Multinomial Var Backtests: a Simple Implicit Approach to Backtesting Expected Shortfall
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Binomials, Contingency Tables, Chi-Square Tests
Binomials, contingency tables, chi-square tests Joe Felsenstein Department of Genome Sciences and Department of Biology Binomials, contingency tables, chi-square tests – p.1/16 Confidence limits on a proportion To work out a confidence interval on binomial proportions, use binom.test. If we want to see whether 0.20 is too high a probability of Heads when we observe 5 Heads out of 50 tosses, we use binom.test(5, 50, 0.2) which gives probability of 5 or fewer Heads as 0.09667, so a test does not exclude 0.20 as the Heads probability. > binom.test(5,50,0.2) Exact binomial test data: 5 and 50 number of successes = 5, number of trials = 50, p-value = 0.07883 alternative hypothesis: true probability of success is not equal to 0.2 95 percent confidence interval: 0.03327509 0.21813537 sample estimates: probability of success 0.1 Binomials, contingency tables, chi-square tests – p.2/16 Confidence intervals and tails of binomials Confidence limits for p if there are 5 Heads out of 50 tosses p = 0.0332750 is 0.025 p = 0.21813537 is 0.025 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 Binomials, contingency tables, chi-square tests – p.3/16 Testing equality of binomial proportions How do we test whether two coins have the same Heads probability? This is hard, but there is a good approximation, the chi-square test. You set up a 2 × 2 table of numbers of outcomes: Heads Tails Coin #1 15 25 Coin #2 9 31 In fact the chi-square test can test bigger tables: R rows by C columns. -
Incorporating Extreme Events Into Risk Measurement
Lecture notes on risk management, public policy, and the financial system Incorporating extreme events into risk measurement Allan M. Malz Columbia University Incorporating extreme events into risk measurement Outline Stress testing and scenario analysis Expected shortfall Extreme value theory © 2021 Allan M. Malz Last updated: July 25, 2021 2/24 Incorporating extreme events into risk measurement Stress testing and scenario analysis Stress testing and scenario analysis Stress testing and scenario analysis Expected shortfall Extreme value theory 3/24 Incorporating extreme events into risk measurement Stress testing and scenario analysis Stress testing and scenario analysis What are stress tests? Stress tests analyze performance under extreme loss scenarios Heuristic portfolio analysis Steps in carrying out a stress test 1. Determine appropriate scenarios 2. Calculate shocks to risk factors in each scenario 3. Value the portfolio in each scenario Objectives of stress testing Address tail risk Reduce model risk by reducing reliance on models “Know the book”: stress tests can reveal vulnerabilities in specfic positions or groups of positions Criteria for appropriate stress scenarios Should be tailored to firm’s specific key vulnerabilities And avoid assumptions that favor the firm, e.g. competitive advantages in a crisis Should be extreme but not implausible 4/24 Incorporating extreme events into risk measurement Stress testing and scenario analysis Stress testing and scenario analysis Approaches to formulating stress scenarios Historical -
Binomial Test Models and Item Difficulty
Binomial Test Models and Item Difficulty Wim J. van der Linden Twente University of Technology In choosing a binomial test model, it is impor- have characteristic functions of the Guttman type. tant to know exactly what conditions are imposed In contrast, the stochastic conception allows non- on item difficulty. In this paper these conditions Guttman items but requires that all characteristic are examined for both a deterministic and a sto- functions must intersect at the same point, which chastic conception of item responses. It appears implies equal classically defined difficulty. The that they are more restrictive than is generally beta-binomial model assumes identical char- understood and differ for both conceptions. When acteristic functions for both conceptions, and this the binomial model is applied to a fixed examinee, also implies equal difficulty. Finally, the compound the deterministic conception imposes no conditions binomial model entails no restrictions on item diffi- on item difficulty but requires instead that all items culty. In educational and psychological testing, binomial models are a class of models increasingly being applied. For example, in the area of criterion-referenced measurement or mastery testing, where tests are usually conceptualized as samples of items randomly drawn from a large pool or do- main, binomial models are frequently used for estimating examinees’ mastery of a domain and for de- termining sample size. Despite the agreement among several writers on the usefulness of binomial models, opinions seem to differ on the restrictions on item difficulties implied by the models. Mill- man (1973, 1974) noted that in applying the binomial models, items may be relatively heterogeneous in difficulty. -
Bitest — Binomial Probability Test
Title stata.com bitest — Binomial probability test Description Quick start Menu Syntax Option Remarks and examples Stored results Methods and formulas Reference Also see Description bitest performs exact hypothesis tests for binomial random variables. The null hypothesis is that the probability of a success on a trial is #p. The total number of trials is the number of nonmissing values of varname (in bitest) or #N (in bitesti). The number of observed successes is the number of 1s in varname (in bitest) or #succ (in bitesti). varname must contain only 0s, 1s, and missing. bitesti is the immediate form of bitest; see [U] 19 Immediate commands for a general introduction to immediate commands. Quick start Exact test for probability of success (a = 1) is 0.4 bitest a = .4 With additional exact probabilities bitest a = .4, detail Exact test that the probability of success is 0.46, given 22 successes in 74 trials bitesti 74 22 .46 Menu bitest Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Binomial probability test bitesti Statistics > Summaries, tables, and tests > Classical tests of hypotheses > Binomial probability test calculator 1 2 bitest — Binomial probability test Syntax Binomial probability test bitest varname== #p if in weight , detail Immediate form of binomial probability test bitesti #N #succ #p , detail by is allowed with bitest; see [D] by. fweights are allowed with bitest; see [U] 11.1.6 weight. Option Advanced £ £detail shows the probability of the observed number of successes, kobs; the probability of the number of successes on the opposite tail of the distribution that is used to compute the two-sided p-value, kopp; and the probability of the point next to kopp. -
University of Regina Lecture Notes Michael Kozdron
University of Regina Statistics 441 – Stochastic Calculus with Applications to Finance Lecture Notes Winter 2009 Michael Kozdron [email protected] http://stat.math.uregina.ca/∼kozdron List of Lectures and Handouts Lecture #1: Introduction to Financial Derivatives Lecture #2: Financial Option Valuation Preliminaries Lecture #3: Introduction to MATLAB and Computer Simulation Lecture #4: Normal and Lognormal Random Variables Lecture #5: Discrete-Time Martingales Lecture #6: Continuous-Time Martingales Lecture #7: Brownian Motion as a Model of a Fair Game Lecture #8: Riemann Integration Lecture #9: The Riemann Integral of Brownian Motion Lecture #10: Wiener Integration Lecture #11: Calculating Wiener Integrals Lecture #12: Further Properties of the Wiener Integral Lecture #13: ItˆoIntegration (Part I) Lecture #14: ItˆoIntegration (Part II) Lecture #15: Itˆo’s Formula (Part I) Lecture #16: Itˆo’s Formula (Part II) Lecture #17: Deriving the Black–Scholes Partial Differential Equation Lecture #18: Solving the Black–Scholes Partial Differential Equation Lecture #19: The Greeks Lecture #20: Implied Volatility Lecture #21: The Ornstein-Uhlenbeck Process as a Model of Volatility Lecture #22: The Characteristic Function for a Diffusion Lecture #23: The Characteristic Function for Heston’s Model Lecture #24: Review Lecture #25: Review Lecture #26: Review Lecture #27: Risk Neutrality Lecture #28: A Numerical Approach to Option Pricing Using Characteristic Functions Lecture #29: An Introduction to Functional Analysis for Financial Applications Lecture #30: A Linear Space of Random Variables Lecture #31: Value at Risk Lecture #32: Monetary Risk Measures Lecture #33: Risk Measures and their Acceptance Sets Lecture #34: A Representation of Coherent Risk Measures Lecture #35: Further Remarks on Value at Risk Lecture #36: Midterm Review Statistics 441 (Winter 2009) January 5, 2009 Prof. -
Jise.Org/Volume31/N1/Jisev31n1p72.Html
Journal of Information Volume 31 Systems Issue 1 Education Winter 2020 Experiences in Using a Multiparadigm and Multiprogramming Approach to Teach an Information Systems Course on Introduction to Programming Juan Gutiérrez-Cárdenas Recommended Citation: Gutiérrez-Cárdenas, J. (2020). Experiences in Using a Multiparadigm and Multiprogramming Approach to Teach an Information Systems Course on Introduction to Programming. Journal of Information Systems Education, 31(1), 72-82. Article Link: http://jise.org/Volume31/n1/JISEv31n1p72.html Initial Submission: 23 December 2018 Accepted: 24 May 2019 Abstract Posted Online: 12 September 2019 Published: 3 March 2020 Full terms and conditions of access and use, archived papers, submission instructions, a search tool, and much more can be found on the JISE website: http://jise.org ISSN: 2574-3872 (Online) 1055-3096 (Print) Journal of Information Systems Education, Vol. 31(1) Winter 2020 Experiences in Using a Multiparadigm and Multiprogramming Approach to Teach an Information Systems Course on Introduction to Programming Juan Gutiérrez-Cárdenas Faculty of Engineering and Architecture Universidad de Lima Lima, 15023, Perú [email protected] ABSTRACT In the current literature, there is limited evidence of the effects of teaching programming languages using two different paradigms concurrently. In this paper, we present our experience in using a multiparadigm and multiprogramming approach for an Introduction to Programming course. The multiparadigm element consisted of teaching the imperative and functional paradigms, while the multiprogramming element involved the Scheme and Python programming languages. For the multiparadigm part, the lectures were oriented to compare the similarities and differences between the functional and imperative approaches. For the multiprogramming part, we chose syntactically simple software tools that have a robust set of prebuilt functions and available libraries. -
The Exact Binomial Test Between Two Independent Proportions: a Companion
¦ 2021 Vol. 17 no. 2 The EXACT BINOMIAL TEST BETWEEN TWO INDEPENDENT proportions: A COMPANION Louis Laurencelle A B A Universit´ED’Ottawa AbstrACT ACTING Editor This note, A SUMMARY IN English OF A FORMER ARTICLE IN French (Laurencelle, 2017), De- PRESENTS AN OUTLINE OF THE THEORY AND IMPLEMENTATION OF AN EXACT TEST OF THE DIFFERENCE BETWEEN NIS Cousineau (Uni- VERSIT´ED’Ottawa) TWO BINOMIAL variables. Essential FORMULAS ARE provided, AS WELL AS TWO EXECUTABLE COMPUTER pro- Reviewers GRams, ONE IN Delphi, THE OTHER IN R. KEYWORDS TOOLS No REVIEWER EXACT TEST OF TWO proportions. Delphi, R. B [email protected] 10.20982/tqmp.17.2.p076 Introduction SERVED DIFFERENCE AND THEN ACCUMULATING THE PROBABILITIES OF EQUAL OR MORE EXTREME differences. Let THERE BE TWO SAMPLES OF GIVEN SIZES n1 AND n2, AND Our PROPOSED test, SIMILAR TO THAT OF Liddell (1978), USES AND NUMBERS x1 AND x2 OF “SUCCESSES” IN CORRESPONDING THE SAME PROCEDURE OF ENUMERATING THE (n1 +1)×(n2 +1) samples, WHERE 0 ≤ x1 ≤ n1 AND 0 ≤ x2 ≤ n2. The POSSIBLE differences, THIS TIME EXPLOITING THE INTEGRAL do- PURPOSE OF THE TEST IS TO DETERMINE WHETHER THE DIFFERENCE MAIN (0::1) OF THE π PARAMETER IN COMBINATION WITH AN ap- x1=n1 − x2=n2 RESULTS FROM ORDINARY RANDOM VARIATION PROPRIATE WEIGHTING function. OR IF IT IS PROBABILISTICALLY exceptional, GIVEN A probabil- Derivation OF THE EXACT TEST ITY threshold. Treatises AND TEXTBOOKS ON APPLIED statis- TICS REPORT A NUMBER OF TEST PROCEDURES USING SOME FORM OF Let R1 = (x1; n1) AND R2 = (x2; n2) BE THE RESULTS OF normal-based approximation, SUCH AS A Chi-squared test, TWO BINOMIAL observations, AND THEIR OBSERVED DIFFERENCE VARIOUS SORTS OF z (normal) AND t (Student’s) TESTS WITH OR dO = x1=n1 − x2=n2, WHERE R1 ∼ B(x1jn1; π1), R2 ∼ WITHOUT CONTINUITY correction, etc. -
A Flexible Statistical Power Analysis Program for the Social, Behavioral, and Biomedical Sciences
Running Head: G*Power 3 G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences (in press). Behavior Research Methods. Franz Faul Christian-Albrechts-Universität Kiel Kiel, Germany Edgar Erdfelder Universität Mannheim Mannheim, Germany Albert-Georg Lang and Axel Buchner Heinrich-Heine-Universität Düsseldorf Düsseldorf, Germany Please send correspondence to: Prof. Dr. Edgar Erdfelder Lehrstuhl für Psychologie III Universität Mannheim Schloss Ehrenhof Ost 255 D-68131 Mannheim, Germany Email: [email protected] Phone +49 621 / 181 – 2146 Fax: + 49 621 / 181 - 3997 G*Power 3 (BSC702) Page 2 Abstract G*Power (Erdfelder, Faul, & Buchner, Behavior Research Methods, Instruments, & Computers, 1996) was designed as a general stand-alone power analysis program for statistical tests commonly used in social and behavioral research. G*Power 3 is a major extension of, and improvement over, the previous versions. It runs on widely used computer platforms (Windows XP, Windows Vista, Mac OS X 10.4) and covers many different statistical tests of the t-, F-, and !2-test families. In addition, it includes power analyses for z tests and some exact tests. G*Power 3 provides improved effect size calculators and graphic options, it supports both a distribution-based and a design-based input mode, and it offers all types of power analyses users might be interested in. Like its predecessors, G*Power 3 is free. G*Power 3 (BSC702) Page 3 G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences Statistics textbooks in the social, behavioral, and biomedical sciences typically stress the importance of power analyses. -
Modeling Vehicle Insurance Loss Data Using a New Member of T-X Family of Distributions
Journal of Statistical Theory and Applications Vol. 19(2), June 2020, pp. 133–147 DOI: https://doi.org/10.2991/jsta.d.200421.001; ISSN 1538-7887 https://www.atlantis-press.com/journals/jsta Modeling Vehicle Insurance Loss Data Using a New Member of T-X Family of Distributions Zubair Ahmad1, Eisa Mahmoudi1,*, Sanku Dey2, Saima K. Khosa3 1Department of Statistics, Yazd University, Yazd, Iran 2Department of Statistics, St. Anthonys College, Shillong, India 3Department of Statistics, Bahauddin Zakariya University, Multan, Pakistan ARTICLEINFO A BSTRACT Article History In actuarial literature, we come across a diverse range of probability distributions for fitting insurance loss data. Popular Received 16 Oct 2019 distributions are lognormal, log-t, various versions of Pareto, log-logistic, Weibull, gamma and its variants and a generalized Accepted 14 Jan 2020 beta of the second kind, among others. In this paper, we try to supplement the distribution theory literature by incorporat- ing the heavy tailed model, called weighted T-X Weibull distribution. The proposed distribution exhibits desirable properties Keywords relevant to the actuarial science and inference. Shapes of the density function and key distributional properties of the weighted Heavy-tailed distributions T-X Weibull distribution are presented. Some actuarial measures such as value at risk, tail value at risk, tail variance and tail Weibull distribution variance premium are calculated. A simulation study based on the actuarial measures is provided. Finally, the proposed method Insurance losses is illustrated via analyzing vehicle insurance loss data. Actuarial measures Monte Carlo simulation Estimation 2000 Mathematics Subject Classification: 60E05, 62F10. © 2020 The Authors. Published by Atlantis Press SARL. -
Week 10: Chapter 10
EEOS 601 UMASS/Online Introduction to Probability & Applied Statistics Handout 13, Week 10 Tu 8/2/11-M 8/8/11 Revised: 3/20/11 WEEK 10: CHAPTER 10 TABLE OF CONTENTS Page: List of Figures. ................................................................................... 2 List of Tables. .................................................................................... 2 List of m.files. .................................................................................... 2 Assignment.. 3 Required reading. 3 Understanding by Design Templates. .................................................................. 4 Understanding By Design Stage 1 — Desired Results...................................................... 4 Understanding by Design Stage 2 — Assessment Evidence Week 10 Tu 8/2-8/8................................. 4 Introduction. ..................................................................................... 5 Theorems and definitions. ........................................................................... 7 Theorem 10.2.1. 7 Theorem 10.3.1. 7 Theorem 10.4.1. 7 Theorem 10.5.1. 8 Statistical Tests.. 9 Fisher’s hypergeometric test. ................................................................. 9 Fisher’s test as an exact test for tests of homogeneity and independence. ....................... 10 Fisher’s test and Matlab. 11 What is a test of homogeneity?. .............................................................. 11 Sampling schemes producing contingency tables. ................................................ 11 Case -
Power of the Binomial Test Is Computed Using the Binomial (Exact) Sampling Distribution of the Test Statistic
Title stata.com power oneproportion — Power analysis for a one-sample proportion test Description Quick start Menu Syntax Options Remarks and examples Stored results Methods and formulas References Also see Description power oneproportion computes sample size, power, or target proportion for a one-sample proportion test. By default, it computes sample size for given power and the values of the proportion parameters under the null and alternative hypotheses. Alternatively, it can compute power for given sample size and values of the null and alternative proportions or the target proportion for given sample size, power, and the null proportion. For power and sample-size analysis in a cluster randomized design, see[ PSS-2] power oneproportion, cluster. Also see[ PSS-2] power for a general introduction to the power command using hypothesis tests. Quick start Sample size for a test of H0: π = 0.2 versus Ha: π 6= 0.2 with null proportion p0 = 0.2, alternative proportion pa = 0.1, default power of 0.8, and significance level α = 0.05 power oneproportion .2 .1 As above, but for pa equal to 0.05, 0.075, 0.1, 0.125, and 0.15 power oneproportion .2 (.05(.025).15) As above, but display results as a graph of sample size versus alternative proportion power oneproportion .2 (.05(.025).15), graph Sample size for one-sided test with power of 0.9 power oneproportion .2 .1, power(.9) onesided Sample size for a Wald test instead of the default score test power oneproportion .2 .1, test(wald) Power for a sample size of 120 power oneproportion .2 .1, n(120) -
Sample Size Calculation with Gpower
Sample Size Calculation with GPower Dr. Mark Williamson, Statistician Biostatistics, Epidemiology, and Research Design Core DaCCoTA Purpose ◦ This Module was created to provide instruction and examples on sample size calculations for a variety of statistical tests on behalf of BERDC ◦ The software used is GPower, the premiere free software for sample size calculation that can be used in Mac or Windows https://dl2.macupdate.com/images/icons256/24037.png Background ◦ The Biostatistics, Epidemiology, and Research Design Core (BERDC) is a component of the DaCCoTA program ◦ Dakota Cancer Collaborative on Translational Activity has as its goal to bring together researchers and clinicians with diverse experience from across the region to develop unique and innovative means of combating cancer in North and South Dakota ◦ If you use this Module for research, please reference the DaCCoTA project The Why of Sample Size Calculation ◦ In designing an experiment, a key question is: How many animals/subjects do I need for my experiment? ◦ Too small of a sample size can under-detect the effect of interest in your experiment ◦ Too large of a sample size may lead to unnecessary wasting of resources and animals ◦ Like Goldilocks, we want our sample size to be ‘just right’ ◦ The answer: Sample Size Calculation ◦ Goal: We strive to have enough samples to reasonably detect an effect if it really is there without wasting limited resources on too many samples. https://upload.wikimedia.org/wikipedia/commons/thumb/e/ef/The_Three_Bears_- _Project_Gutenberg_eText_17034.jpg/1200px-The_Three_Bears_-_Project_Gutenberg_eText_17034.jpg