CXFS Whitepaper

Total Page:16

File Type:pdf, Size:1020Kb

CXFS Whitepaper White Paper SGI® InfiniteStorage Shared Filesystem CXFS™: A High-Performance, Multi-OS Filesystem from SGI Laura Shepard and Eric Eppe 1.0 CXFS: Fulfilling the Promise of SAN Technology . 2 2.0 Challenges of a Shared Filesystem . 4 3.0 Building on Proven Technology . 5 4.0 Metadata Management and File Locking . 6 5.0 Fault Isolation and Recovery . 9 6.0 User Interface . 11 7.0 LAN-Free Backup with CXFS . .12 8.0 High Availability and Unlimited Storage: Using CXFS with FailSafe® and DMF . 13 9.0 Multi-OS Platform Support . 14 10.0 CXFS Scalability and Performance . 14 11.0 CXFS in Production . 16 11.1 CXFS in Oil and Gas Exploration . 16 11.2 CXFS in Video Post-Production (Media) . 16 12.0 Summary . 17 1 Abstract For a detailed discussion of XFS, see Scalabil- While storage area networks (SANs) give ity and Performance in Modern Filesystems." multiple computer systems high-speed con- (SGI, 2000). nections to shared storage, they do not remove the data-sharing bottlenecks associated with 1.0 CXFS: Fulfilling the Promise of direct-attached and network-attached storage. SAN Technology Even in a SAN, storage is still dedicated to a While SANs offer the benefits of consolidated specific system. This being the case, when storage, centralized management, and a high- there is a need to share data among systems, speed data network, CXFS enables true data traditional file-serving and file-sharing meth- sharing by allowing SAN-attached systems ods such as NFS, FTP, CIFS Samba®, and direct access to shared filesystems. A shared RAID controller-based copies are still being filesystem provides data access speeds well used. Each of these data-sharing mechanisms beyond what is achievable via traditional has performance, availability, and complexity methods such as NFS and FTP, solving data- penalties. sharing bottlenecks for a broad range of environments. This significantly boosts pro- To completely remove these penalties and real- ductivity when large files are shared by ize the promise of SAN technology, SGI has multiple processes in a workflow. developed InfiniteStorage Shared Filesystem CXFS, a revolutionary shared filesystem for The explosive growth in storage deployment SANs that allows multiple heterogeneous sys- has created significant challenges for tradi- tems to simultaneously access all data on a tional storage architectures. Plummeting SAN. In combination with other storage prices of storage media, increasingly data- virtualization technologies, CXFS offers het- intensive applications on ever more powerful erogeneous systems unprecedented platforms, and expanding data availability high-speed shared access to data on high- requirements are shifting the traditional para- speed storage. digms of server-attached or network-attached storage. SANs were developed in response to CXFS enables 64-bit IRIX® OS-based systems, these changing requirements. SAN technology Solaris™ 8 and Solaris™ 9, Windows NT® 4.0, allows multiple computer systems to share Windows® 2000, 64-bit Linux® for SGI® Altix®, access to storage resources using high-speed Red Hat® 7.3 for 32-bit Linux, and IBM® AIX® Fibre Channel connections. 5L systems to seamlessly and instantly share data with no copies to wait for, store, and SGI uses a three-layer model to describe SAN administer. Windows® XP and Mac OS® X will technology. Layer 1, the SAN infrastructure, be available in the second half of calendar consists of the basic hardware and software year 2003. Additional UNIX® support is in components necessary to construct a working development. SAN. CXFS leverages the proven capabilities of SGI® Layer 1 is the basic hardware infrastructure of InfiniteStorage Filesystem XFS®, the most the SAN. In a SAN, connections between scalable, high-performance, journaled 64-bit systems and storage are made through one or filesystem available. CXFS brings the full more Fibre Channel switches. The systems, feature set and performance of XFS to hetero- storage, adapters, cables, and switches make geneous SANs. This paper examines the up a SAN; the switches and cables alone are issues surrounding high-speed shared data referred to as a Fibre Channel “fabric.” access and describes how CXFS overcomes Today’s SAN technology allows up to 400MB these challenges while providing key advan- per second (full duplex) per single Fibre Chan- tages to customer applications. nel connection. 2 Value Added Layer 3 SAN Services Shared Filesystem Interoperability Testing Layer 2 Integration SAN Management Support Professional Layer 1 Services Hardware and Software Infrastructure Fig. 1. Storage area network layer model Layer 2, SAN management, includes tools to corrupted. A shared filesystem is designed to facilitate monitoring and management of the meet this need, providing direct high-speed various components of the SAN and to protect access to data at SAN speeds. SAN data. Most of the tools used in direct- attach storage environments are available for Even if consolidating storage is one of the pri- SANs. More comprehensive LAN-management- mary drivers for building a SAN, because it style tools that tie common management greatly simplifies the administration of RAID functions together are also becoming available. arrays, a high-speed shared filesystem can reduce or eliminate the need for replication, SANs provide many of the same configuration freeing disk space for application use and dra- options as traditional networks, but avoid the matically reducing management associated high overhead of traditional network protocols. with replicated data. SANs provide the ability to deploy flexible, fault-tolerant storage systems with exceptional Thus, a shared filesystem can change the way performance. Fibre Channel SANs combine that many customers work by changing and the time-tested SCSI protocol with high-speed improving the efficiency of workflow between serial data transmission for outstanding relia- systems needing to share data. In applications bility, high performance, and increased such as digital media or oil and gas exploration, flexibility. the output of one processing step becomes the input to the next. A shared filesystem elimi- The greatest potential of SAN technology lies nates the need to copy data and overcomes in Layer 3, the shared filesystem. Layer 1 and the bandwidth limitations of LANs. Layer 2 components allow a storage infrastruc- ture to be built in which all SAN-connected To satisfy the workflow requirements of cut- computer systems potentially have access to ting-edge applications such as these, SGI all storage but don t provide the ability to undertook the development of SGI® share data. Separate computer systems cannot InfiniteStorage Shared Filesystem CXFS. CXFS access data in the same filesystem, let alone is a first-of-its-kind shared filesystem for SANs share the same files. Additional software is that meets the exacting requirements of high- required to mediate and manage shared performance data sharing. CXFS fulfills the access; otherwise, data would quickly become promise of all-SAN systems directly accessing 3 LAN Application Servers SAN FC Interfaces Interconnect Switch Fabric Switches, Hubs, etc. LAN-free Backup Storage Fig. 2. Storage area network layer model all files stored on SAN-attached devices. In combined with those of high-availability solu- combination with storage virtualization tech- tions. Traditional filesystems have evolved over nologies such as hierarchical storage many years to optimize the performance of management (HSM), CXFS can provide hetero- the underlying disk pool. Application data is geneous system platforms with unprecedented typically cached in the host system’s memory high-speed access to SAN storage capacity. to speed access to the filesystem. This caching—essential to filesystem perfor- 2.0 Challenges of a Shared Filesystem mance—is the reason systems cannot simply CXFS offers the performance and features of a share data stored in traditional filesystems. traditional filesystem while providing the coor- dination needed for file sharing, distributed If multiple systems assume they have control file locking, and fault isolation and recovery. of the filesystem and write filesystem data they have in their cache, they will quickly The challenges faced by a SAN shared file- corrupt the filesystem. On the other hand, system are different from those faced by the implementing a filesystem that does not allow traditional network filesystem. For a network data caching would provide unacceptably slow filesystem, all transactions are mediated and access. Distributed data-cache management controlled by a network file server. While the for shared access is one of the key challenges same approach could be transferred to a SAN faced by the shared filesystem. using much the same protocols, this would not eliminate the fundamental limitations of the Like high-availability solutions, a shared file server or take advantage of the benefits of filesystem should preserve data access and a SAN. continuity in the event of failure of some of the systems or other components that make up the The file server is the main impediment to per- storage area network. Metadata management formance and represents a single point of among multiple systems requires a level of failure. The design challenges faced by the control that must be protected and preserved shared filesystem are more akin to the chal- in case of a failure to ensure continuing data lenges of a traditional filesystem design integrity. 4 LAN SAN File Access through File Server Direct Access to Data Local Area
Recommended publications
  • Early Experiences with Storage Area Networks and CXFS John Lynch
    Early Experiences with Storage Area Networks and CXFS John Lynch Aerojet 6304 Spine Road Boulder CO 80516 Abstract This paper looks at the design, integration and application issues involved in deploying an early access, very large, and highly available storage area network. Covered are topics from filesystem failover, issues regarding numbers of nodes in a cluster, and using leading edge solutions to solve complex issues in a real-time data processing network. 1 Introduction SAN technology can be categorized in two distinct approaches. Both Aerojet designed and installed a highly approaches use the storage area network available, large scale Storage Area to provide access to multiple storage Network over spring of 2000. This devices at the same time by one or system due to it size and diversity is multiple hosts. The difference is how known to be one of a kind and is the storage devices are accessed. currently not offered by SGI, but would serve as a prototype system. The most common approach allows the hosts to access the storage devices across The project’s goal was to evaluate Fibre the storage area network but filesystems Channel and SAN technology for its are not shared. This allows either a benefits and applicability in a second- single host to stripe data across a greater generation, real-time data processing number of storage controllers, or to network. SAN technology seemed to be share storage controllers among several the technology of the future to replace systems. This essentially breaks up a the traditional SCSI solution. large storage system into smaller distinct pieces, but allows for the cost-sharing of The approach was to conduct and the most expensive component, the evaluation of SAN technology as a storage controller.
    [Show full text]
  • CXFSTM Client-Only Guide for SGI® Infinitestorage
    CXFSTM Client-Only Guide for SGI® InfiniteStorage 007–4507–016 COPYRIGHT © 2002–2008 SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of SGI. LIMITED RIGHTS LEGEND The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond license provisions is a violation of worldwide intellectual property laws, treaties and conventions. This document is provided with limited rights as defined in 52.227-14. TRADEMARKS AND ATTRIBUTIONS SGI, Altix, the SGI cube and the SGI logo are registered trademarks and CXFS, FailSafe, IRIS FailSafe, SGI ProPack, and Trusted IRIX are trademarks of SGI in the United States and/or other countries worldwide. Active Directory, Microsoft, Windows, and Windows NT are registered trademarks or trademarks of Microsoft Corporation in the United States and/or other countries. AIX and IBM are registered trademarks of IBM Corporation. Brocade and Silkworm are trademarks of Brocade Communication Systems, Inc. AMD, AMD Athlon, AMD Duron, and AMD Opteron are trademarks of Advanced Micro Devices, Inc. Apple, Mac, Mac OS, Power Mac, and Xserve are registered trademarks of Apple Computer, Inc. Disk Manager is a registered trademark of ONTRACK Data International, Inc. Engenio, LSI Logic, and SANshare are trademarks or registered trademarks of LSI Corporation.
    [Show full text]
  • Silicon Graphics, Inc. Scalable Filesystems XFS & CXFS
    Silicon Graphics, Inc. Scalable Filesystems XFS & CXFS Presented by: Yingping Lu January 31, 2007 Outline • XFS Overview •XFS Architecture • XFS Fundamental Data Structure – Extent list –B+Tree – Inode • XFS Filesystem On-Disk Layout • XFS Directory Structure • CXFS: shared file system ||January 31, 2007 Page 2 XFS: A World-Class File System –Scalable • Full 64 bit support • Dynamic allocation of metadata space • Scalable structures and algorithms –Fast • Fast metadata speeds • High bandwidths • High transaction rates –Reliable • Field proven • Log/Journal ||January 31, 2007 Page 3 Scalable –Full 64 bit support • Large Filesystem – 18,446,744,073,709,551,615 = 264-1 = 18 million TB (exabytes) • Large Files – 9,223,372,036,854,775,807 = 263-1 = 9 million TB (exabytes) – Dynamic allocation of metadata space • Inode size configurable, inode space allocated dynamically • Unlimited number of files (constrained by storage space) – Scalable structures and algorithms (B-Trees) • Performance is not an issue with large numbers of files and directories ||January 31, 2007 Page 4 Fast –Fast metadata speeds • B-Trees everywhere (Nearly all lists of metadata information) – Directory contents – Metadata free lists – Extent lists within file – High bandwidths (Storage: RM6700) • 7.32 GB/s on one filesystem (32p Origin2000, 897 FC disks) • >4 GB/s in one file (same Origin, 704 FC disks) • Large extents (4 KB to 4 GB) • Request parallelism (multiple AGs) • Delayed allocation, Read ahead/Write behind – High transaction rates: 92,423 IOPS (Storage: TP9700)
    [Show full text]
  • W4118: File Systems
    W4118: file systems Instructor: Junfeng Yang References: Modern Operating Systems (3rd edition), Operating Systems Concepts (8th edition), previous W4118, and OS at MIT, Stanford, and UWisc Outline File system concepts . What is a file? . What operations can be performed on files? . What is a directory and how is it organized? File implementation . How to allocate disk space to files? 1 What is a file User view . Named byte array • Types defined by user . Persistent across reboots and power failures OS view . Map bytes as collection of blocks on physical storage . Stored on nonvolatile storage device • Magnetic Disks 2 Role of file system Naming . How to “name” files . Translate “name” + offset logical block # Reliability . Must not lose file data Protection . Must mediate file access from different users Disk management . Fair, efficient use of disk space . Fast access to files 3 File metadata Name – only information kept in human-readable form Identifier – unique tag (number) identifies file within file system (inode number in UNIX) Location – pointer to file location on device Size – current file size Protection – controls who can do reading, writing, executing Time, date, and user identification – data for protection, security, and usage monitoring How is metadata stored? (inode in UNIX) 4 File operations int creat(const char* pathname, mode_t mode) int unlink(const char* pathname) int rename(const char* oldpath, const char* newpath) int open(const char* pathname, int flags, mode_t mode) int read(int fd, void* buf, size_t count); int write(int fd, const void* buf, size_t count) int lseek(int fd, offset_t offset, int whence) int truncate(const char* pathname, offset_t len) ..
    [Show full text]
  • Lecture 17: Files and Directories
    11/1/16 CS 422/522 Design & Implementation of Operating Systems Lecture 17: Files and Directories Zhong Shao Dept. of Computer Science Yale University Acknowledgement: some slides are taken from previous versions of the CS422/522 lectures taught by Prof. Bryan Ford and Dr. David Wolinsky, and also from the official set of slides accompanying the OSPP textbook by Anderson and Dahlin. The big picture ◆ Lectures before the fall break: – Management of CPU & concurrency – Management of main memory & virtual memory ◆ Current topics --- “Management of I/O devices” – Last week: I/O devices & device drivers – Last week: storage devices – This week: file systems * File system structure * Naming and directories * Efficiency and performance * Reliability and protection 1 11/1/16 This lecture ◆ Implementing file system abstraction Physical Reality File System Abstraction block oriented byte oriented physical sector #’s named files no protection users protected from each other data might be corrupted robust to machine failures if machine crashes File system components ◆ Disk management User – Arrange collection of disk blocks into files File File ◆ Naming Naming access – User gives file name, not track or sector number, to locate data Disk management ◆ Security / protection – Keep information secure Disk drivers ◆ Reliability/durability – When system crashes, lose stuff in memory, but want files to be durable 2 11/1/16 User vs. system view of a file ◆ User’s view – Durable data structures ◆ System’s view (system call interface) – Collection of bytes (Unix) ◆ System’s view (inside OS): – Collection of blocks – A block is a logical transfer unit, while a sector is the physical transfer unit.
    [Show full text]
  • CXFSTM Administration Guide for SGI® Infinitestorage
    CXFSTM Administration Guide for SGI® InfiniteStorage 007–4016–025 CONTRIBUTORS Written by Lori Johnson Illustrated by Chrystie Danzer Engineering contributions to the book by Vladmir Apostolov, Rich Altmaier, Neil Bannister, François Barbou des Places, Ken Beck, Felix Blyakher, Laurie Costello, Mark Cruciani, Rupak Das, Alex Elder, Dave Ellis, Brian Gaffey, Philippe Gregoire, Gary Hagensen, Ryan Hankins, George Hyman, Dean Jansa, Erik Jacobson, John Keller, Dennis Kender, Bob Kierski, Chris Kirby, Ted Kline, Dan Knappe, Kent Koeninger, Linda Lait, Bob LaPreze, Jinglei Li, Yingping Lu, Steve Lord, Aaron Mantel, Troy McCorkell, LaNet Merrill, Terry Merth, Jim Nead, Nate Pearlstein, Bryce Petty, Dave Pulido, Alain Renaud, John Relph, Elaine Robinson, Dean Roehrich, Eric Sandeen, Yui Sakazume, Wesley Smith, Kerm Steffenhagen, Paddy Sreenivasan, Roger Strassburg, Andy Tran, Rebecca Underwood, Connie Woodward, Michelle Webster, Geoffrey Wehrman, Sammy Wilborn COPYRIGHT © 1999–2007 SGI. All rights reserved; provided portions may be copyright in third parties, as indicated elsewhere herein. No permission is granted to copy, distribute, or create derivative works from the contents of this electronic documentation in any manner, in whole or in part, without the prior written permission of SGI. LIMITED RIGHTS LEGEND The software described in this document is "commercial computer software" provided with restricted rights (except as to included open/free source) as specified in the FAR 52.227-19 and/or the DFAR 227.7202, or successive sections. Use beyond
    [Show full text]
  • Operating Systems Lecture #5: File Management
    Operating Systems Lecture #5: File Management Written by David Goodwin based on the lecture series of Dr. Dayou Li and the book Understanding Operating Systems 4thed. by I.M.Flynn and A.McIver McHoes (2006) Department of Computer Science and Technology, University of Bedfordshire. Operating Systems, 2013 25th February 2013 Outline Lecture #5 File Management David Goodwin 1 Introduction University of Bedfordshire 2 Interaction with the file manager Introduction Interaction with the file manager 3 Files Files Physical storage 4 Physical storage allocation allocation Directories 5 Directories File system Access 6 File system Data compression summary 7 Access 8 Data compression 9 summary Operating Systems 46 Lecture #5 File Management David Goodwin University of Bedfordshire Introduction 3 Interaction with the file manager Introduction Files Physical storage allocation Directories File system Access Data compression summary Operating Systems 46 Introduction Lecture #5 File Management David Goodwin University of Bedfordshire Introduction 4 Responsibilities of the file manager Interaction with the file manager 1 Keep track of where each file is stored Files 2 Use a policy that will determine where and how the files will Physical storage be stored, making sure to efficiently use the available storage allocation space and provide efficient access to the files. Directories 3 Allocate each file when a user has been cleared for access to File system it, and then record its use. Access 4 Deallocate the file when the file is to be returned to storage, Data compression and communicate its availability to others who may be summary waiting for it. Operating Systems 46 Definitions Lecture #5 File Management field is a group of related bytes that can be identified by David Goodwin University of the user with a name, type, and size.
    [Show full text]
  • Introduction to ISO 9660
    Disc Manufacturing, Inc. A QUIXOTE COMPANY Introduction to ISO 9660, what it is, how it is implemented, and how it has been extended. Clayton Summers Copyright © 1993 by Disc Manufacturing, Inc. All rights reserved. WHO IS DMI? Disc Manufacturing, Inc. (DMI) manufactures all compact disc formats (i.e., CD-Audio, CD-ROM, CD-ROM XA, CDI, PHOTO CD, 3DO, KARAOKE, etc.) at two plant sites in the U.S.; Huntsville, AL, and Anaheim, CA. To help you, DMI has one of the largest Product Engineering/Technical Support staff and sales force dedicated solely to CD-ROM in the industry. The company has had a long term commitment to optical disc technology and has performed developmental work and manufactured (laser) optical discs of various types since 1981. In 1983, DMI manufactured the first compact disc in the United States. DMI has developed extensive mastering expertise during this time and is frequently called upon by other companies to provide special mastering services for products in development. In August 1991, DMI purchased the U.S. CD-ROM business from the Philips and Du Pont Optical Company (PDO). PDO employees in sales, marketing and technical services were retained. DMI is a wholly-owned subsidiary of Quixote Corporation, a publicly owned corporation whose stock is traded on the NASDAQ exchange as QUIX. Quixote is a diversified technology company composed of Energy Absorption Systems, Inc. (manufactures highway crash cushions), Stenograph Corporation (manufactures shorthand machines and computer systems for court reporting) and Disc Manufacturing, Inc. We would be pleased to help you with your CD project or answer any questions you may have.
    [Show full text]
  • File System Layout
    File Systems Main Points • File layout • Directory layout • Reliability/durability Named Data in a File System index !le name directory !le number structure storage o"set o"set block Last Time: File System Design Constraints • For small files: – Small blocks for storage efficiency – Files used together should be stored together • For large files: – ConCguous allocaon for sequenCal access – Efficient lookup for random access • May not know at file creaon – Whether file will become small or large File System Design Opons FAT FFS NTFS Index Linked list Tree Tree structure (fixed, asym) (dynamic) granularity block block extent free space FAT array Bitmap Bitmap allocaon (fixed (file) locaon) Locality defragmentaon Block groups Extents + reserve Best fit space defrag MicrosoS File Allocaon Table (FAT) • Linked list index structure – Simple, easy to implement – SCll widely used (e.g., thumb drives) • File table: – Linear map of all blocks on disk – Each file a linked list of blocks FAT MFT Data Blocks 0 1 2 3 !le 9 block 3 4 5 6 7 8 9 !le 9 block 0 10 !le 9 block 1 11 !le 9 block 2 12 !le 12 block 0 13 14 15 16 !le 12 block 1 17 18 !le 9 block 4 19 20 FAT • Pros: – Easy to find free block – Easy to append to a file – Easy to delete a file • Cons: – Small file access is slow – Random access is very slow – Fragmentaon • File blocks for a given file may be scaered • Files in the same directory may be scaered • Problem becomes worse as disk fills Berkeley UNIX FFS (Fast File System) • inode table – Analogous to FAT table • inode – Metadata • File owner, access permissions,
    [Show full text]
  • Comparative Analysis of Distributed and Parallel File Systems' Internal Techniques
    Comparative Analysis of Distributed and Parallel File Systems’ Internal Techniques Viacheslav Dubeyko Content 1 TERMINOLOGY AND ABBREVIATIONS ................................................................................ 4 2 INTRODUCTION......................................................................................................................... 5 3 COMPARATIVE ANALYSIS METHODOLOGY ....................................................................... 5 4 FILE SYSTEM FEATURES CLASSIFICATION ........................................................................ 5 4.1 Distributed File Systems ............................................................................................................................ 6 4.1.1 HDFS ..................................................................................................................................................... 6 4.1.2 GFS (Google File System) ....................................................................................................................... 7 4.1.3 InterMezzo ............................................................................................................................................ 9 4.1.4 CodA .................................................................................................................................................... 10 4.1.5 Ceph.................................................................................................................................................... 12 4.1.6 DDFS ..................................................................................................................................................
    [Show full text]
  • CXFS Customer Presentation
    CXFS Clustered File System from SGI April 1999 R. Kent Koeninger Strategic Technologist, SGI Software [email protected] www.sgi.com File Systems Technology Briefing UNIX (Irix) • Clustered file system features: CXFS Applications CXFS • File System features: XFS XFS XVM FC driver • Volume management: XVM Page 2 Clustered File Systems CXFS Page 3 CXFS — Clustered SAN File System High resiliency and availability Reduced storage costs Scalable high Streamlined performance LAN-free backups Fibre Channel Storage Area Network (SAN) Page 4 CXFS: Clustered XFS • Clustered XFS (CXFS) attributes: – A shareable high-performance XFS file system • Shared among multiple IRIX nodes in a cluster • Near-local file system performance. – Direct data channels between disks and nodes. – A resilient file system • Failure of a node in the cluster does not prevent access to the disks from other nodes – A convenient interface • Users see standard Unix filesystems – Single System View (SSV) – Coherent distributed buffers Page 5 Comparing LANs and SANs LAN LAN: Data path through server (Bottleneck, Single point of failure) SAN: Data path direct to disk (Resilient scalable performance) SAN Page 6 CXFS Client-Server Cluster Technology CXFS Server Node CXFS Client Node Coherent Coherent System System Data Buffers Data Buffers Metadata Token Path Token Metadata Protected CXFS CXFS Shared Protected Server IP-Network Data Client Shared XFS’ Data XFS Log Direct Channels Shared Disks Page 7 Fully Resilient - High Availability CXFS Server Client machines CXFS Client act as redundant backup servers Backup Server-2 CXFS Client CXFS Client Backup Server-1 Backup Server-3 Page 8 CXFS Interface and Performance • Interface is the same as multiple processes reading and writing shared files on an SMP – Same open, read, write, create, delete, lock-range, etc.
    [Show full text]
  • ZFS On-Disk Specification Draft
    ZFS On-Disk Specification Draft Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A 1 ©2006 Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A. This product or document is protected by copyright and distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this product or document may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any. Third-party software, including font technology, is copyrighted and licensed from Sun suppliers. Parts of the product may be derived from Berkeley BSD systems, licensed from the University of California. Sun, Sun Microsystems, the Sun logo, Java, JavaServer Pages, Solaris, and StorEdge are trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. U.S. Government Rights Commercial software. Government users are subject to the Sun Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its supplements. DOCUMENTATION IS PROVIDED AS IS AND ALL EXPRESS OR IMPLIED CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH DISCLAIMERS ARE HELD TO BE LEGALLY INVALID. Unless otherwise licensed, use of this software is authorized pursuant to the terms of the license found at: http://developers.sun.com/berkeley_license.html Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y en a.
    [Show full text]