uses please say \hi" to [email protected]. 1 The \x" that appears is not really a variable in the traditional sense; it might more properly be called an indeterminate or even a marker. It is a way of associating the numerical value an that appears as the coefficient, with the value n that appears as the exponent. In other words, you should think of a formal power series as being a strange way of representing a sequence. In fact there will come a point where it will be useful to consider a formal power series as a \function" of its variable x, but this will not alter its formal nature. Note that the exponents that appear are exactly the non-negative integers; this corresponds with the choice to start indexing our sequences at n = 0. This is a somewhat arbitrary but useful choice, motivated by the fact that the exponent usually represents the size of a discrete object, and most natural ways of measuring the size of a discrete object are as a natural number. It is elementary but still worth noticing that the letter n is not really part of A(x), it is just a dummy variable of summation. So in particular we have things like the following. X n X k−3 X i+2 anx = ak−3x = a0 + a1x + ai+2x n≥0 k≥3 i≥0 These are somewhat spurious examples, but there will be other instances where it will be useful to \re-index" a formal power series. Note that both ordinary generating functions and exponential generating functions are elements of Q[[x]]. In particular, whether a generating function is ordinary or exponential is really a question of interpretation. For instance, is the following an ordinary generating function or an exponential one? ( 2 3 P n X n 1 + x + x + x + ··· = n≥0 anx OGF with an = 1 x = 2 3 n 1 + x + 2 x + 6 x + ··· = P a x EGF with a = n! n≥0 2 6 n≥0 n n! n We use the notation [xn] F (x) to mean the coefficient of xn in F (x). So given an OGF F (x), the n corresponding sequence is exactly ([x ] F (x))n≥0. If we know F (x), then we know (implicitly at least) [xn] F (x) for every n ≥ 0, and vice versa. Note that what we typically want is not the coefficient of n x , but rather the value an. So for exponential generating functions there is a slight twist. P xn Problem 1.1. Let A(x) = n≥0 an n! be an exponential generating function. xn n Explain why an = [ n! ] A(x) = n![x ] A(x). We will sometimes commit a small but heinous abuse of notation. Namely we will write down expressions like the left-hand equation, when what we \should" write is something like the right- hand expression. n X n n X k [x ] anx = an [x ] akx = an n≥0 k≥0 We are using n for two different things: both as a dummy variable, and as an operator that extracts the coefficient of something (namely xn). So n has two meanings, in the same equation. This is clearly insane. but in fact presents no practical difficulty. The index-of-summation n has no existence outside the sum, so there is no risk of confusion with the coefficient-extractor n. So we will tolerate this. In fact it is surprisingly natural, helpful even, and you quite possibly would not have even noticed without prompting. operations on formal power series We can add or subtract formal power series in a natural way, as we might add a sequence: X n X n X n anx ± bnx = (an ± bn)x n≥0 n≥0 n≥0 2 We can also multiply formal power series (which was not an obvious operation for sequences): 0 1 0 1 n ! X n X n X X n @ anx A @ bnx A = akbn−k x n≥0 n≥0 n≥0 k=0 Note that determining the coefficient of xn in the product is a finite process. Of course this process takes longer and longer as n increases, but for each n it is finite. This means we can determine coef- ficients in the product, and thus the product is well-defined as a formal power series. We emphasize that this has nothing to do with convergence. Problem 1.2. Consider the arithmetic of Q[[x]]. • Show that addition and multiplication are commutative and associative. • Show that the additive identity is 0 + 0x + 0x2 + ··· . P n P n • Show that the unique additive inverse of n≥0 anx is n≥0(−an)x . • Show that the multiplicative identity is 1 + 0x + 0x2 + ··· . For simplicity, we often write 0 and 1 for the additive and multiplicative inverses, even though they are indeed formal power series. For that matter, we permit ourselves to omit any terms in a formal power series whose coefficients are zero; in particular all polynomials are formal power series. There remains the question of which elements of Q[[x]] have multiplicative inverses, i.e., reciprocals.
Recommended publications
  • On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function
    mathematics Article On Fixed Points of Iterations Between the Order of Appearance and the Euler Totient Function ŠtˇepánHubálovský 1,* and Eva Trojovská 2 1 Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic 2 Department of Mathematics, Faculty of Science, University of Hradec Králové, 50003 Hradec Králové, Czech Republic; [email protected] * Correspondence: [email protected] or [email protected]; Tel.: +420-49-333-2704 Received: 3 October 2020; Accepted: 14 October 2020; Published: 16 October 2020 Abstract: Let Fn be the nth Fibonacci number. The order of appearance z(n) of a natural number n is defined as the smallest positive integer k such that Fk ≡ 0 (mod n). In this paper, we shall find all positive solutions of the Diophantine equation z(j(n)) = n, where j is the Euler totient function. Keywords: Fibonacci numbers; order of appearance; Euler totient function; fixed points; Diophantine equations MSC: 11B39; 11DXX 1. Introduction Let (Fn)n≥0 be the sequence of Fibonacci numbers which is defined by 2nd order recurrence Fn+2 = Fn+1 + Fn, with initial conditions Fi = i, for i 2 f0, 1g. These numbers (together with the sequence of prime numbers) form a very important sequence in mathematics (mainly because its unexpectedly and often appearance in many branches of mathematics as well as in another disciplines). We refer the reader to [1–3] and their very extensive bibliography. We recall that an arithmetic function is any function f : Z>0 ! C (i.e., a complex-valued function which is defined for all positive integer).
    [Show full text]
  • The Cycle Polynomial of a Permutation Group
    The cycle polynomial of a permutation group Peter J. Cameron and Jason Semeraro Abstract The cycle polynomial of a finite permutation group G is the gen- erating function for the number of elements of G with a given number of cycles: c(g) FG(x)= x , gX∈G where c(g) is the number of cycles of g on Ω. In the first part of the paper, we develop basic properties of this polynomial, and give a number of examples. In the 1970s, Richard Stanley introduced the notion of reciprocity for pairs of combinatorial polynomials. We show that, in a consider- able number of cases, there is a polynomial in the reciprocal relation to the cycle polynomial of G; this is the orbital chromatic polynomial of Γ and G, where Γ is a G-invariant graph, introduced by the first author, Jackson and Rudd. We pose the general problem of finding all such reciprocal pairs, and give a number of examples and charac- terisations: the latter include the cases where Γ is a complete or null graph or a tree. The paper concludes with some comments on other polynomials associated with a permutation group. arXiv:1701.06954v1 [math.CO] 24 Jan 2017 1 The cycle polynomial and its properties Define the cycle polynomial of a permutation group G acting on a set Ω of size n to be c(g) FG(x)= x , g∈G X where c(g) is the number of cycles of g on Ω (including fixed points). Clearly the cycle polynomial is a monic polynomial of degree n.
    [Show full text]
  • Appendix a Tables of Fermat Numbers and Their Prime Factors
    Appendix A Tables of Fermat Numbers and Their Prime Factors The problem of distinguishing prime numbers from composite numbers and of resolving the latter into their prime factors is known to be one of the most important and useful in arithmetic. Carl Friedrich Gauss Disquisitiones arithmeticae, Sec. 329 Fermat Numbers Fo =3, FI =5, F2 =17, F3 =257, F4 =65537, F5 =4294967297, F6 =18446744073709551617, F7 =340282366920938463463374607431768211457, Fs =115792089237316195423570985008687907853 269984665640564039457584007913129639937, Fg =134078079299425970995740249982058461274 793658205923933777235614437217640300735 469768018742981669034276900318581864860 50853753882811946569946433649006084097, FlO =179769313486231590772930519078902473361 797697894230657273430081157732675805500 963132708477322407536021120113879871393 357658789768814416622492847430639474124 377767893424865485276302219601246094119 453082952085005768838150682342462881473 913110540827237163350510684586298239947 245938479716304835356329624224137217. The only known Fermat primes are Fo, ... , F4 • 208 17 lectures on Fermat numbers Completely Factored Composite Fermat Numbers m prime factor year discoverer 5 641 1732 Euler 5 6700417 1732 Euler 6 274177 1855 Clausen 6 67280421310721* 1855 Clausen 7 59649589127497217 1970 Morrison, Brillhart 7 5704689200685129054721 1970 Morrison, Brillhart 8 1238926361552897 1980 Brent, Pollard 8 p**62 1980 Brent, Pollard 9 2424833 1903 Western 9 P49 1990 Lenstra, Lenstra, Jr., Manasse, Pollard 9 p***99 1990 Lenstra, Lenstra, Jr., Manasse, Pollard
    [Show full text]
  • Derivation of the Cycle Index Formula of the Affine Square(Q)
    International Journal of Algebra, Vol. 13, 2019, no. 7, 307 - 314 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/ija.2019.9725 Derivation of the Cycle Index Formula of the Affine Square(q) Group Acting on GF (q) Geoffrey Ngovi Muthoka Pure and Applied Sciences Department Kirinyaga University, P. O. Box 143-10300, Kerugoya, Kenya Ireri Kamuti Department of Mathematics and Actuarial Science Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya Mutie Kavila Department of Mathematics and Actuarial Science Kenyatta University, P. O. Box 43844-00100, Nairobi, Kenya This article is distributed under the Creative Commons by-nc-nd Attribution License. Copyright c 2019 Hikari Ltd. Abstract The concept of the cycle index of a permutation group was discovered by [7] and he gave it its present name. Since then cycle index formulas of several groups have been studied by different scholars. In this study the cycle index formula of an affine square(q) group acting on the elements of GF (q) where q is a power of a prime p has been derived using a method devised by [4]. We further express its cycle index formula in terms of the cycle index formulas of the elementary abelian group Pq and the cyclic group C q−1 since the affine square(q) group is a semidirect 2 product group of the two groups. Keywords: Cycle index, Affine square(q) group, Semidirect product group 308 Geoffrey Ngovi Muthoka, Ireri Kamuti and Mutie Kavila 1 Introduction [1] The set Pq = fx + b; where b 2 GF (q)g forms a normal subgroup of the affine(q) group and the set C q−1 = fax; where a is a non zero square in GF (q)g 2 forms a cyclic subgroup of the affine(q) group under multiplication.
    [Show full text]
  • An Introduction to Combinatorial Species
    An Introduction to Combinatorial Species Ira M. Gessel Department of Mathematics Brandeis University Summer School on Algebraic Combinatorics Korea Institute for Advanced Study Seoul, Korea June 14, 2016 The main reference for the theory of combinatorial species is the book Combinatorial Species and Tree-Like Structures by François Bergeron, Gilbert Labelle, and Pierre Leroux. What are combinatorial species? The theory of combinatorial species, introduced by André Joyal in 1980, is a method for counting labeled structures, such as graphs. What are combinatorial species? The theory of combinatorial species, introduced by André Joyal in 1980, is a method for counting labeled structures, such as graphs. The main reference for the theory of combinatorial species is the book Combinatorial Species and Tree-Like Structures by François Bergeron, Gilbert Labelle, and Pierre Leroux. If a structure has label set A and we have a bijection f : A B then we can replace each label a A with its image f (b) in!B. 2 1 c 1 c 7! 2 2 a a 7! 3 b 3 7! b More interestingly, it allows us to count unlabeled versions of labeled structures (unlabeled structures). If we have a bijection A A then we also get a bijection from the set of structures with! label set A to itself, so we have an action of the symmetric group on A acting on these structures. The orbits of these structures are the unlabeled structures. What are species good for? The theory of species allows us to count labeled structures, using exponential generating functions. What are species good for? The theory of species allows us to count labeled structures, using exponential generating functions.
    [Show full text]
  • 1 the Fermat Test
    Is this number prime? Berkeley Math Circle 2002–2003 Kiran Kedlaya Given a positive integer, how do you check whether it is prime (has itself and 1 as its only two positive divisors) or composite (not prime)? The simplest answer is of course to try to divide it by every smaller integer. There are various ways to improve on this exhaustive method, but they are not very practical for very large candidate numbers. So for a long time (centuries!), mathematicians have been interested in more efficient ways both to test for primality and to find complete factorizations. Nowadays, these questions have practical interest as well: large primes are needed for the RSA encryption algorithm (which among other things protects secure Web transactions), while factorization methods would make it possible to break the RSA system. While factorization is still a hard problem (to the best of my knowledge!), testing large numbers for primality has become much easier over the years. In this note, I explain three techniques for testing primality: the Fermat test, the Miller-Rabin test, and the new Agrawal- Kayal-Saxena test. 1 The Fermat test Recall Fermat’s little theorem: if p is a prime number and a is an integer relatively prime to p, then ap−1 ≡ 1 (mod p). Some experimentation shows that this typically fails when p is composite. Thus the Fermat test for checking the primality of an integer n: 1. Pick an integer a ∈ {2, . , n − 1}. 2. Compute gcd(a, n); if it’s greater than 1, then stop: n is composite.
    [Show full text]
  • Some New Results on Odd Perfect Numbers
    Pacific Journal of Mathematics SOME NEW RESULTS ON ODD PERFECT NUMBERS G. G. DANDAPAT,JOHN L. HUNSUCKER AND CARL POMERANCE Vol. 57, No. 2 February 1975 PACIFIC JOURNAL OF MATHEMATICS Vol. 57, No. 2, 1975 SOME NEW RESULTS ON ODD PERFECT NUMBERS G. G. DANDAPAT, J. L. HUNSUCKER AND CARL POMERANCE If ra is a multiply perfect number (σ(m) = tm for some integer ί), we ask if there is a prime p with m = pan, (pa, n) = 1, σ(n) = pα, and σ(pa) = tn. We prove that the only multiply perfect numbers with this property are the even perfect numbers and 672. Hence we settle a problem raised by Suryanarayana who asked if odd perfect numbers neces- sarily had such a prime factor. The methods of the proof allow us also to say something about odd solutions to the equation σ(σ(n)) ~ 2n. 1* Introduction* In this paper we answer a question on odd perfect numbers posed by Suryanarayana [17]. It is known that if m is an odd perfect number, then m = pak2 where p is a prime, p Jf k, and p = a z= 1 (mod 4). Suryanarayana asked if it necessarily followed that (1) σ(k2) = pa , σ(pa) = 2k2 . Here, σ is the sum of the divisors function. We answer this question in the negative by showing that no odd perfect number satisfies (1). We actually consider a more general question. If m is multiply perfect (σ(m) = tm for some integer t), we say m has property S if there is a prime p with m = pan, (pa, n) = 1, and the equations (2) σ(n) = pa , σ(pa) = tn hold.
    [Show full text]
  • Integer Factorization with a Neuromorphic Sieve
    Integer Factorization with a Neuromorphic Sieve John V. Monaco and Manuel M. Vindiola U.S. Army Research Laboratory Aberdeen Proving Ground, MD 21005 Email: [email protected], [email protected] Abstract—The bound to factor large integers is dominated by to represent n, the computational effort to factor n by trial the computational effort to discover numbers that are smooth, division grows exponentially. typically performed by sieving a polynomial sequence. On a Dixon’s factorization method attempts to construct a con- von Neumann architecture, sieving has log-log amortized time 2 2 complexity to check each value for smoothness. This work gruence of squares, x ≡ y mod n. If such a congruence presents a neuromorphic sieve that achieves a constant time is found, and x 6≡ ±y mod n, then gcd (x − y; n) must be check for smoothness by exploiting two characteristic properties a nontrivial factor of n. A class of subexponential factoring of neuromorphic architectures: constant time synaptic integration algorithms, including the quadratic sieve, build on Dixon’s and massively parallel computation. The approach is validated method by specifying how to construct the congruence of by modifying msieve, one of the fastest publicly available integer factorization implementations, to use the IBM Neurosynaptic squares through a linear combination of smooth numbers [5]. System (NS1e) as a coprocessor for the sieving stage. Given smoothness bound B, a number is B-smooth if it does not contain any prime factors greater than B. Additionally, let I. INTRODUCTION v = e1; e2; : : : ; eπ(B) be the exponents vector of a smooth number s, where s = Q pvi , p is the ith prime, and A number is said to be smooth if it is an integer composed 1≤i≤π(B) i i π (B) is the number of primes not greater than B.
    [Show full text]
  • 3.8 the Cycle Index Polynomial
    94 CHAPTER 3. GROUPS AND POLYA THEORY 3.8 The Cycle Index Polynomial Let G be a group acting on a set X. Then as mentioned at the end of the previous section, we need to understand the cycle decomposition of each g G as product of disjoint cycles. ∈ Redfield and Polya observed that elements of G with the same cyclic decomposition made the same contribution to the sets of fixed points. They defined the notion of cycle index polynomial to keep track of the cycle decomposition of the elements of G. Let us start with a few definitions and examples to better understand the use of cycle decomposition of an element of a permutation group. ℓ1 ℓ2 ℓn Definition 3.8.1. A permutation σ n is said to have the cycle structure 1 2 n , if ∈ S t · · · the cycle representation of σ has ℓi cycles of length i, for 1 i n. Observe that i ℓi = n. ≤ ≤ i=1 · Example 3.8.2. 1. Let e be the identity element of . Then e = (1) (2) (nP) and hence Sn · · · the cycle structure of e, as an element of equals 1n. Sn 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 2. Let σ = . Then it can be 3 6 7 10 14 1 2 13 15 4 11 5 8 12 9 ! easily verified that in the cycle notation, σ = (1 3 7 2 6) (4 10) (5 14 12) (8 13) (9 15) (11). Thus, the cycle structure of σ is 11233151.
    [Show full text]
  • On the Parity of the Number of Multiplicative Partitions and Related Problems
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 140, Number 11, November 2012, Pages 3793–3803 S 0002-9939(2012)11254-7 Article electronically published on March 15, 2012 ON THE PARITY OF THE NUMBER OF MULTIPLICATIVE PARTITIONS AND RELATED PROBLEMS PAUL POLLACK (Communicated by Ken Ono) Abstract. Let f(N) be the number of unordered factorizations of N,where a factorization is a way of writing N as a product of integers all larger than 1. For example, the factorizations of 30 are 2 · 3 · 5, 5 · 6, 3 · 10, 2 · 15, 30, so that f(30) = 5. The function f(N), as a multiplicative analogue of the (additive) partition function p(N), was first proposed by MacMahon, and its study was pursued by Oppenheim, Szekeres and Tur´an, and others. Recently, Zaharescu and Zaki showed that f(N) is even a positive propor- tion of the time and odd a positive proportion of the time. Here we show that for any arithmetic progression a mod m,thesetofN for which f(N) ≡ a(mod m) possesses an asymptotic density. Moreover, the density is positive as long as there is at least one such N. For the case investigated by Zaharescu and Zaki, we show that f is odd more than 50 percent of the time (in fact, about 57 percent). 1. Introduction Let f(N) be the number of unordered factorizations of N,whereafactorization of N is a way of writing N as a product of integers larger than 1. For example, f(12) = 4, corresponding to 2 · 6, 2 · 2 · 3, 3 · 4, 12.
    [Show full text]
  • The Prime-Power Map
    1 2 Journal of Integer Sequences, Vol. 24 (2021), 3 Article 21.2.2 47 6 23 11 The Prime-Power Map Steven Business Mathematics Department School of Applied STEM Universitas Prasetiya Mulya South Tangerang 15339 Indonesia [email protected] Jonathan Hoseana Department of Mathematics Parahyangan Catholic University Bandung 40141 Indonesia [email protected] Abstract We introduce a modification of Pillai’s prime map: the prime-power map. This map fixes 1, divides its argument by p if it is a prime power pk, and otherwise subtracts from its argument the largest prime power not exceeding it. We study the iteration of this map over the positive integers, developing, firstly, results parallel to those known for the prime map. Subsequently, we compare its dynamical properties to those of a more manageable variant of the map under which any orbit admits an explicit description. Finally, we present some experimental observations, based on which we conjecture that almost every orbit of the prime-power map contains no prime power. 1 Introduction Let P be the set of primes (A000040 in the On-Line Encyclopedia of Integer Sequences [10]). In 1930, Pillai [9] introduced the prime map x 7→ x − r(x), where r(x) is the largest element 1 of P ∪ {0, 1} not exceeding x, under whose iteration every positive-integer initial condition is eventually fixed at 0, the only fixed point of the map. Interesting results on the asymptotic behavior of the time steps R(x) it takes for an initial condition x to reach the fixed point were established, before subsequently improved by Luca and Thangadurai [7] in 2009.
    [Show full text]
  • 2 Primes Numbers
    V55.0106 Quantitative Reasoning: Computers, Number Theory and Cryptography 2 Primes Numbers Definition 2.1 A number is prime is it is greater than 1, and its only divisors are itself and 1. A number is called composite if it is greater than 1 and is the product of two numbers greater than 1. Thus, the positive numbers are divided into three mutually exclusive classes. The prime numbers, the composite numbers, and the unit 1. We can show that a number is composite numbers by finding a non-trivial factorization.8 Thus, 21 is composite because 21 = 3 7. The letter p is usually used to denote a prime number. × The first fifteen prime numbers are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41 These are found by a process of elimination. Starting with 2, 3, 4, 5, 6, 7, etc., we eliminate the composite numbers 4, 6, 8, 9, and so on. There is a systematic way of finding a table of all primes up to a fixed number. The method is called a sieve method and is called the Sieve of Eratosthenes9. We first illustrate in a simple example by finding all primes from 2 through 25. We start by listing the candidates: 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25 The first number 2 is a prime, but all multiples of 2 after that are not. Underline these multiples. They are eliminated as composite numbers. The resulting list is as follows: 2, 3, 4,5,6,7,8,9,10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24,25 The next number not eliminated is 3, the next prime.
    [Show full text]