Ellipsoid Method in Encyclopedia of Optimization, Second Edition, C.A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Oracles, Ellipsoid Method and Their Uses in Convex Optimization Lecturer: Matt Weinberg Scribe:Sanjeev Arora
princeton univ. F'17 cos 521: Advanced Algorithm Design Lecture 17: Oracles, Ellipsoid method and their uses in convex optimization Lecturer: Matt Weinberg Scribe:Sanjeev Arora Oracle: A person or agency considered to give wise counsel or prophetic pre- dictions or precognition of the future, inspired by the gods. Recall that Linear Programming is the following problem: maximize cT x Ax ≤ b x ≥ 0 where A is a m × n real constraint matrix and x; c 2 Rn. Recall that if the number of bits to represent the input is L, a polynomial time solution to the problem is allowed to have a running time of poly(n; m; L). The Ellipsoid algorithm for linear programming is a specific application of the ellipsoid method developed by Soviet mathematicians Shor(1970), Yudin and Nemirovskii(1975). Khachiyan(1979) applied the ellipsoid method to derive the first polynomial time algorithm for linear programming. Although the algorithm is theoretically better than the Simplex algorithm, which has an exponential running time in the worst case, it is very slow practically and not competitive with Simplex. Nevertheless, it is a very important theoretical tool for developing polynomial time algorithms for a large class of convex optimization problems, which are much more general than linear programming. In fact we can use it to solve convex optimization problems that are even too large to write down. 1 Linear programs too big to write down Often we want to solve linear programs that are too large to even write down (or for that matter, too big to fit into all the hard drives of the world). -
Simplex Algorithm
CAP 4630 Artificial Intelligence Instructor: Sam Ganzfried [email protected] 1 HW2 • Due yesterday (10/18) at 2pm on Moodle • It is ok to work with one partner for homework 2. Must include document stating whom you worked with and describe extent of collaboration. This policy may be modified for future assignments. • Remember late day policy. – 5 total late days 2 Schedule • 10/12: Wrap-up logic (logical inference), start optimization (integer, linear optimization) • 10/17: Continue optimization (integer, linear optimization) • 10/19: Wrap up optimization (nonlinear optimization), go over homework 1 (and parts of homework 2 if all students have turned it in by start of class), midterm review • 10/24: Midterm • 10/26: Planning 3 Minesweeper • Minesweeper is NP-complete • http://simon.bailey.at/random/kaye.minesweeper.pdf 4 NP-completeness • Consider Sudoku, an example of a problem that is easy to verify, but whose answer may be difficult to compute. Given a partially filled-in Sudoku grid, of any size, is there at least one legal solution? A proposed solution is easily verified, and the time to check a solution grows slowly (polynomially) as the grid gets bigger. However, all known algorithms for finding solutions take, for difficult examples, time that grows exponentially as the grid gets bigger. So Sudoku is in NP (quickly checkable) but does not seem to be in P (quickly solvable). Thousands of other problems seem similar, fast to check but slow to solve. Researchers have shown that a fast solution to any one of these problems could be used to build a quick solution to all the others, a property called NP-completeness. -
Computational Geometry Lecture Notes1 HS 2012
Computational Geometry Lecture Notes1 HS 2012 Bernd Gärtner <[email protected]> Michael Hoffmann <[email protected]> Tuesday 15th January, 2013 1Some parts are based on material provided by Gabriel Nivasch and Emo Welzl. We also thank Tobias Christ, Anna Gundert, and May Szedlák for pointing out errors in preceding versions. Contents 1 Fundamentals 7 1.1 ModelsofComputation ............................ 7 1.2 BasicGeometricObjects. 8 2 Polygons 11 2.1 ClassesofPolygons............................... 11 2.2 PolygonTriangulation . 15 2.3 TheArtGalleryProblem ........................... 19 3 Convex Hull 23 3.1 Convexity.................................... 24 3.2 PlanarConvexHull .............................. 27 3.3 Trivialalgorithms ............................... 29 3.4 Jarvis’Wrap .................................. 29 3.5 GrahamScan(SuccessiveLocalRepair) . .... 31 3.6 LowerBound .................................. 33 3.7 Chan’sAlgorithm................................ 33 4 Line Sweep 37 4.1 IntervalIntersections . ... 38 4.2 SegmentIntersections . 38 4.3 Improvements.................................. 42 4.4 Algebraic degree of geometric primitives . ....... 42 4.5 Red-BlueIntersections . .. 45 5 Plane Graphs and the DCEL 51 5.1 TheEulerFormula............................... 52 5.2 TheDoubly-ConnectedEdgeList. .. 53 5.2.1 ManipulatingaDCEL . 54 5.2.2 GraphswithUnboundedEdges . 57 5.2.3 Remarks................................. 58 3 Contents CG 2012 6 Delaunay Triangulations 61 6.1 TheEmptyCircleProperty . 64 6.2 TheLawsonFlipalgorithm -
Linear Programming Notes
Linear Programming Notes Lecturer: David Williamson, Cornell ORIE Scribe: Kevin Kircher, Cornell MAE These notes summarize the central definitions and results of the theory of linear program- ming, as taught by David Williamson in ORIE 6300 at Cornell University in the fall of 2014. Proofs and discussion are mostly omitted. These notes also draw on Convex Optimization by Stephen Boyd and Lieven Vandenberghe, and on Stephen Boyd's notes on ellipsoid methods. Prof. Williamson's full lecture notes can be found here. Contents 1 The linear programming problem3 2 Duailty 5 3 Geometry6 4 Optimality conditions9 4.1 Answer 1: cT x = bT y for a y 2 F(D)......................9 4.2 Answer 2: complementary slackness holds for a y 2 F(D)........... 10 4.3 Answer 3: the verifying y is in F(D)...................... 10 5 The simplex method 12 5.1 Reformulation . 12 5.2 Algorithm . 12 5.3 Convergence . 14 5.4 Finding an initial basic feasible solution . 15 5.5 Complexity of a pivot . 16 5.6 Pivot rules . 16 5.7 Degeneracy and cycling . 17 5.8 Number of pivots . 17 5.9 Varieties of the simplex method . 18 5.10 Sensitivity analysis . 18 5.11 Solving large-scale linear programs . 20 1 6 Good algorithms 23 7 Ellipsoid methods 24 7.1 Ellipsoid geometry . 24 7.2 The basic ellipsoid method . 25 7.3 The ellipsoid method with objective function cuts . 28 7.4 Separation oracles . 29 8 Interior-point methods 30 8.1 Finding a descent direction that preserves feasibility . 30 8.2 The affine-scaling direction . -
Customized Book List Computer Science
ABCD springer.com Springer Customized Book List Computer Science FRANKFURT BOOKFAIR 2007 springer.com/booksellers Computer Science 1 K. Aberer, Korea Advanced Institute of Science and Technolo- A. Abraham, Norwegian University of Science and Technology, gy, Korea; N. Noy, Stanford University, Stanford, CA, USA; D. Alle- Trondheim, Norway; Y. Dote, Muroran Institute of Technology, Transactions on Computational mang, TopQuadrant, CA, USA; K.-I. Lee, Saltlux Inc., Korea; L. Muroran, Japan Nixon, Free University Berlin, Germany; J. Goldbeck, University of Systems Biology VIII Maryland, MD, USA; P. Mika, Yahoo! Research Barcelona, Spain; D. Maynard, University of Sheffield, United Kingdom,; R. Mizoguchi, Engineering Hybrid Soft Computing Osaka University, Japan,; G. Schreiber, Free University Amster- dam, Netherlands,; P. Cudré-Mauroux, EPFL, Switzerland, (Eds.) Systems The LNCS journal Transactions on Computation- al Systems Biology is devoted to inter- and multi- disciplinary research in the fields of computer sci- The Semantic Web This book is focused on the latest technologies re- ence and life sciences and supports a paradigmat- 6th International Semantic Web Conference, 2nd Asian Se- lated to Hybrid Soft Computing targeting academia, ic shift in the techniques from computer and infor- mantic Web Conference, ISWC 2007 + ASWC 2007, Busan, Ko- scientists, researchers, and graduate students. mation science to cope with the new challenges aris- rea, November 11-15, 2007, Proceedings ing from the systems oriented point of view of bio- Features -
How Do Exponential Size Solutions Arise in Semidefinite Programming?
How do exponential size solutions arise in semidefinite programming? G´abor Pataki, Aleksandr Touzov ∗ June 30, 2021 Abstract Semidefinite programs (SDPs) are some of the most popular and broadly applicable optimiza- tion problems to emerge in the last thirty years. A curious pathology of SDPs, illustrated by a classical example of Khachiyan, is that their solutions may need exponential space to even write down. Exponential size solutions are the main obstacle to solve a long standing open problem: can we decide feasibility of SDPs in polynomial time? The consensus seems to be that large size solutions in SDPs are rare. Here we prove that they are actually quite common: a linear change of variables transforms every strictly feasible SDP into a Khachiyan type SDP, in which the leading variables are large. As to \how large", that depends on the singularity degree of a dual problem. Further, we present some SDPs in which large solutions appear naturally, without any change of variables. We also partially answer the question: how do we represent such large solutions in polynomial space? Key words: semidefinite programming; exponential size solutions; Khachiyan's example; facial reduction; singularity degree MSC 2010 subject classification: Primary: 90C22, 49N15; secondary: 52A40 OR/MS subject classification: Primary: convexity; secondary: programming-nonlinear-theory 1 Introduction Contents 1 Introduction 1 1.1 Notation and preliminaries..................................5 2 Main results and proofs6 2.1 Reformulating (P) and statement of Theorem1.......................6 -
1979 Khachiyan's Ellipsoid Method
Convex Optimization CMU-10725 Ellipsoid Methods Barnabás Póczos & Ryan Tibshirani Outline Linear programs Simplex algorithm Running time: Polynomial or Exponential? Cutting planes & Ellipsoid methods for LP Cutting planes & Ellipsoid methods for unconstrained minimization 2 Books to Read David G. Luenberger, Yinyu Ye : Linear and Nonlinear Programming Boyd and Vandenberghe: Convex Optimization 3 Back to Linear Programs Inequality form of LPs using matrix notation: Standard form of LPs: We already know: Any LP can be rewritten to an equivalent standard LP 4 Motivation Linear programs can be viewed in two somewhat complementary ways: continuous optimization : continuous variables, convex feasible region continuous objective function combinatorial problems : solutions can be found among the vertices of the convex polyhedron defined by the constraints Issues with combinatorial search methods : number of vertices may be exponentially large, making direct search impossible for even modest size problems 5 History 6 Simplex Method Simplex method: Jumping from one vertex to another, it improves values of the objective as the process reaches an optimal point. It performs well in practice, visiting only a small fraction of the total number of vertices. Running time? Polynomial? or Exponential? 7 The Simplex method is not polynomial time Dantzig observed that for problems with m ≤ 50 and n ≤ 200 the number of iterations is ordinarily less than 1.5m. That time many researchers believed (and tried to prove) that the simplex algorithm is polynomial in the size of the problem (n,m) In 1972, Klee and Minty showed by examples that for certain linear programs the simplex method will examine every vertex. These examples proved that in the worst case, the simplex method requires a number of steps that is exponential in the size of the problem. -
Convex Optimization: Algorithms and Complexity
Foundations and Trends R in Machine Learning Vol. 8, No. 3-4 (2015) 231–357 c 2015 S. Bubeck DOI: 10.1561/2200000050 Convex Optimization: Algorithms and Complexity Sébastien Bubeck Theory Group, Microsoft Research [email protected] Contents 1 Introduction 232 1.1 Some convex optimization problems in machine learning . 233 1.2 Basic properties of convexity . 234 1.3 Why convexity? . 237 1.4 Black-box model . 238 1.5 Structured optimization . 240 1.6 Overview of the results and disclaimer . 240 2 Convex optimization in finite dimension 244 2.1 The center of gravity method . 245 2.2 The ellipsoid method . 247 2.3 Vaidya’s cutting plane method . 250 2.4 Conjugate gradient . 258 3 Dimension-free convex optimization 262 3.1 Projected subgradient descent for Lipschitz functions . 263 3.2 Gradient descent for smooth functions . 266 3.3 Conditional gradient descent, aka Frank-Wolfe . 271 3.4 Strong convexity . 276 3.5 Lower bounds . 279 3.6 Geometric descent . 284 ii iii 3.7 Nesterov’s accelerated gradient descent . 289 4 Almost dimension-free convex optimization in non-Euclidean spaces 296 4.1 Mirror maps . 298 4.2 Mirror descent . 299 4.3 Standard setups for mirror descent . 301 4.4 Lazy mirror descent, aka Nesterov’s dual averaging . 303 4.5 Mirror prox . 305 4.6 The vector field point of view on MD, DA, and MP . 307 5 Beyond the black-box model 309 5.1 Sum of a smooth and a simple non-smooth term . 310 5.2 Smooth saddle-point representation of a non-smooth function312 5.3 Interior point methods . -
On Some Polynomial-Time Algorithms for Solving Linear Programming Problems
Available online a t www.pelagiaresearchlibrary.com Pelagia Research Library Advances in Applied Science Research, 2012, 3 (5):3367-3373 ISSN: 0976-8610 CODEN (USA): AASRFC On Some Polynomial-time Algorithms for Solving Linear Programming Problems B. O. Adejo and H. S. Adaji Department of Mathematical Sciences, Kogi State University, Anyigba _____________________________________________________________________________________________ ABSTRACT In this article we survey some Polynomial-time Algorithms for Solving Linear Programming Problems namely: the ellipsoid method, Karmarkar’s algorithm and the affine scaling algorithm. Finally, we considered a test problem which we solved with the methods where applicable and conclusions drawn from the results so obtained. __________________________________________________________________________________________ INTRODUCTION An algorithm A is said to be a polynomial-time algorithm for a problem P, if the number of steps (i. e., iterations) required to solve P on applying A is bounded by a polynomial function O(m n,, L) of dimension and input length of the problem. The Ellipsoid method is a specific algorithm developed by soviet mathematicians: Shor [5], Yudin and Nemirovskii [7]. Khachian [4] adapted the ellipsoid method to derive the first polynomial-time algorithm for linear programming. Although the algorithm is theoretically better than the simplex algorithm, which has an exponential running time in the worst case, it is very slow practically and not competitive with the simplex method. Nevertheless, it is a very important theoretical tool for developing polynomial-time algorithms for a large class of convex optimization problems. Narendra K. Karmarkar is an Indian mathematician; renowned for developing the Karmarkar’s algorithm. He is listed as an ISI highly cited researcher. -
Solving Ellipsoidal Inclusion and Optimal Experimental Design Problems: Theory and Algorithms
SOLVING ELLIPSOIDAL INCLUSION AND OPTIMAL EXPERIMENTAL DESIGN PROBLEMS: THEORY AND ALGORITHMS. A Dissertation Presented to the Faculty of the Graduate School of Cornell University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy by Selin Damla Ahipas¸aoglu˘ August 2009 c 2009 Selin Damla Ahipas¸aoglu˘ ALL RIGHTS RESERVED SOLVING ELLIPSOIDAL INCLUSION AND OPTIMAL EXPERIMENTAL DESIGN PROBLEMS: THEORY AND ALGORITHMS. Selin Damla Ahipas¸aoglu,˘ Ph.D. Cornell University 2009 This thesis is concerned with the development and analysis of Frank-Wolfe type algorithms for two problems, namely the ellipsoidal inclusion problem of optimization and the optimal experimental design problem of statistics. These two problems are closely related to each other and can be solved simultaneously as discussed in Chapter 1 of this thesis. Chapter 1 introduces the problems in parametric forms. The weak and strong duality relations between them are established and the optimality cri- teria are derived. Based on this discussion, we define -primal feasible and -approximate optimal solutions: these solutions do not necessarily satisfy the optimality criteria but the violation is controlled by the error parameter and can be arbitrarily small. Chapter 2 deals with the most well-known special case of the optimal ex- perimental design problems: the D-optimal design problem and its dual, the Minimum-Volume Enclosing Ellipsoid (MVEE) problem. Chapter 3 focuses on another special case, the A-optimal design problem. In Chapter 4 we focus on a generalization of the optimal experimental design problem in which a sub- set but not all of parameters is being estimated. We focus on the following two problems: the Dk-optimal design problem and the Ak-optimal design prob- lem, generalizations of the D-optimal and the A-optimal design problems, re- spectively. -
An Improved Ellipsoid Method for Solving Convex Differentiable Optimization Problems
An Improved Ellipsoid Method for Solving Convex Differentiable Optimization Problems Amir Beck∗ Shoham Sabachy October 14, 2012 Abstract We consider the problem of solving convex differentiable problems with simple constraints on which the orthogonal projection operator is easy to com- pute. We devise an improved ellipsoid method that relies on improved deep cuts exploiting the differentiability property of the objective function as well as the ability to compute an orthogonal projection onto the feasible set. This new version of the ellipsoid method does not require two different oracles as the \standard" ellipsoid method does (i.e., separation and subgradient). The lin- ear rate of convergence of the objective function values sequence is proven and several numerical results illustrate the potential advantage of this approach over the classical ellipsoid method. 1 Introduction 1.1 Short Review of the Ellipsoid Method Consider the convex problem min f (x) (P): s.t. x 2 X; ∗Department of Industrial Engineering and Management, Technion|Israel Institute of Technol- ogy, Haifa 32000, Israel. E-mail: [email protected]. yDepartment of mathematics, Technion|Israel Institute of Technology, Haifa 32000, Israel. E- mail: [email protected] 1 where f is a convex function over the closed and convex set X. We assume that the objective function f is subdifferentiable over X and that the problem is solvable with X∗ being its optimal set and f ∗ being its optimal value. One way to tackle the general problem (P) is via the celebrated ellipsoid method, which is one of the most fundamental methods in convex optimization. It was first developed by Yudin and Nemirovski (1976), and Shor (1977) for general convex optimization problems and was then came to awareness with the seminal work of Khachiyan [?] showing { using the ellipsoid method { that linear programming can be solved in a polynomial time. -
Final Review Note
MS&E310 Final Review Note Final Review Yinyu Ye Department of Management Science and Engineering Stanford University Stanford, CA 94305, U.S.A. http://www.stanford.edu/˜yyye 1 MS&E310 Final Review Note Convex Cones • A set C is a cone if x 2 C implies αx 2 C for all α > 0 • A convex cone is cone plus convex-set. • Dual cone: ∗ C := fy : y • x ≥ 0 for all x 2 Cg ∗ −C is also called the polar of C. 2 MS&E310 Final Review Note Separating hyperplane theorem The most important theorem about the convex set is the following separating theorem. Theorem 1 (Separating hyperplane theorem) Let C ⊂ E, where E is either Rn or Mn, be a closed convex set and let y be a point exterior to C. Then there is a vector a 2 E such that a • y < inf a • x: x2C 3 MS&E310 Final Review Note Theorem 2 (LP fundamental theorem) Given (LP) and (LD) where A has full row rank m and b 2 Rm and c 2 Rn, and consider the classical LP: (LP ) minimize cT x subject to Ax = b; x ≥ 0; where decision vector x 2 Rn. i) if there is a feasible solution, there is a basic feasible solution (Caratheodory’s´ theorem); ii) if there is an optimal solution, there is an optimal basic solution. Basic Solution: select m linearly independent columns, denoted by the index set B, from A, and solve ABxB = b to determine the m-vector xB. By setting the variables, xN , of x corresponding to the remaining columns of A equal to zeros.