Biological Studies of a European Fruit Fly, Euphranta Connexa (Diptera: Tephritidae), a Candidate Biological Control Agent for Invasive Swallow-Worts

Total Page:16

File Type:pdf, Size:1020Kb

Biological Studies of a European Fruit Fly, Euphranta Connexa (Diptera: Tephritidae), a Candidate Biological Control Agent for Invasive Swallow-Worts Biological studies of a European fruit fly, Euphranta connexa (Diptera: Tephritidae), a candidate biological control agent for invasive swallow-worts By Alicia M. Leroux A Thesis submitted to the Faculty of Graduate Studies of The University of Manitoba in partial fulfilment of the requirements for the degree of MASTER OF SCIENCE Department of Entomology University of Manitoba Winnipeg, Manitoba © Alicia M. Leroux 2014 ABSTRACT The biology of Euphranta connexa was investigated to assess its potential as a biological control agent for introduction in North America against the invasive weeds Vincetoxicum rossicum (Kleopow) and V. nigrum (L.) (Apocynaceae). A range of temperatures suitable for development was determined for the pupal and egg stages of E. connexa. The pupa is the overwintering stage of E. connexa and does not exhibit a diapause, but undergoes a cold induced quiescence. The relationship of temperature to pupal developmental was investigated and did not differ among insects from sites over a range of altitude of 1300 m, indicating E. connexa may not be locally adapted. When adult female E. connexa emerged from pupae they had not developed eggs but 10 to 15 days later they had a full complement of developed eggs. Mating of E. connexa did not affect the egg load of females but egg load was reduced in females that had spent longer as pupae in cold conditions. There was evidence that females could resorb previously developed eggs. In surveys for larval and larval-pupal parasitoids of E. connexa infested seedpods of V. hirundinaria from three countries, there were a total of 1599 parasitoids from eight Hymenoptera families,and most parasitoids were Braconidae. Prior to the survey, the fruit midge, Contarinia asclepiadis (Diptera: Cecidomyiidae) was considered rare, but it was found in seedpods from all collection sites in Switzerland and infested about 9.2% of seedpods at two localities in 2013. Of 13 parasitoid morphospecies found in the survey, two braconid and one ichneumonid morphospecies were frequent and were parasitoids of E. connexa, three platygastrid morphospecies were probably parasitoids of C. asclepiadis, and three morphospecies were probably hyperparasitoids. The thesis research will allow 1 development of effective methods for studying impact and host range of E. connexa, studies that are required to assess the potential as a biological control agent against V. rossicum and V. nigrum. 2 ACKNOWLEDGEMENTS I would like to start by thanking Dr. Holliday for his time and patience. His support and drive to see his students improve and succeed have helped me through both my undergraduate and graduate careers. Andre Gassman provided a healthy work place balanced with pragmatism and humor that was needed and welcomed through the duration of my thesis. Other members of CABI I would like to thank are Hariet Hinz for her constructive feedback and Ulli Kuhlmann for his help in developing collaboration between CABI and the University of Manitoba that has made my thesis possible. The entire committee provided me with freedom that was difficult at times but provided me with a chance to establish myself in my field. I would like to thank the many students at CABI for providing assistance over the years that helped aid me in my thesis: Maja Penic, Meaghan Bennett, Janine Brooke, Ariel Firebaugh, Emily Palmer, Clesson Higashi, Cornelia Closa, Sara Abdallah, and Léna Durocher-Granger. Special thanks go to Alyson Carter, Letitia de Ros, Sean Pablo, and Matt Wahlberg for all the support and understanding. Thank you to my many office mates over the years that were always accepting, offering support and keeping quiet about the collection of coffee mugs always present around my space. My parents were a constant and necessary support and without them, finishing this degree would have been difficult, if not impossible. They helped maintain my life in Canada while trying to understand my field. 3 Table of Contents ABSTRACT ......................................................................................................................... 1 ACKNOWLEDGEMENTS ................................................................................................. 3 LIST OF TABLES ............................................................................................................... 7 LIST OF FIGURES ............................................................................................................. 9 CHAPTER 1: INTRODUCTION ...................................................................................... 11 CHAPTER 2: LITERATURE REVIEW ........................................................................... 13 Negative effects of invasive plants ............................................................................. 13 Management of invasive plants .................................................................................. 15 Classical biological control of invasive plants by insects .............................................. 16 Benefits of classical biological control ....................................................................... 17 Risks of classical biological control ........................................................................... 18 Elements required for release of a classical biological control agent ......................... 20 Selection of a target weed ........................................................................................... 20 Establishing a list of potential biological control agents ............................................ 21 Potential agent assessment .......................................................................................... 21 Taxonomy .............................................................................................................. 21 Current and expected geographic distribution ....................................................... 22 Agent population source ........................................................................................ 22 Host range .............................................................................................................. 22 Life history ............................................................................................................. 23 Natural enemies ..................................................................................................... 23 Insect handling ....................................................................................................... 23 Host specificity ...................................................................................................... 24 Impacts once control agents are released ............................................................... 25 Post release monitoring .......................................................................................... 26 Vincetoxicum spp. and Euphranta connexa study system .............................................. 26 Taxonomy of Vincetoxicum spp. ................................................................................ 26 Distribution and habitat requirements of Vincetoxicum spp. in Europe ..................... 27 Distribution and habitat requirements of Vincetoxicum spp. in North America......... 28 Biology of Vincetoxicum spp. ..................................................................................... 30 Effects of Vincetoxicum spp. in North America ......................................................... 32 Euphranta connexa ........................................................................................................ 34 Taxonomy of Euphranta connexa .............................................................................. 34 Life history of Euphranta connexa ............................................................................. 34 4 Natural enemies affecting Euphranta connexa........................................................... 36 Host plant interactions of Vincetoxicum hirundinaria and Euphranta connexa ........ 37 Current status of the Vincetoxicum spp. biological control program ............................. 38 Research needed to assess Euphranta connexa .............................................................. 41 CHAPTER 3: EFFECTS OF TEMPERATURE ON PUPAL AND EGG DEVELOPMENT IN EUPHRANTA CONNEXA (DIPTERA: TEPHRITIDAE) AND IMPACTS FOR BIOLOGICAL CONTROL .................................................................... 45 Abstract .......................................................................................................................... 45 Introduction .................................................................................................................... 46 Materials and methods ................................................................................................... 48 Adult development...................................................................................................... 48 Egg development ........................................................................................................ 51 Results ............................................................................................................................ 53 Adult development...................................................................................................... 53 Egg development ........................................................................................................ 55 Discussion .....................................................................................................................
Recommended publications
  • Alexander Krings Herbarium, Department of Plant Biology North Carolina State University Raleigh, North Carolina 27695-7612, U.S.A
    Index of names and types in West Indian Gonolobinae (Apocynace- ae: Asclepiadoideae), including fourteen new lectotypifications, one neotypification, A new name, and A new combination Alexander Krings Herbarium, Department of Plant Biology North Carolina State University Raleigh, North Carolina 27695-7612, U.S.A. [email protected] ABSTRACT Types and their location of deposit are provided for taxa of subtribe Gonolobinae (Apocynaceae: Asclepiadoideae) in the West Indies. The following fourteen taxa are lectotypified: Gonolobus bayatensis Urb., G. broadwayae Schltr., G. ciliatus Schltr., G. dictyopetalus Urb. & Ekman, G. ekmanii Urb., G. nipensis Urb., G. sintenisii Schltr., G. tigrinus Griseb., G. tobagensis Urb., G. variifolius Schltr., Ibatia mollis Griseb., Poicilla costata Urb., Poicilla tamnifolia Griseb., and Poicillopsis crispiflora Urb. Gonolobus grenadensis Schltr. is neotypified. A new name and a new combination in Matelea Aubl. are respectively proposed for Jacaima parvifolia Proctor and J. costata (Urb.) Rendle var. goodfriendii Proctor. RESUMEN Se aportan tipos y su localización de taxa de la subtribu Gonolobinae (Apocynaceae: Asclepiadoideae) en las Indias Occidentales. Se lectotipifican los siguientes catorce taxa: Gonolobus bayatensis Urb., G. broadwayae Schltr., G. ciliatus Schltr., G. dictyopetalus Urb. & Ekman, G. ekmanii Urb., G. nipensis Urb., G. sintenisii Schltr., G. tigrinus Griseb., G. tobagensis Urb., G. variifolius Schltr., Ibatia mollis Griseb., Poicilla costata Urb., Poicilla tamnifolia Griseb., y Poicillopsis crispiflora Urb. Se neotipifica Gonolobus grenadensis Schltr. Se propone un nombre y una combinación nueva en Matelea Aubl. para Jacaima parvifolia Proctor y J. costata (Urb.) Rendle var. goodfriendii Proctor respectivamente. INTRODUCTION Subtribe Gonolobinae (Apocynaceae: Asclepiadoideae) comprises about fifty species in the West Indies, here defined to include the Greater and Lesser Antilles, the Bahamas, Trinidad and Tobago, Aruba and the Neth- erland Antilles, and the Cayman Islands.
    [Show full text]
  • Bulletin Number / Numéro 1 Entomological Society of Canada March / Mars 2011 Société D’Entomologie Du Canada
    ............................................................ ............................................................ Volume 43 Bulletin Number / numéro 1 Entomological Society of Canada March / mars 2011 Société d’entomologie du Canada Published quarterly by the Entomological Society of Canada Publication trimestrielle par la Société d’entomologie du Canada ........................................................ .......................................................................................................................................................... .......................................................................................................................................................... ................................................................... .................................................................................. ............................................................... .......................................................................................................................................................................................... List of contents / Table des matières Volume 43(1), March / mars 2011 Up front / Avant-propos ..............................................................................................................1 Moth balls / Boules à mites ............................................................................................................3 Dear Buggy / Cher Bibitte ...............................................................................................................6
    [Show full text]
  • Dipterists Forum
    BULLETIN OF THE Dipterists Forum Bulletin No. 76 Autumn 2013 Affiliated to the British Entomological and Natural History Society Bulletin No. 76 Autumn 2013 ISSN 1358-5029 Editorial panel Bulletin Editor Darwyn Sumner Assistant Editor Judy Webb Dipterists Forum Officers Chairman Martin Drake Vice Chairman Stuart Ball Secretary John Kramer Meetings Treasurer Howard Bentley Please use the Booking Form included in this Bulletin or downloaded from our Membership Sec. John Showers website Field Meetings Sec. Roger Morris Field Meetings Indoor Meetings Sec. Duncan Sivell Roger Morris 7 Vine Street, Stamford, Lincolnshire PE9 1QE Publicity Officer Erica McAlister [email protected] Conservation Officer Rob Wolton Workshops & Indoor Meetings Organiser Duncan Sivell Ordinary Members Natural History Museum, Cromwell Road, London, SW7 5BD [email protected] Chris Spilling, Malcolm Smart, Mick Parker Nathan Medd, John Ismay, vacancy Bulletin contributions Unelected Members Please refer to guide notes in this Bulletin for details of how to contribute and send your material to both of the following: Dipterists Digest Editor Peter Chandler Dipterists Bulletin Editor Darwyn Sumner Secretary 122, Link Road, Anstey, Charnwood, Leicestershire LE7 7BX. John Kramer Tel. 0116 212 5075 31 Ash Tree Road, Oadby, Leicester, Leicestershire, LE2 5TE. [email protected] [email protected] Assistant Editor Treasurer Judy Webb Howard Bentley 2 Dorchester Court, Blenheim Road, Kidlington, Oxon. OX5 2JT. 37, Biddenden Close, Bearsted, Maidstone, Kent. ME15 8JP Tel. 01865 377487 Tel. 01622 739452 [email protected] [email protected] Conservation Dipterists Digest contributions Robert Wolton Locks Park Farm, Hatherleigh, Oakhampton, Devon EX20 3LZ Dipterists Digest Editor Tel.
    [Show full text]
  • Asclepias Incarnata – Swamp-Milkweed
    Cultivation Notes No. 56 THE RHODE ISLAND WILD PLANT SOCIETY Fall 2011 Swamp-milkweed – Asclepias incarnata Family: Asclepiadaceae By M.S. Hempstead The milkweeds, genus Asclepias, are a friendly bunch. They look enough alike to be clearly related to each other, but at least our Rhode Island species’ are different enough to be easily distinguishable from each other. Furthermore, they are big, bold and tall, easy on creaking backs. Eight of the 110 species found in North America appear in the Vascular Flora of Rhode Island, although one of them, A. purpurascens, hasn’t been reported in the state since 1906. A. quadrifolia is listed as “State Endangered,” and four of the others are “Of Concern.” That leaves A. syriaca, Common Milkweed, and A. incarnate, Swamp-milkweed, as abundant. A. syriaca can be found in just about any unmowed field. A. incarnata is common in its favorite wet environment, on the shores of many of our rivers and ponds. Swamp- milkweed, with its bright pink flowers, is no less glamorous than its popular but rarer cousin, Butterfly-weed (A. tuberosa). Both would probably prefer that we not mention their reviled cousin, Black Swallowwort (Vincetoxicum nigrum). The milkweeds’ pollination mechanism is so complex that one wonders how the Swamp-milkweed job ever gets done. In the center of the flower is the gynostegium, a stumplike structure, consisting of the stigmatic head with five stamens fused to the outside of it. Each stamen is hidden behind one of the five petal-like hoods that surround the gymnostegium. The pollen-containing anthers, instead of waving in the breeze as in normal flowers, are stuck to the sides of the gynostegium.
    [Show full text]
  • Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; Download Unter
    ZOBODAT - www.zobodat.at Zoologisch-Botanische Datenbank/Zoological-Botanical Database Digitale Literatur/Digital Literature Zeitschrift/Journal: Entomofauna Jahr/Year: 2007 Band/Volume: 0028 Autor(en)/Author(s): Yefremova Zoya A., Ebrahimi Ebrahim, Yegorenkova Ekaterina Artikel/Article: The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) 321-356 ©Entomofauna Ansfelden/Austria; download unter www.biologiezentrum.at Entomofauna ZEITSCHRIFT FÜR ENTOMOLOGIE Band 28, Heft 25: 321-356 ISSN 0250-4413 Ansfelden, 30. November 2007 The Subfamilies Eulophinae, Entedoninae and Tetrastichinae in Iran, with description of new species (Hymenoptera: Eulophidae) Zoya YEFREMOVA, Ebrahim EBRAHIMI & Ekaterina YEGORENKOVA Abstract This paper reflects the current degree of research of Eulophidae and their hosts in Iran. A list of the species from Iran belonging to the subfamilies Eulophinae, Entedoninae and Tetrastichinae is presented. In the present work 47 species from 22 genera are recorded from Iran. Two species (Cirrospilus scapus sp. nov. and Aprostocetus persicus sp. nov.) are described as new. A list of 45 host-parasitoid associations in Iran and keys to Iranian species of three genera (Cirrospilus, Diglyphus and Aprostocetus) are included. Zusammenfassung Dieser Artikel zeigt den derzeitigen Untersuchungsstand an eulophiden Wespen und ihrer Wirte im Iran. Eine Liste der für den Iran festgestellten Arten der Unterfamilien Eu- lophinae, Entedoninae und Tetrastichinae wird präsentiert. Mit vorliegender Arbeit werden 47 Arten in 22 Gattungen aus dem Iran nachgewiesen. Zwei neue Arten (Cirrospilus sca- pus sp. nov. und Aprostocetus persicus sp. nov.) werden beschrieben. Eine Liste von 45 Wirts- und Parasitoid-Beziehungen im Iran und ein Schlüssel für 3 Gattungen (Cirro- spilus, Diglyphus und Aprostocetus) sind in der Arbeit enthalten.
    [Show full text]
  • Contribution to the Knowledge of the Fauna of Bombyces, Sphinges And
    driemaandelijks tijdschrift van de VLAAMSE VERENIGING VOOR ENTOMOLOGIE Afgiftekantoor 2170 Merksem 1 ISSN 0771-5277 Periode: oktober – november – december 2002 Erkenningsnr. P209674 Redactie: Dr. J–P. Borie (Compiègne, France), Dr. L. De Bruyn (Antwerpen), T. C. Garrevoet (Antwerpen), B. Goater (Chandlers Ford, England), Dr. K. Maes (Gent), Dr. K. Martens (Brussel), H. van Oorschot (Amsterdam), D. van der Poorten (Antwerpen), W. O. De Prins (Antwerpen). Redactie-adres: W. O. De Prins, Nieuwe Donk 50, B-2100 Antwerpen (Belgium). e-mail: [email protected]. Jaargang 30, nummer 4 1 december 2002 Contribution to the knowledge of the fauna of Bombyces, Sphinges and Noctuidae of the Southern Ural Mountains, with description of a new Dichagyris (Lepidoptera: Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae, Arctiidae) Kari Nupponen & Michael Fibiger [In co-operation with Vladimir Olschwang, Timo Nupponen, Jari Junnilainen, Matti Ahola and Jari- Pekka Kaitila] Abstract. The list, comprising 624 species in the families Lasiocampidae, Endromidae, Saturniidae, Sphingidae, Notodontidae, Noctuidae, Pantheidae, Lymantriidae, Nolidae and Arctiidae from the Southern Ural Mountains is presented. The material was collected during 1996–2001 in 10 different expeditions. Dichagyris lux Fibiger & K. Nupponen sp. n. is described. 17 species are reported for the first time from Europe: Clostera albosigma (Fitch, 1855), Xylomoia retinax Mikkola, 1998, Ecbolemia misella (Püngeler, 1907), Pseudohadena stenoptera Boursin, 1970, Hadula nupponenorum Hacker & Fibiger, 2002, Saragossa uralica Hacker & Fibiger, 2002, Conisania arida (Lederer, 1855), Polia malchani (Draudt, 1934), Polia vespertilio (Draudt, 1934), Polia altaica (Lederer, 1853), Mythimna opaca (Staudinger, 1899), Chersotis stridula (Hampson, 1903), Xestia wockei (Möschler, 1862), Euxoa dsheiron Brandt, 1938, Agrotis murinoides Poole, 1989, Agrotis sp.
    [Show full text]
  • Rhagoletis Cerasi
    OREGON DEPARTMENT OF AGRICULTURE FACT SHEETS AND PEST ALERTS Pest Alert: European cherry fruit fly Rhagoletis cerasi Introduction European cherry fruit fly (ECFF), Rhagoletis cerasi (Diptera, Tephritidae), is one of the most important cherry pests in Europe. In 2016, ECFF was found in Ontario, Canada. The following year it was found in the United States in New York state adjacent to the Canadian border. So far, ECFF infestations have only been found in Niagara County (Carroll and Herrmann 2017). ECFF is established throughout Europe to the Adult European cherry fruit fly female. Image by Claudia Daniel, Middle East. Research Institute of Organic Agriculture (FiBL). ECFF is a threat to cherries, one of Oregon’s top 20 Host Range agricultural commodities valued at over $70 million in All cherries are potential hosts. Honeysuckle berries 2017. Oregon is third in the nation in the production (Lonicera spp.) are also attacked, and there are records of sweet cherries. Home and organic cherry from snowberry (Symphoricarpos spp.). production are likely at the greatest risk. The primary risk of introduction for ECFF is in Pest Status infested fruit. This would include cherries, but also This is the most important pest of cherries in Europe. If honeysuckle and snowberries from the infested area in uncontrolled, they can destroy up to 100% of a cherry eastern North America or Europe. There are crop. Infested cherries are unmarketable. Control restrictions on the movement of fruits into the US, but techniques would be similar to those for the native it is unknown how the population arrived in the US in Western cherry fruit fly (WCFF), but there is evidence the first place.
    [Show full text]
  • Cheshire Wildlife Trust
    Cheshire Wildlife Trust Heteroptera and Diptera surveys on the Manchester Mosses with PANTHEON analysis by Phil Brighton 32, Wadeson Way, Croft, Warrington WA3 7JS [email protected] on behalf of Lancashire and Cheshire Wildlife Trusts Version 1.0 September 2018 Lancashire Wildlife Trust Page 1 of 35 Abstract This report describes the results of a series of surveys on the Manchester mosslands covering heteroptera (shield bugs, plant bugs and allies), craneflies, hoverflies, and a number of other fly families. Sites covered are the Holcroft Moss reserve of Cheshire Wildlife Trust and the Astley, Cadishead and Little Woolden Moss reserves of Lancashire Wildlife Trust. A full list is given of the 615 species recorded and their distribution across the four sites. This species list is interpreted in terms of feeding guilds and habitat assemblages using the PANTHEON software developed by Natural England. This shows a strong representation in the sample of species associated with shaded woodland floor and tall sward and scrub. The national assemblage of peatland species is somewhat less well represented, but includes a higher proportion of rare or scarce species. A comparison is also made with PANTHEON results for similar surveys across a similar range of habitats in the Delamere Forest. This suggests that the invertebrate diversity value of the Manchester Mosses is rather less, perhaps as a result of their fragmented geography and proximity to past and present sources of transport and industrial pollution. Introduction The Manchester Mosses comprise several areas of lowland bog or mire embedded in the flat countryside between Warrington and Manchester. They include several areas designated as SSSIs in view of the highly distinctive and nationally important habitat, such as Risley Moss, Holcroft Moss, Bedford Moss, and Astley Moss.
    [Show full text]
  • Vincetoxicum Spp.) to Multiple Years of Artificial Defoliation and Clipping
    Invasive Plant Science and Management 2016 9:1–11 Tolerance of Swallowworts (Vincetoxicum spp.) to Multiple Years of Artificial Defoliation and Clipping Lindsey R. Milbrath, Antonio DiTommaso, Jeromy Biazzo, and Scott H. Morris* The European vines pale swallowwort and black swallowwort are invading various habitats in northeastern North America. It is unclear how these plants might respond to potential biological control agents, as they experience little herbivore damage in North America, or longer durations of mowing given the reported lack of efficacy of mechanical control. We evaluated the effect of six seasons of artificial defoliation (50 or 100% defoliation once or twice per season) and clipping (once, twice, or four times at 8 cm above the soil level) on the survival, growth, and reproduction of mature plants of the two species grown in a common garden field experiment. No plants died from damage after 6 yr. Black swallowwort produced more aboveground biomass, whereas pale swallowwort produced more root biomass and root crown buds, compared with its congener species. For most damage treatments, root biomass and the number of crown buds and stems increased over time, whereas aboveground biomass and viable seeds per plant generally did not change. Substantial overlap in plant size and seed production occurred among damage treatments and species. The most severe defoliation treatment did not substantially limit growth and reproduction compared with undamaged plants. While two clippings per season sometimes prevented seed production, four clippings per season was the only type of damage that consistently prevented plant growth and eliminated seed production. Pale and black swallowwort display a high tolerance to aboveground tissue loss in high- light environments without plant competition.
    [Show full text]
  • Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas
    Terrestrial Arthropod Surveys on Pagan Island, Northern Marianas Neal L. Evenhuis, Lucius G. Eldredge, Keith T. Arakaki, Darcy Oishi, Janis N. Garcia & William P. Haines Pacific Biological Survey, Bishop Museum, Honolulu, Hawaii 96817 Final Report November 2010 Prepared for: U.S. Fish and Wildlife Service, Pacific Islands Fish & Wildlife Office Honolulu, Hawaii Evenhuis et al. — Pagan Island Arthropod Survey 2 BISHOP MUSEUM The State Museum of Natural and Cultural History 1525 Bernice Street Honolulu, Hawai’i 96817–2704, USA Copyright© 2010 Bishop Museum All Rights Reserved Printed in the United States of America Contribution No. 2010-015 to the Pacific Biological Survey Evenhuis et al. — Pagan Island Arthropod Survey 3 TABLE OF CONTENTS Executive Summary ......................................................................................................... 5 Background ..................................................................................................................... 7 General History .............................................................................................................. 10 Previous Expeditions to Pagan Surveying Terrestrial Arthropods ................................ 12 Current Survey and List of Collecting Sites .................................................................. 18 Sampling Methods ......................................................................................................... 25 Survey Results ..............................................................................................................
    [Show full text]
  • Section IV – Guideline for the Texas Priority Species List
    Section IV – Guideline for the Texas Priority Species List Associated Tables The Texas Priority Species List……………..733 Introduction For many years the management and conservation of wildlife species has focused on the individual animal or population of interest. Many times, directing research and conservation plans toward individual species also benefits incidental species; sometimes entire ecosystems. Unfortunately, there are times when highly focused research and conservation of particular species can also harm peripheral species and their habitats. Management that is focused on entire habitats or communities would decrease the possibility of harming those incidental species or their habitats. A holistic management approach would potentially allow species within a community to take care of themselves (Savory 1988); however, the study of particular species of concern is still necessary due to the smaller scale at which individuals are studied. Until we understand all of the parts that make up the whole can we then focus more on the habitat management approach to conservation. Species Conservation In terms of species diversity, Texas is considered the second most diverse state in the Union. Texas has the highest number of bird and reptile taxon and is second in number of plants and mammals in the United States (NatureServe 2002). There have been over 600 species of bird that have been identified within the borders of Texas and 184 known species of mammal, including marine species that inhabit Texas’ coastal waters (Schmidly 2004). It is estimated that approximately 29,000 species of insect in Texas take up residence in every conceivable habitat, including rocky outcroppings, pitcher plant bogs, and on individual species of plants (Riley in publication).
    [Show full text]
  • Rhagoletis Completa
    Prepared by CABI and EPPO for the EU under Contract 90/399003 Data Sheets on Quarantine Pests Rhagoletis completa IDENTITY • Rhagoletis completa Name: Rhagoletis completa Cresson Synonyms: Rhagoletis suavis subsp. completa Cresson Taxonomic position: Insecta: Diptera: Tephritidae Common names: Walnut husk fly (English) Mouche des brous du noyer (French) Notes on taxonomy and nomenclature: In the previous edition of this data sheet (EPPO/CABI, 1992), R. suavis was treated as a synonym of R. completa. In this edition, it is treated as a separate species (see below). Bayer computer code: RHAGCO EU Annex designation: I/A1 • Rhagoletis suavis Name: Rhagoletis suavis (Loew) Synonyms: Trypeta suavis Loew Bayer computer code: RHAGSU EU Annex designation: I/A1 HOSTS • Rhagoletis completa The principal hosts are Juglans spp. In North America, J. nigra, J. californica and J. hindsii are attacked (Bush, 1966). Under certain conditions peaches (Prunus persica) may be attacked (Bush, 1966) but the significance of this is not clear. Wild hosts are other Juglans spp. (Foote, 1981). In the EPPO region, the only economically significant host might be walnuts (J. regia). Although there was only one old record, possibly a misidentification, on this host in North America (Cresson, 1929), there were records of high levels of infestation of walnut fruits in 1991 in some Italian orchards. • Rhagoletis suavis Recorded from Juglans ailanthifolia, J. cinerea, J. nigra and walnuts (J. regia) (Bush, 1966). Peaches (Prunus persica) are also an occasional host (Dean, 1969). GEOGRAPHICAL DISTRIBUTION R. completa and R. suavis are indigenous to North America. The former species has very recently been introduced into the EPPO region and has become established in a limited area.
    [Show full text]