End-Functionalized and Branched Polymers by Anionic Ring-Opening Polymerization
Total Page:16
File Type:pdf, Size:1020Kb
Durham E-Theses End-Functionalized and Branched Polymers by Anionic Ring-Opening Polymerization YOLSAL, UTKU How to cite: YOLSAL, UTKU (2018) End-Functionalized and Branched Polymers by Anionic Ring-Opening Polymerization, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/12594/ Use policy The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-prot purposes provided that: • a full bibliographic reference is made to the original source • a link is made to the metadata record in Durham E-Theses • the full-text is not changed in any way The full-text must not be sold in any format or medium without the formal permission of the copyright holders. Please consult the full Durham E-Theses policy for further details. Academic Support Oce, Durham University, University Oce, Old Elvet, Durham DH1 3HP e-mail: [email protected] Tel: +44 0191 334 6107 http://etheses.dur.ac.uk 2 Durham University Department of Chemistry Synthesis of End-Functionalized and Branched Polymers by Anionic Ring- Opening Polymerization Utku Yolsal December 2017 SUBMITTED IN FULLFILMENT FOR THE DEGREE OF Master of Science (by Research) Abstract The introduction of functional groups and branching to polymers leads to substantial changes in thermal behaviour and rheology. This work focused on two different macromonomer approaches, namely AB2 and ABx, to synthesise branched polysiloxanes by Williamson and hydrosilylation coupling reactions, respectively. For the AB2 approach, anionic ring-opening polymerization (AROP) of hexamethylcyclotrisiloxane (D3) was attempted to be initiated by using (protected) functionalized initiator molecules to introduce dihydroxyl functionality (B2) on to the polydimethylsiloxane chain-end. The hydroxyl functionalities were protected with silyl ethers and successfully deprotected by using tetra-n-butylammonium fluoride or acetic acid after polymerization. Prior to the introduction of an alkyl halide (A-functionality) by end-capping, stability of the PDMS backbone was tested with Williamson coupling reactions. It was understood that the basic conditions of this reaction led to serious damage to the polymer and this approach was abandoned. Synthesis of ABx macromonomers was performed by copolymerizing D3 and 1,3,5-trivinyl-1,3,5-trimethylcyclotrisiloxane (V3) monomers. In this work, A and B represent Si-H and vinyl groups, respectively. The anionic copolymerization was end-capped by using chloro(methyl)phenylsilane. The resulting polymers were coupled by hydrosilylation reactions in the presence of Pt(0) catalyst. These macromonomers were successfully used to form highly branched polysiloxanes. To optimize conditions of the coupling reaction, solution concentration of the reaction was varied from 20 % to 100 % and the vinyl content of the macromonomers was varied from 11 mol% to 52 mol%. It was shown that higher solution concentrations result in higher degree of branching. On the other hand, while an increase in vinyl composition also resulted in higher level of branching, a high vinyl (>30 %) composition resulted in a decrease in branching. This is believed to happen because of poor chain end-capping for high vinyl content copolymers and/or increased likeliness of intramolecular cyclization reactions. Table of Contents Table of Contents ................................................................................................................... i List of Figures ........................................................................................................................ v List of Schemes .................................................................................................................. viii List of Tables.......................................................................................................................... x List of Equations ................................................................................................................. xii List of Calculations ............................................................................................................ xiii Abbreviations ..................................................................................................................... xiv Statement of Copyright ..................................................................................................... xvii Acknowledgments ............................................................................................................ xviii 1 Introduction ..................................................................................................................... 1 1.1 Classification of Polymerization Mechanisms ........................................................ 1 1.2 Living Polymerizations ........................................................................................... 3 1.3 Anionic Polymerization ........................................................................................... 5 1.4 Polysiloxanes ........................................................................................................... 9 1.4.1 Structure and Bonding in Siloxanes ................................................................. 9 1.4.2 Polydimethylsiloxane ..................................................................................... 11 1.4.2.1 Conventional Synthesis of PDMS .......................................................... 12 1.4.2.2 Synthesis of PDMS by Anionic Ring-Opening Polymerisation ............. 12 1.4.2.2.1 Monomers for PDMS Synthesis .......................................................... 12 1.4.2.2.2 Anionic Ring Opening Polymerisation of D3 ...................................... 13 1.4.2.2.3 Aggregation of the Propagating Species .............................................. 14 1.4.2.2.4 Secondary Reactions ............................................................................ 15 1.4.3 Polymethylvinylsiloxane ................................................................................ 17 1.5 Functionalization of Polymers ............................................................................... 18 1.5.1 Functionalized Initiator Approach ................................................................. 18 1.5.2 End Functionalization with Electrophilic Reagents ....................................... 19 i 1.6 Branched Polymers ................................................................................................ 20 1.6.1 Branched Polysiloxanes ................................................................................. 21 1.7 Aims and Objectives ............................................................................................. 22 2 Results and Discussion ................................................................................................. 23 2.1 The Impact of Side Reactions on the Anionic Ring-Opening Polymerisation of Hexamethylcyclotrisiloxane (D3) ..................................................................................... 23 2.1.1 The Mechanism of Propagation and Side Reactions in the AROP of D3 ...... 23 2.1.2 Size Exclusion Chromatography of Polydimethylsiloxane ........................... 24 2.1.3 The Impact of Monomer Conversion on the Extent of Side Reactions ......... 26 2.2 An Attempt to Synthesise PDMS AB2 Macromonomers ...................................... 31 2.2.1 Synthesis of End-Functionalized PDMS via the Use of Functionalized Initiators 31 2.2.1.1 Synthesis of Functionalized Initiator Precursors .................................... 32 2.2.1.1.1 A Survey of Silyl Ether Protecting Groups ......................................... 33 2.2.1.1.2 Synthesis of silyl ether protected 4,4’-dihydroxy-1,1-diphenylethylene 33 2.2.1.1.3 Synthesis of Protected Bisphenol F ..................................................... 36 2.2.2 Initiation of PDMS Polymerization with the Functionalised Initiator Precursors...................................................................................................................... 36 2.2.2.1 Initiation with DPE-OSi.......................................................................... 36 2.2.2.2 Initiation with DPE-OSi Butadienyllithium to Overcome Steric Hindrance 43 2.2.2.3 Attempted Polymerization with a Lithium Initiator based on Protected Bisphenol F .............................................................................................................. 54 2.2.3 Deprotection Reactions .................................................................................. 59 2.2.3.1 A Survey of Deprotection Methods ........................................................ 59 2.2.3.2 Attempted Deprotection Under Basic Conditions .................................. 61 2.2.3.2.1 Sodium Hydride ................................................................................... 61 2.2.3.2.2 DBU ..................................................................................................... 65 2.2.3.2.3 TBAF ................................................................................................... 66 ii 2.2.3.3 Attempted Deprotection under Acidic Conditions ................................. 69 2.2.3.3.1 Hydrochloric Acid ............................................................................... 69 2.2.3.3.2 Acetic Acid .........................................................................................