Avoiding rainbow induced subgraphs in vertex-colorings Maria Axenovich and Ryan Martin∗ Department of Mathematics, Iowa State University, Ames, IA 50011
[email protected],
[email protected] Submitted: Feb 10, 2007; Accepted: Jan 4, 2008 Mathematics Subject Classification: 05C15, 05C55 Abstract For a fixed graph H on k vertices, and a graph G on at least k vertices, we write G −→ H if in any vertex-coloring of G with k colors, there is an induced subgraph isomorphic to H whose vertices have distinct colors. In other words, if G −→ H then a totally multicolored induced copy of H is unavoidable in any vertex-coloring of G with k colors. In this paper, we show that, with a few notable exceptions, for any graph H on k vertices and for any graph G which is not isomorphic to H, G 6−→ H. We explicitly describe all exceptional cases. This determines the induced vertex- anti-Ramsey number for all graphs and shows that totally multicolored induced subgraphs are, in most cases, easily avoidable. 1 Introduction Let G =(V, E) be a graph. Let c : V (G) → [k] be a vertex-coloring of G. We say that G is monochromatic under c if all vertices have the same color and we say that G is rainbow or totally multicolored under c if all vertices of G have distinct colors. The existence of a arXiv:1605.06172v1 [math.CO] 19 May 2016 graph forcing an induced monochromatic subgraph isomorphic to H is well known. The following bounds are due to Brown and R¨odl: Theorem 1 (Vertex-Induced Graph Ramsey Theorem [6]) For all graphs H, and all positive integers t there exists a graph Rt(H) such that if the vertices of Rt(H) are colored with t colors, then there is an induced subgraph of Rt(H) isomorphic to H which is monochromatic.